Utrymning och tekniska installationer i vägtunnlar med dubbelriktad trafik

Frantzich, Håkan; Nilsson, Daniel; Rød, Kjetil

2016

Document Version:
Förlagets slutgiltiga version

Link to publication

Citation for published version (APA):
Utrymning och tekniska installationer i vägtunnlar med dubbelriktad trafik

Håkan Frantzich
Daniel Nilsson
Kjetil Rød

Department of Fire Safety Engineering
Lund University, Sweden

Brandteknik
Lunds tekniska högskola
Lunds universitet
Report 3199, Lund 2016
Rapporten har finansierats av Statens vegvesen, Region midt (Norge)
Utrymning och tekniska installationer i vägtunnlar med dubbelriktad trafik

Håkan Frantzich
Daniel Nilsson
Kjetil Rød

Lund 2016
Evacuation and technical installations in single tube road tunnels
Utrymning och tekniska installationer i vägtunnlar med dubbelriktad trafik
Håkan Frantzich
Daniel Nilsson
Kjetil Rød

Report 3199
ISSN: 1402-3504
ISRN: LUTVDG/TVBB-3199-SE
Number of pages: 73

Keywords: evacuation, road tunnel, fire safety, human behaviour, behaviour sequence
Sökord: utrymning, vägtunnel, brandsäkerhet, människors beteende, beteendesekvens

Abstract: The report provides an overview of human behaviour in tunnel fires in single tube road tunnels. The behaviour is linked to the concept of a behaviour sequences presented by Canter et al. (1980). The main focus has been to present relevant research and findings provided in accident investigation reports mainly for long and steep sub-sea tunnels designed according to the self-rescue principle. Research on technical installations in the tunnel related to assisting the decision making for road users in the case of fire is presented and put into the behaviour sequence context. The need for information and knowledge prior to an accident is highlighted as are the principles for communication during the accident. The report also discusses the benefit from current installations and suggests alternative installations that may be installed in new tunnels and when upgrading existing tunnels. An early detection of a fire is most important in order to provide information to road users in a tunnel. Installations providing guidance to road users shall be designed to meet the need of information for the users depending on their location. The need for further research and development is presented. Suggestions for improving the self-rescue capability of road users in the Ellingsøytunnelen and Valderøy-tunnelen in Ålesund, Norway, are presented.

© Copyright: Dept. of Fire Safety Engineering, Lund University, Lund, 2016.
Förord

Arbetet är utfört på uppdrag av Statens Vegvesen Region midt i Norge och är tänkt att fungera som ett underlag inför ett arbete med att uppradera säkerheten i norska enkelrörsvägtunnlar samt att beskriva behovet av fortsatt forskning och utveckling avseende utrymning vid brand. Projektet är utfört under sommaren och hösten 2016 med uppdragstiteln 'Sammenheng mellom teknologi og menneskelig atferd for å legge tunnelene bedre til rette for selvredning' och med projektnummer 16/29906.

Projektet har genomförts i samråd och tillsammans med beställarens projektledare Senior rådgiver Kjetil Rød. Rapporten är skriven av Daniel Nilsson (projektledare) och Håkan Frantzich, båda vid Brandteknik, LTH samt av Kjetil Rød för de delar av rapporten som behandlar riskkommunikation och kriskommunikation. Rapporten är således skriven på svenska med inslag av norsk text.
Sammanfattning

Föreliggande rapport ger en introduktion till hur människor beter sig i samband med en tunnelbrand som kräver utrymning. De tunnlar som är aktuella i detta sammanhang utgörs av långa (mer än 3 km) och branta (lutar mer än 5 %) tunnlar med dubbelriktad trafik. Anledningen till denna avgränsning är att dessa tunnlar är vanligt förekommande i det norska vägnätet och de utgör också de som uppfattas som mest riskfyllda. Långa tunnelar med dubbelriktad trafik samt branta tunnelar utgör ett speciellt problem vid utrymning. Dels innebär det att några personer ofräknomligen kommer att exponeras för röken och att utrymningen kommer att vara både långvarig i tid och utgöra en tung arbetstillsats för personerna som tvingas utrymma uppfor lutningen.

Rapporten beskriver nuttans av en rad tekniska installationer och hur de bör vara utformade för att tillgodose kraven som ställs under en utrymning. Installationernas nutta är beskriven utifrån de skeden som förekommer i beteendesekvensen dvs upptäckt, tolkning och agerande.

I nästa skede, tolkningsfasen som startar så snart bilisterna förstätt att något onormalt inträffat, är syftet att få bilisterna att förstå att det inträffade är en brand och att de måste vidta åtgärder för att säta sig i säkerhet. Återigen handlar det om att via olika informativa åtgärder få bilisterna att besluta sig att agera på ett sätt som kommer att minska konsekvensen på grund av branden. Installationer är exempelvis trafikinformationstavlor som informerar om vad bilisterna ska göra. En typisk åtgärd som är aktuell för enkelrörstunneln är att förnöja bilisterna att köra ut ur tunneln innan de hindras av tät rök. Tolkningsfasen pågår fram tills att bilisterna fattar beslutat att vidta de konsekvensreducerande åtgärderna.

Agerandefasen inleds med beslutet att agera. Nu handlar det om att möjliggöra för bilisterna att vidta de åtgärder som de anser vara mest lämpliga. Personer nära branden beslutar sig kanske för att försöka genomföra en släckningsats och då bör det finnas möjligheter att göra en sådan med brandsläckare i tunneln. Andra åtgärder handlar om att möjliggöra en förflyttning till en säkrare plats. För dem som redan från början befinner sig i en rökfyld miljö blir åtgärderna kopplade till möjligheten att utrymma i tät rök. Typiska tekniska åtgärder är orienteringsassisterande...
åtgärder och räddningskammare med jämna mellanrum. Vägledande markeringar, lokala utrymningslarm vid räddningskammare eller utrymningsvägar och ledbelysning kan vara åtgärder att överväga.

För samtliga skeden beskrivs rådande forskningsläge och författarnas bedömda nytta för respektive åtgärd. Även om rapporten till största delen fokuserar på tekniska installationer i relation till utrymmande personers beteende så kan andra åtgärder också vidtas då de visats vara viktiga t ex utbildning och information före en olycka. Forskning inom dessa områden berörs också i rapporten.

Slutligen genomförs också en analys av utrymningssäkerheten i två sammanhängande vägtunnlar i Ålesund. Förslag som förbättrar möjligheterna till självräddning presenteras. Det bör påpekas att utredningen endast utförts från ett självräddningsperspektiv och någon beredskapsplanering (eller liknande utredningar) har inte genomförts inom ramen för projektet.

De referenser som författarna av denna rapport anser vara de mest relevanta studierna för de aktuella norska tunnlarna markeras i texten med understrykning.
Summary

Evacuation from a road tunnel can be a very difficult and traumatic experience for those concerned. This is evident after reading the testimonies in the accident investigation reports after the fires in the Oslofjord Tunnel in 2011 and in the Gudvanga Tunnel in 2013. Their main problems were caused by the fact that they had to evacuate in dense smoke, which in turn is because they began their evacuation too late. An early start of the evacuation in case of fire is necessary in order not to be injured, which means that the tunnel and the surrounding infrastructure must be designed to meet this requirement.

This report provides an introduction to how people behave during a tunnel fire evacuation. The tunnels that are relevant in this context consist of long (more than 3 km) and steep (slopes more than 5%) tunnels with bidirectional traffic. The reason for this delimitation is that these tunnels are common in the Norwegian road network and they are also those perceived as being associated with highest risk. Long tunnels with bidirectional traffic and steep tunnels pose a special problem for evacuation. Firstly, it means that some people will inevitably be exposed to smoke and that the evacuation will be both prolonged in time and constitute a heavy workload for the people who have to evacuate the uphill slope.

Human behaviour is described based on established theories of observed activities in the case of a fire and essentially based on the behaviour sequence theory by Canter, Breaux and Sime (1980). Other theories are included to explain why certain behaviours can be observed and how technical installations can be designed to meet motorists’ needs for information. Basically, much of future improvements are related to an early detection of a fire and to ensure that motorists are informed about what has happened and what they are expected to do. With this information, self-rescue activities may be successful. Included in the term information is also the type of information that is gained before the accident by for example education or information campaigns. The key conclusion is therefore that motorists must deal with the situation themselves, with the assistance of staff from a road traffic center (VTS). Assistance by other early responders shall not be assumed.

The report describes the benefit of a number of technical installations and how they should be designed to meet the requirements for an evacuation. The benefits of the installations are described for the stages in the behaviour sequence, i.e., detection, recognition and response.

The detection phase focuses on systems aimed to provide an early detection of the fire, which will indicate to the motorist that something unusual, in this case a fire, has occurred. The information will primarily be of use to those who are far from the fire and therefore cannot see the cause of the problem. Typical installations are different types of acoustic and visual alarms and digital traffic information signs. Also information via mobile phones is discussed. In the detection phase, the objective is to provide an indication, a cue, that the situation has shifted from the normal state to a state with higher risk.

In the next stage, the recognition phase which starts as soon the motorists have understood that something unusual has occurred, the aim is to get motorists to understand that a fire has occurred and that they must do something due to the situation, i.e., to eventually get to a safe location. Again, informative actions are the key component to get the motorists to decide to act in a way that will reduce the consequences due to the fire. Typically, installations like traffic information signs are used to inform motorists about what to do. A typical action that is beneficial in the case for single-tube tunnels is to encourage the people to drive out of the tunnel before being engulfed in thick smoke. The recognition phase continues until the motorists have decided to perform actions that will reduce the consequences due to the fire.

The response phase starts with the decision to act with the purpose to reduce the consequences. People close to the fire might decide to try to extinguish the fire, which indicate that extinguishers shall be located in the tunnel. Other measures are related to facilitate movement to a safe location. For those who already are within the smoke-filled environment relevant
measures are linked to the possibility to escape in a high density smoke environment. Example of measures are way guiding signs, local evacuation alarm systems and lights that helps with the orientation. Another installation may be rescue chambers located a certain distance in the tunnel.

The current state of research is presented for the three phases together with the authors’ estimated benefits for each installation. Although the report mainly focuses on the technical installations in relation to the behaviour of the people evacuating, also other actions are shown to be important, for example, education and information before an accident. Research in these areas is also considered in the report.

Finally, suggestions aimed to improve evacuation safety in two consecutive road tunnels in Ålesund are presented. For this case, it is assumed that the self-rescue principle is used. It should be mentioned that the analysis has been performed from a self-rescue perspective and disaster management planning (or similar investigations) have not been performed as part of the project.

The references that the authors of this report believe are the most relevant studies for the current Norwegian tunnels are underlined in the text.
Innehållsförteckning

1 Inledning ...13
 1.1 Bakgrund ..13
 1.2 Mål och syfte ...15
 1.3 Metod ...15
 1.4 Avgränsningar ..16

2 Teori ..19
 2.1 Inledning...19
 2.2 Risko- och krisemanagement ...19
 2.3 ”Sense-making” och ”coorientation” teorier som bärbehjelpar ..19
 2.4 Människors beteenden vid brand i tunnel ..20
 2.5 Tidslinjmodellen ..22
 2.6 Beteendesekvens - förklaringsmodell ..24
 2.6.1 Upphämt, dekstruktion och alarm ...24
 2.6.2 Tolkning ...24
 2.6.3 Agerande ..25
 2.7 Beteendesekvens - ingenjörsmodell ...25
 2.7.1 Varstaklisning ..26
 2.7.2 Förberedelse ..26
 2.7.3 Förflyttning ..26
 2.8 Förklaringsmodell respektive ingenjörsmodell ..26
 2.9 Panik ...27

3 Interaktion mellan människa och teknik ..29
 3.1 Före olyckan – Utbildning och information ...29
 3.1.1 Sosiale medier ..29
 3.1.2 Dataspill förbedrer lärningsevnen ..29
 3.2 Uppläktet ...30
 3.3 Tolkning ...31
 3.4 Uttryckning av att gifva sig upp ...36
 3.5 Övriga undersökningar och erfarenheter ..42

4 Relevanta studier för aktuella tunneln ..45
 4.1 Övriga relevanta studier ..45

5 Framtida forskning ..47
 5.1 Förflyttning i tunneln med kraftig lutning ..47
 5.2 Utformning av räddningskammare ...47
 5.3 Information om enkla dynamiska vägskyltar ...47
 5.4 Kommunikation via VII ...47
 5.5 Vägledning genom tät rök ...47
 5.6 Utveckling av strategier för brand i tunnel ...48
 5.7 Information via smarta telefoner ..48
 5.8 Förhandsinformation och utbildning ...48
 5.9 Tunnelns utformning ..48
 5.10 Brandsläckning ..48
 5.11 Möjligheter att vända i tunneln ..49
 5.12 Egen bil som tillfällig säker plats ...49

6 Case-studie Ålesundstunnelnarna ..51
 6.1 Brand- och utrymningsscenario ..51
 6.2 Typer av trafikanter och analysis ..52
 6.2.1 Trafikant i brandens omedelbara närhet – typ 1 ..52
 6.2.2 Trafikant som kör eller står stilla i rök (nedströms) – typ 2 ..53
 6.2.3 Trafikant som kör mot röken i en rökfri miljö (nedströms) – typ 354
 6.2.4 Trafikant som kör från röken i en rökfri miljö (nedströms) – typ 455
 6.2.5 Trafikant som kör mot röken i en rökfri miljö (uppströms) – typ 555
 6.2.6 Trafikant som kör från röken i en rökfri miljö (uppströms) – typ 656
 6.3 Sammanfattning av tekniska system för utrymning ..57
 6.4 Övriga synpunkter ...58

7 Referenser och anknytande litteratur ..59
8 Bilaga A Utrymningsanalys från vägtunnel: ..69
 8.1 Försättnings.. 69
 8.2 Resultat ... 70
 8.3 Slutsats .. 72
1 Inledning

1.1 Bakgrund

Det faktum att ett flertal av tunnlarna löper under fjordar och andra vattendrag innebär att de måste förläggas på ett avsevärt djup för att kunna passera under vattnet. Dessa tunnlar kännetecknas av att de vanligen både är långa och förhållandevis branta. En typisk tunnel kan vara flera kilometer lång, med först brant lutning nedåt till botten av tunneln för att sedan på motsvarande sätt därefter ha en lång kraftig stigning till marknivån på andra sidan.

Uttrymningen från dessa långa och branta tunnlar medför alltså generellt stora svårigheter att utrymma, speciellt för de bilister som befinner sig i den del av tunneln dit vinden för röken. Uttrymningsförloppen blir både långa tidsmässigt på grund av avstånden till säkra platser men uttrymningen sker också uppfor en lutande väg vilket medför en ytterligare ansträngning utöver den att tvingas förflytta sig i rök.

En av orsakerna till de uppkomna svårigheterna i sammanhanget är att de tunnlar som löper under vatten naturligtvis inte kan vara försedd med utrymningsvägar, t ex direkt till det fria eller till ett angränsande tunnelrör, om tunneln är utfört med endast ett tunnelrör. Mynningen blir i dessa fäller den enda möjligheten att nå en säker plats. Problemet finns även för många av tunnlarna som löper genom berg där utrymningsvägar endast med stor svårighet kan åstadkommas. Uttrymningsvägar måste i sådana fall skapas som passager genom berget till det fria vilket sannolikt bara är möjligt i ett fåtal fall. Tillgång till utrymningsvägar inne i tunneln är därför bara praktiskt möjlig om dubbla tunnelrör förekommer, dvs när det parallella tunnelröret kan fungera som säker plats vid utrymning. Dubbla tunnelrör förekommer vanligen endast på platser där trafikflödet är högt.

I de allra flesta fallen utgör strategin för utrymningssäkerheten att personerna som vistas i tunnlanut egen hand ska kunna sätta sig i säkerhet, genom så kallad självräddning eller själutrymming, vilket ställer krav på att utformningen av bland annat tekniska system är avpassade efter bilisternas behov för att kunna hantera en sådan situation. Eftersom svårigheterna att genomföra en utrymning under förutsättningar som föreligger i de långa och branta tunnelnarna måste särskild vikt läggas vid att försöka undvika att utrymning sker genom rök och att förutsättningarna, om detta ändå sker, bör förflyttnings, i en rökfylld miljö underlättas.

Utformningen med ett tunnelrör och låga trafikflöden, som är fallet för många tunnlar i Norge, gör det svårt att motivera att alltför stora resurser läggs på åtgärder för att hantera
brandsöner. Det kan vara rimligt att det finns en balans mellan konsekvensreducerande åtgärder och det trafikflöde som finns i tunneln, vilket gör att mer kostnadseffektiva lösningar prioriteras. Utrymmingslösningarna i många av de norska tunnlarna baseras därför på dessa tankar om kostnadseffektivitet och den tekniska nivån på utrytningen är därför inte densamma som i dubbelrörstunna med högt trafikflöde.

Typiska installationer för hantering av en brandsituation i enkelrörstunna är:

- nødtelefon och handbrandsläckare
- radioinbrytning på NRK1
- vändplatser
- brandventilation längs med tunnelrötet
- mobiltelefontäckning
- stoppsignaler utanför mynningarna (i vissa fall kompletterade med bommar)
- ledbelysning

Nivån på utrytningen baseras på tunneln längd och trafikflöde, regleras i föreskrifter från Statens vegvesen vilka redovisas i Håndbok N500 Vegtunneler (Vegdirektoratet, 2014).

I Oslofjordtunneln tvingades även åtta personer att ta tillflykt i ett utrymme mellan tunnelväggen och bergväggen tills de fick hjälp av räddningstjänsten att utrymma (SHT, 2013). Detta utrymme var inte avsett för utrymning, dvs det var ingen säker plats, men personerna tog sin tillflykt dit eftersom förhållanden var bättre än i den rökfyllda tunneln. De fick vägledning till utrymmet av personalen på VTS.

År 2015 brann det åter i Gudvangatunneln men då blev konsekvensen lindrigare. I det fallet brann det i en buss som stannade ett par hundra meter in i tunneln. Den största forskjellen mellan händringen av de to bussbrannen var att i 2015 reverserade branmnanskapet den automatiska ventilationen slik en gick ut den åpningen som var närmest bussen, och best med tanke på selvredning. SHT anbefaler efter brannen i 2015 att det gjennomføres sikkerhetsinspeksjoner for de kjerorer inn i tunnel; den automatikventilasjonen bør reverseres ved behov; VTS bør informere trafikanterne øyeblikkelig ved brann; og VTS bør knyttes til nødnett og dermed kommunisere direkte med nødetaten (FPST 2016).

Det som är typiskt för flera inträffade bränder är att många personer tvingades gå långt i röken och att de sent blev varse om att det uppstått en brand vilket i sig visade sig innehåva stora svårigheter att utrymma. I båda tunnelbränderna i Gudvangatunneln 2013 och i Oslofjordtunneln 2011 orsakade de standardiserade insatsrutinerna stora svårigheter för personer som befann sig i tunneln då ventilationsystemet startades och förde snabbt röken i ena riktningen så att ett flertal personer exponerades för röken.

Ovanstående exempel illustrerar tydligt att brand utgör ett förhållandevis stort problem i långa enkelrörstunna även om dessa utrustats med flera tekniska system. Lyckligtvis har inte förekommit några dödsfall i tunnelbränder i Norge (öräknad de som omkommer vid själva trafikolyckan), men utrytningen sker under svåra förhållanden. Det konstateras också i havariutredningen efter brannen i Gudvangatunneln 2013 att "Det er SHTs oppfatning at forholdene i Gudvangatunnelen var dårlig tilrettelagt for selvredning, og SHT mener at dette er den vesentligste læringen fra denne hendelsen." (SHT, 2015). Det finns därför anledning att

De huvudsakliga problem som identifieras vid de inträffade bränderna är att personer som utsätts för tunnelbranden under ganska lång tid (1) saknar information om vad som har hänt och vad som förväntas av dem. När det sedan finns indikationer på att något inte är som det ska vara så uppstår (2) svårigheter att tolka situationen eftersom signalerna kan vara otydliga och inte nödvändigtvis associerade till brand. När personerna slutligen inser att de är i fara och måste utrymma så finns problem med att konkret (3) sätta sig i säkerhet, antingen genom direkt förflyttning till en annan plats eller genom räddningskammare. Samtliga av dessa problemtyper innebär att det dröjer innan en utrymning kan påbörjas och personerna hinner sätta sig i säkerhet. Detta betyder att tid är en kritisk faktor som måste ingå i en analys av tunnelsäkerhet.

Om utrymning kan inledas innan röken när personerna som finns i tunneln så har de klart bättre förutsättningar att sätta sig i säkerhet. Det finns därför anledning att undersöka vilka åtgärder som kan vidtas för att underlätta för personer i en tunnel att besluta sig för att utrymma vid en brand. En rad sådana åtgärder kan förmodligen identifieras såsom tekniska system i tunneln, organisatoriska sätt att hantera olyckor på olika nivåer inom samhället och åtgärder knutna till de enskilda bilisterna.

I Brandt m fl (2013) redovisas kunskapsläget kring utrymning av vägtunnlar men utifrån ett något bredare angreppssätt dvs även för tunnlar där det finns utrymningsvägar och där det kan förekomma enkelriktad trafik. Föreliggande arbete kommer dock att fokusera på kopplingen mellan tekniska system i en tunnel och möjligheter att utrymma vid brand för att förbättra möjligheterna till självräddning i enkelriktad trafik, samt att blicka framåt och ge vägledning till framtida tekniska system som underlättar en utrymning.

1.2 Mål och syfte

Syftet med arbetet är att sammanställa kunskap som kan öka förståelsen av sambandet mellan tekniska system i vägtunnlar och människors beteende vid utrymning, samt deras möjlighet till utrymning vid brand.

Målet är att presentera teorier som kan användas för att förklara varför människor agerar som de gör vid en tunnelbrand och att sammanställa information om forskningsläget avseende tekniska system med avsikten att förbättra möjligheten till självräddning (utrymning) från tunnlar med dubbelriktad trafik.

Ansatsen är att studera problemet utifrån ett bredt perspektiv men att särskild vikt läggs vid utrymning från tunnlar med dubbelriktad trafik, dvs enkelriktad trafik, som är flera kilometer långa (> 3000 m) och har en kraftig lutning (över 5%). I rapporten ska studier som är särskilt relevanta för dessa tunnlar lyftas fram (referenser markeras med understrykning i texten). Vidare är målet att ge förslag till säkerhetshöjande åtgärder för de två enkelriktadtunnlarna Ellingsøytunnelen och Valdøytunnelen, vilka utgör ett gemensamt tunnelsystem utanför Ålesund.

1.3 Metod

Arbetet utfördes i huvudsak som en litteraturundersökning. Litteraturundersökning i ett flertal vetenskapliga databaser genomfördes med valda nyckelord. Dessutom valdes litteratur baserat på författarnas tidigare erfarenhet och kunskap, även om detta material inte finns publicerat i

Typiska nyckelord som använts vid sökningen är: tunneln, evacuation, escape, movement, fire, behaviour, behavior, fatigue, pedestrian, road, upward, inclined, gait och walking. Nyckelorden har kombinerats i olika skeden och alla har inte använts samtidigt. Sammantaget har cirka 100 rapporter och vetenskapliga artiklar inkluderats i analysen och de som på något sätt bidragit till rapporten anges i referenslistan i slutet.

1.4 Avgränsningar

Arbetet har inriktats mot att söka rätt på underlag som i huvudsak berör möjlighet till utrymning och människors beteende knutet till de problemställningar som är aktuella för tunneln med ett enda tunnelrör med dubbelriktad trafik och som är långa (> 3000 m) och som kan ha en kraftig lutning (> 5 %) vilket är typiskt för tunneln som går under fjordar och andra vatten. Mycket av materialet kan dock tillämpas även i andra situationer.

Arbetet begränsas till att i första hand hantera situationen som benämns självräddning eller självutrymning då personer sannolikt inte kan förväntas bli räddade av externa organisationer förrän i ett senare skede av utrymningsförloppet. Assisterad räddning hanteras inte i någon större omfattning då det företrädesvis då handlar om aspekter kopplade till räddningstjänstens insats och deras taktiska överväganden.

Utgångspunkten för i rapporten diskuterade system är att det har uppstått ett behov att utrymma tunneln och att systemen har en gynnsam påverkan på möjligheten att besluta sig för och genomföra en utrymning. Det betyder att vissa tekniska system eller organisatoriska åtgärder som mer indirekt har en positiv effekt på utrymningsförloppet medvetet inte beaktas i någon större omfattning. Några tydliga sådana exempel är

- vattensprinkler påverkar brandsförloppet i en gynnsam riktning då det förlänger den tid som är tillgänglig för utrymning,
- detektionssystem med syfte att upptäcka en brand eller varma fordonsdelar som monteras utanför tunneln som kan användas för att minska sannolikheten att ett utrymningsförlopp blir nödvändigt, samt
- inspektioner av tunga fordon som utförs innan de kör in i tunneln som också kan minska sannolikheten för brandolyckor.

På samma sätt ska man se behovet av beredskapsplaner och insatser som utförs av räddningstjänsten när de kommer på platsen. Rapporten diskuteras inte dessa utan rapporten ska snarare ses som ett underlag för utveckling av sådana planer och insatsstrategier.

Vidare har ingen analys gjort kring förutsättningarna för utrymning så som de regleras i gällande föreskrifter. Utgångspunkten är istället att betrakta vilka behov som bilister som ställs inför en utrymnings situation har för att på bästa sätt klara av att utrymma säkert.

Analysen av utrymningssäkerheten i de två sommanhängande vägtunneln i Ålesund utfördes utifrån ett självräddningsperspektiv, dvs hur förutsättningarna för självutrymning kan förbättras.
Här är det åter främst principerna för ett sådant förbättringsarbete som varit fokus och inte de konkreta fysiska utformningarna i detalj. Någon beredskapsplanering (eller liknande) har inte genomförts för de två tunnlarna inom ramen för projektet.
2 Teori

2.1 Inledning
Generellt sett kan man utgå från att all dimensionering av tunnlars utrymningssäkerhet baseras på hur man tror eller vet att människor beter sig i en brandsituation som kräver utrymning. Denna kunskap kan vara olika utvecklad, dvs från direkt felaktiga antaganden om hur personer agerar till kunskap väl förankrad i forskning. Av den anledningen är det väsentligt att minska på den osäkerhet som finns kring personas agerande vid tunnelbränder och försöka förbättra identifierade brister i existerande och nya tunnlar när ny kunskap blir tillgänglig.

Huvuddelen av kunskapen om människors beteenden vid brand är framtagen för bränder i allmänhet, dvs främst kopplad till bränder i byggnader. Dessutom har kunskap insamlats i samband med olycksfallsutredningar efter inträffade incidenter, vilket utgör ett viktigt material att ta hänsyn från. Utgångspunkten är att kunskap och erfarenheter återförs till projektering av nya tunnlar och till förbättring av existerande tunnlar.

Den förväntade konsekvensen av en brand i en tunnel har att göra med den information eller kunskap om brandsäkerhet och tunnlar som personerna har med sig in i situationen. Det betyder att kommunikation före en incident (riskkommunikation) samt under och efter själva förloppet (kriskommunikation) har en direkt påverkan och även dessa aspekter belyses nedan från ett teoretiskt perspektiv.

2.2 Risiko- och kriskommunikasjon

2.3 ”Sense-making” och ”coorientation” teoriene som bærebjelker

Disse teoriene danner bærebjelkene for kommunikasjon: Prinsippet om å skape konsensus for tunnelulykker skjer, fører til at forståelsen (i.e nøyaktighet og enighet) av tunnlsikkerhet er blitt mest mulig lik mellom vegmyndighetene og publikum.

Hensikten med Riskokommunikasjon er å forhindre at potensielle trusler kan skje, og unngå att påvirke adferd och polisver på uheldige måter (Sellnow et al. & Littlefield, 2009). Kriskommunikasjon, derimot, har som siktemål å begrense skaden til en pågående hendelse, og
forsterke menneskets evne til restitusjon. Hovedforskjellen mellom de to er således kommunikasjon før en hendelse (risikokommunikasjon) og under og etter en hendelse (krisekommunikasjon). Risikokommunikasjon vil i denne rapporten fokusere på hvordan vegmyndighetene ved proaktiv kommunikasjon kan forebygge at tunnelulykker kan skje, men også minske konsekvensen av en tunnelulykke. Krisekommunikasjon omhandler hva trafikanterne kan gjøre når uhellet er ute.

Emosjoner har ofte en sterkere innvirkning på publikums risikoforståelse, enn logikk og fakta (Slovic et al. 2004). Det indikerer at myndighetene, som har ansvaret for sikkerheten til publikum, må styrke kunnskapen om menneskelig atferd før teknologiske løsninger blir implementert.

2.4 Människors beteenden vid brand i tunnel

Teorin om beteendesekvenser baseras på att utrymmande personer går igenom tre steg i sitt beslutsfattande. Dessa steg, vilka kan upprepas flera gånger under ett utrymningsförsök, är:

- tolka situationen
- förbereda
- agera
Under utrymningsfasen fattar personen en mängd beslut som alla passerar genom dessa tre stadier, figur 1. Vilka beslut och aktiviteter som tas av personen bestäms bland annat av var i förlöpet personen befinner sig och de roller som personen har. Det gör att skilda beteendemönster kommer att visa sig vid olika tidpunkter och mellan olika verksamheter och lokaler.

Undersökningar visar att det tidiga skedet i utrymnningen ofta karakteriseras av osäkerhet, missförstånd och ineffektivitet. Vanliga åtgärder är att personerna försöker informera sig om vad som har hänt. Därefter kommer åtgärder som att vidare undersöka vad som hänt, försöka bekämpa branden, hjälpa eller varna andra, rädda materiella ting, ringa efter räddningstjänsten och utrymma. I vissa mer sällsynta fall beter sig personer på ett sätt som bedömdes öka faran för deras liv. Sammantaget innebär det att personer som utrymmer är förhållandevis förnuftiga och deras beteende är rationellt sett i sitt sammanhang.

En annan teoribildning som kan vara värdefull vid utrymningsanalyser är den om social påverkan, se t ex Latané and Darley (1970) och Canter m fl (1980). Personer som agerar gör det gärna på ett sätt som personen uppfattar som socialt korrekt och det finns ett motstånd mot att ta det första steget i en situation eftersom detta kan senare visa sig vara ett felaktigt beslut. Man vill inte riskera att "tappa ansikten" inför en grupp främmande individer och det måste finnas tydliga signaler som stärker en persons uppfattning om vad som är ett lämpligt och korrekt beteende. Vid ett flertalet undersökningar efter bränder med efterföljande utrymning har det visat sig att personer i hög grad hjälper varandra vilket kan förklaras med att det är det naturliga
beteendet i situationen. Personer som inte sedan tidigare känner varandra tvekar en stund att vidta åtgärder, men därefter bildas mindre grupper där lämpliga åtgärder förankras i gruppen och gruppen agerar och uttrycker tillsammans. En fördröjning föregår ofta gruppbildningen på grund av att personer som inte känner varandra tvekar att ta första steget, med risk för att göra bort sig inför de andra. Denna form av social påverkan kan benämns för normativ social påverkan (Deutsch & Gerard, 1955) och har att göra med att agerandet styrs av andra persons förväntade positiva tolkningar av agerandet.

En annan form av social påverkan benämns för informationell social påverkan och här är det information från andra som i viss utsträckning påverkar individens beteende. Hur andra personer agerar styr hur individen agerar i en situation av otillräcklig kunskap om läget. I det fallet blir andra personers agerande en bekräftelse på att detta utgör ett riktigt och rimligt beteende. Man kan i detta fall tala om en sk "Följa John"-effekt. Båda formerna av social påverkan gynnar den gruppbildning som ofta förekommer då det handlar om att förankra uppfattningen av situationen innan agerandet sker.

De olika teorierna kan användas för att förklara observerade beteenden, men också fungera som en grund för att prediktera vad som troligen kan förväntas hända i en framtida situation. Denna kunskap kan därför användas i samband med att nya tekniker ska introduceras i vägtunnlar. För att koppla ihop teorier för människors beteende med en praktisk dimensioneringssituation kan den så kallad tidslinjemodellen vara illustrativ. Denna introduceras i följande avsnitt och utgör grunden för resonemangen för beskrivningen av de tekniska installationernas koppling till människors beteenden.

2.5 Tidslinjemodellen

I de flesta fäll ska utrymning av en tunnel kunna ske innan kritiska förhållanden uppstår. Detta visar att en av de viktigaste parametrarna för att systematiskt beskriva ett utrymningsföropp är tiden. Ju längre tiden går från det att branden startar desto värre blir förhållanden då branden oftast utvecklas så att effekttutvecklingen ökar upp till en maximal nivå, för att sedan avta när bränslet förbrukats. Eftersom det inte är känt vad som brinner, förrän i efterhand, kan det vara rimligt att utgå från att konsekvensen av branden ständigt blir mer allvarlig, om inget görs.

1 'Följa John' handlar om att agera på samma sätt som någon annan redan gör. 'Följa John' är en barnlek där deltagnarna ska göra på samma sätt som den som leder leken och som är utsedd att vara 'John'.
Det kan därför vara relevant att beskriva utrymningsförloppet i form av en tidslinje och ett flertal sådana har presenterats under åren (Proulx, 2008). Nedan presenteras en modell, figur 2, som utgör grunden för det vidare resonemanget och som har tydliga likheter med den modell som Proulx presenterar.

Figur 2. Tidslinje för utrymningsförlopp.

Tidslinjen i figuren är upbyggd så att den både speglar utrymningen sedd från ett beteendeperspektiv genom att förklara och beskriva hur personer agerar i den nya situationen men också på det viset som en ingenjörsmodell av utrymning ofta representeras.

Anledningen till uppdelningen i en förklaringsmodell och en ingenjörsmodell är bland annat att de beräkningsmodeller som finns tillgängliga i huvudsak är avsedda att beskriva personers förflytning och fokuserar på gånghastighet, flöden genom dörrar mm. Det gör att ingenjörsmodellen av utrymningsförloppet kan användas när utrymningstiden för en tunnel ska analyseras, men samtidigt är den modellen dålig för att beskriva hur utrymning sker.

Beskrivningen av människors beteende utifrån den så kallade ingenjörsmodellen bygger som framgår av figuren på samma delar av beteendesekvensen men har en lite annan uppdelning för att bättre anknyta till sättet som utrymning hanteras på ur ett beräknings- och analysperspektiv vid en dimensionering. Det innebär att mycket av resonemangen kring nytta med olika tekniska system struktureras utifrån ingenjörsmodellen för att visa hur dessa system kan påverka de komponenter som vanligen ingår i en analys baserat på den modellen.
Tidslinjen kan appliceras på enskilda individer eller för en grupp individer som befinner sig på ungefär samma plats i tunneln. Varje person kommer att gå igenom samtliga faser i beteendesekvensen; upptäckt, tolkning och agerande. I ett mer övergripande perspektiv kan modellen fungera också för en normal trafiksituation, men i det sammanhanget presenteras den ofta på ett annorlunda sätt, som en kontinuerlig process med aktiviteterna; *perception, information processing, decision making and handling* (PIARC, 2016).

2.6 Beteendesekvens - förklaringsmodell

2.6.1 Upptäckt, detektion och alarm

Tidslinjen startar när branden initieras. Den första fasen kommer att fortgå olika långt beroende på var i tunneln bilisterna befinner sig. I många av de aktuella enkelrörstunnlarna kommer denna fas att fortgå tills personerna själva märker att det uppstått en *avvikelse från det normala*.

I vissa fall kan detta skeende också initieras genom ett tekniskt system, t ex att tunneloperatören aktiverar ett varningssystem för brand. Det kan vara aktuellt för bilister som befinner sig långt från branden eller utanför tunneln. Ett exempel på sådant system kan vara röda varningsljus och bommar utanför tunneln som aktiveras. En bilist som befinner sig närmare branden kan notera avvikelsen genom att bilarna framför saktar in. I det skedet kan det anses att första fasen slutförs och bilisten går in i nästa skede, dvs *tolkning*.

2.6.2 Tolkning

Så snart en bilist kommit till insikt med *att något inte är som det borde vara* inträder nästa fas som innebär att den uppkomna situationen ska tolkas så att bilisten förstår vad som häinner. I exemplet ovan med bilkön i tunneln kan anledningen att framförvarande bilar saktar in vara att det finns ett hinder på vägen vilket normalt inte behöver kopplas till brand. I de flesta fall är detta situation som ofta förekommer och som har naturliga orsaker. Utgångspunkten är dock vidare att det uppstått en brand.

I den uppkomna situationen behöver bilisten få mer information om vad som hänt för att kunna bilda sig en uppfattning om läget. Omfattningen av tidsperioden för tolkning kan vara lång och det kan också hända att bilisten stannar bilen och går ut för att se vad som händer, dvs att söka mer information. I tolkningsfasen finns fortfarande finns inte tillräckligt med information för att övertyga bilisten om att det uppstått en brand, men personerna i scenariot samlar gradvis på sig mer information om situation.

Inom ramen för tolkningsfasen kan bilisten besluta sig för att vidta vissa aktiviteter, tex att lämna bilen eller att använda mobiltelefonen. Det innebär att denna del av utrymningsförloppet också kan innehålla aktiviteter, dvs att bilisten faktiskt agerar, vilket annars är kopplat till nästkommande fas. Det kan därför vara relevant att skilja på olika ageranden beroende på i vilket syfte ett agerande görs. För att förtydliga detta kommer fortsättningsvis de ageranden som sker efter personen fattat beslutet att vidta konsekvensreducerande åtgärder att benämna *utrymningsagerande* till skillnad från ett mer så kallat *tolkningsagerande* som kan förekomma i tolkningsfasen. Dessa begrepp används mest för att förtydliga i vilket skede agerandet sker.

De ageranden som kan vara aktuella i tolkningsfasen är, förutom att söka efter mer information, att samtala med andra bilister i tunneln, att avvika och inte göra något alls och att försöka förstå de signaler som kan förekomma. Från inträffade bränder har det rapporterats att mötande bilister blinkar med strålkastarna eller varningsblinkers för att varna (SHK, 2015). För att varningen ska fungera måste mottagaren förstå innebörden av signalen. Det ska påpekas att bilisten i detta skede fortfarande inte är medveten om anledningen till att normalsituationen upphört. Vanligen behöver det finnas flera signaler som samverkar för att budskapet ska nå igenom och troligen behöver signalerna vara så starka och tydliga att bilisten också uppfattar den annalkande situationen som hotfull.

Försök med bilister i en vägtunnel i Nederländerna visar att trots att bilarna i tunnelförsöket stod stilla och rök var synlig så vändade många bilister...
vid sina bilar innan de påbörjade utrymningen. Inte förrän ett utrymningsmeddelande hördes i tunneln började de att gå mot en utrymningsväg (Boer, 2002a).

Tolkningsfasen pågår fram tills dess att bilisten är övertygad om att en brand uppstått och beslutar sig för att vidta någon åtgärd som syftar till att minska konsekvensen.

2.6.3 Agerande

Efter att bilisten förställt att det inträffat en brand och beslutat att vidta åtgärder för att minska konsekvensen för sig själv eller annan person så har agerandeskedet inletts. Ageranden som kan finnas i detta skede handlar om att förstå vad som är lämpliga åtgärder och att utföra dessa. Som exempel på ageranden, vilka benämns utrymningsageranden, finns att varna och hjälpa andra personer, att hämta släckredskap och försöka bekämpa branden, att samla ihop värdefulla ägodelar i bilen, att sätta bilens ventilationssystem på recirkulation (om man beslutat att sitta kvar i bilen och att inte påbörja en förflyttning bort från branden och röken), att vända bilen och försöka köra ut och utrymma till fots. Förflyttning kan ske till fots, men i många observerade fall försöker bilisterna att vända sina bilar och köra ut ur tunneln. Uppmaningar att göra så finns i många tunnlar och speciella vändplatser finns också (SHT, 2013).

Det är vanligt att personer gemensamt kommer fram till beslut vilket innebär att de samverkar. Detta avspeglas också i att personer är hjälpsamma gentemot varandra och uppvistar tydliga altruistiska beteenden under utrymningsföroppet.

2.7 Beteendesekvens - ingenjörsmodell

Som tidigare nämnts kan utrymningsförloppet beskrivas på ett mer ingenjörsmässigt sätt genom en lite annan uppdelning än för förklaringsmodellen av beteendesekvensen. Uppdelningen sker för att underlätta en mer dimensioneringsinriktad beskrivning av förloppet och delar upp detta i tre liknande faser; varseblivning, förberedelse och förflyttning. Dessa faser har stora likheter med de som förekommer i förklaringsmodellen och övergångarna mellan den är också i flera fall identiska.

2.7.1 Varseblivning

Denna del överensstämmer helt med förklaringsmodellens första fas och handlar om tiden det tar att upptäcka att något inte är som det bör vara. Tiden kan vara olika för olika individer och måste bedömas utifrån aktuella förutsättningar på den aktuella platsen.

2.7.2 Förberedelse

2.7.3 Förflyttning

Förflyttningsfasen är tänkt att representera den tid det tar att fysiskt förflytta sig till en säker plats. Med säker plats avses ett ställe där personer kan vistas under en längre tid utan att utsättas för kritiska förhållanden. En plats utanför tunneln utgör en säker plats och även ett parallellt tunnelrör, i de fall det finns ett sådant, kan anses vara en säker plats. Även en räddningskammare eller flyktplatser inne i tunneln kan fungera som en säker plats, åtminstone under en viss tid.

Olika typer av förflyttning är aktuella för vägtunnelar och den vanligaste är att personer går till fots. Även möjligheten att köra med bilen ut ur tunneln kan övervägas, speciellt om utrymningen sker innan röken nått platsen för respektive person.

2.8 Förklaringsmodell respektive ingenjörsmodell

- "a period for detecting the event and a period for sounding the alarm,
- a period during which the user prepares for moving in the tunnel (period during which the user analyses the situation and decides what action to take),
- the period during which the user heads towards the tunnel emergency exits on foot."

Det bör åter poängteras att syftet med förklaringsmodellen är att förklara hur personer agerar i situationen, medan syftet med ingenjörsmodellen är att fungera som en modell som kan integreras i beräkningsverktyg. Båda betraktningssättet har således olika infallsvinklar, men

2.9 Panik

Trots detta rapporteras ändå att panik är något som förekommer och som är orsaken till att personer omkommer vid bränder. Den troliga förklaringen till förekomsten är att allmänheten nog har en mer generös tolkning av begreppet än forskarna inom området och att panik egentligen mer är en omskrivning för oro, ångest och stress i samband med en onormal situation.

En utrymning kan absolut vara förknippad med en stark oro, ångestkänsla eller skräck för att inte kunna ta sig ut, men det är tveksamt om det kan kategoriseras som panik. En bra sammanställning om forskningen kring panik finns i Fahy, Proulx och Aiman (2009).
3 Interaktion mellan människa och teknik

Ovanstående tankesätt, dvs att förkorta den tid som trafikanterna tillbringar i de olika faserna, anses vara en bra utgångspunkt vid val av tekniska system i tunneln. Genom att utgå från trafikanternas perspektiv, dvs fokusera på vad som behövs för att de ska tillbringa så kort tid som möjligt i de olika faserna, kan potentiellt en lämplig kombination av system tas fram för en specifik tunnel.

I nedanstående avsnitt sammanfattas projektets litteraturstudie utifrån de tre faserna **upptäckt**, **tolkning** och **agerande** vid brand i en vägtunnel. Mer specifikt behandlas forskning och utredningar om olika typer av lösningar (ofta tekniska system) som visat sig ha potential att minska tidsåtgången vid utrymning. Dessutom ges förslag på alternativa lösningar som ännu inte utforskats, men som anses ha potential baserat på studerad litteratur. Fokus i nedanstående avsnitt är på enkeltunneler som är flera kilometer långa (>3000 m) och har en kraftig lutning (över 5%), men därmed behandlas forskning och utredningar för olika typer av vägtunneln, dvs även t ex dubbelrörstunnelar. Beskrivningen inleds med ett avsnitt som behandlar aspekter som tar upp behovet och utformningen av kommuniserad information till bilister före och under en incident.

För att på ett trovärdigt sätt kunna beskriva vad som sker under en utrymning är det viktigt att ta lära av vad som skett i samband verkliga insatser eller vid experiment i realistiska miljöer. Därför läggs stor vikt vid information och slutsatser från dessa båda typer av undersökningar.

3.1 Före olyckan – Utbildning och information

3.1.1 Sosiale medier

3.1.2 Dataspill forbedrer læringsevnen

Serious games for safety education (SGSE), er video spill brukt i opplæringsformål, mest med tanke på sikkerhet i fly, men også på veg (Li & Tay, 2014). Spillet kan gi opplevelser som engasjerer deltakerne mer til å lære enn det tradisjonelle medier gjør. Trafikanter kunne f. eks
ved hjelp av SGSE gjøre seg kjent med tunnelene de ferdes i, dvs. lære detaljer om evakueringssmuligheter, sikkerhetsutstyr etc. Chittario (2016) har demonstrert at SGSE gir signifikant bedre læring (mestringsevne og forståelse av anbefalinger ifm evakuering) enn tradisjonell instruksjon med bilder og tekst.

Boer (2002a) konstaterer også fra gjennomførte experiment at personer som redan innan olykkan inntaer vet vad som er ett lämpligt agerande innebærer at avrukkningen påskyndas og at fler anvender utrymningsvägarnas istället för att ta sig till tunnelmynningen.

3.2 Upptäckt

Om fasen upptäckt, dvs tiden från det att branden startar tills trafikanterna får första signalen om den ännu okända branden, ska kunna förkortas krävs först och främst att branden eller olyckan detekteras i ett tidigt skede. I de fall inga brand- eller trafikövervakningssystem finns i tunneln, dvs när man förlitar sig på att trafikanterna ska rapportera branden, kommer det att ta lång tid innan tunnelns tekniska system kan aktiveras. För de flesta trafikanter som färdas i tunneln kommer första signalen då sannolikt att vara en kö eller att de ser själva branden. Dessutom innebär en sen aktivering av de tekniska systemen att trafikanter inte kan stoppas vid ingången i tid, utan att fordon fortsätter att köra in i tunneln trots att det brinner.

En förutsättning för att förkorta fasen upptäckt är därför någon form av detektionssystem används i tunneln. Ett möjligt system är trafikövervakning med CCTV som larmar vid stillstående trafik i tunneln, dvs den typ av system som finns i Oslofjordtunneln (SHT, 2015). Denna typ av system har stor potential att snabbt identifiera stillstående fordon, vilket sedan kan undersökas av trafikledningen. En annan möjlighet kan vara att vidareutveckla system för kommunikation mellan fordon och infrastruktur (PIARC, 2016), dvs så kallad Vehicle Infrastructure Integration (VII), för att de även ska larmas vid brand i tunnel (inte endast vid trafikolycka). Denna typ av system har stor potential att ge en snabb detektering, men baserat på
litteraturstudien verkar forskning om denna typ av system för tunnelbränder hittills mycket sparsam.

Ytterligare en förutsättning för att för korta fasen upptäckt är att information om branden också snabbt förmedlas till trafikanterna via tunnelns tekniska system. I Oslofjordtunneln tog det hela 9 minuter från det att branden upptäckts tills dess att radioinbrytning aktiverades (SHT, 2013). Detta innebar att radiobrytningssmeddelandet sannolikt var den första signalen för ytterst få eller inga) av trafikanterna. Visserligen måste tiden från detektering till aktivering av de tekniska systemen vara mycket kort för att den första signalen ska vara just ett tekniskt system, eftersom trafikanter färdsar 1 km i tunnel på 45 sekunder om hastigheten är 80 km/h (vanlig hastighet i Norska tunnlar). För en sträcka på 3 km måste således de tekniska systemen aktiveras inom de 2,5 minuter det tar för trafikanterna att nå olyckan. Den största vinsten med en snabb detektering är dock att signaler utanför tunnel kan aktiveras och förhindra ytterligare trafikanter från att köra in tunneln om det brinner eller finns överhängande risk för brand.

3.3 Tolkning

När trafikanterna har blivit varse att något är annorlunda i tunneln, dvs erhållit första indikationen på att situationen inte är normal, inleds fasen tolkning. Denna fas kännetecknas av osäkerhet och trafikanterna försöker kontinuerligt samlar mer information om situationen (Canter m fl, 1980). När trafikanterna har fått tillräckligt mycket information för att förstå att situationen kräver agerande, t ex förstår det att det är en brand i tunneln och kräver utrymning, kommer de att inleda fasen agerande. Betydelsen av många signaler eller indikationer har påpekats av Proulx och Sime (1991), vilka visade att fler och tydligare signaler i en järnvägsstation under mark leder till att utrymning inleds tidigare. Samtidigt har tidigare bränder i vägtunnlar, t ex branden i Mont Blanc-tunneln (Duffé och Marec, 1999), visat att enbart brandröken inte alltid är tillräckligt för att motivera trafikanterna att utrymma. Det är därför extremt viktigt att tekniska system används som ett komplement till de signaler som direkt genereras av branden, t ex brandröken, kör i tunneln, etc., för att informera trafikanterna om situationen. I det ideala fallet kommer en del trafikanter i tunneln inte ens att utsättas för t.ex brandröken, utan reagerar snabbt baserat på de tekniska systemen i tunneln. En effektiv kombination av tekniska system, t ex akustiska larm, dynamiska skyltar, etc., anses dessutom kunna förkorta den tid som trafikanterna tillbringar i fasen tolkning och därmed leda till säkrare utrymning.

Tidigare forskning har tydligt visat att akustiska signaler i tunnlar, t ex sirener eller talade meddelanden, har en mycket viktig funktion vid utrymning (Nilsson, Johansson and Frantzich, 2009; Boer, 2002a; Boer, 2002b). Signalerna uppfattas av trafikanterna som börjar undersöka situationen, dvs kan få trafikanter att övergå från att passivt vänta till att aktivt söka ytterligare information. Detta illustreras av utrymningsönskemål som genomfördes i Götatunneln i Göteborg, där ett talat meddelande användes (Nilsson m fl, 2009). På grund av den utmanande akustiska miljön i Götatunneln var meddelandet svårt att uppfatta både i och utanför fordon, men många försökspersoner nämnande ändå att det faktum att de hörde något fick dem all leta efter ytterligare information om vad som hade inträffat.

En del forskning har genomförts om möjliga metoder att förbättra uppfattbarhet av talade meddelanden i tunnlar, men problemen med många föreslagna lösningar är att de är dyra att
implementera. En föreslagen metod, vilken också installerats i några vägtunnlar, bygger på att riktade högtalare placeras med jämna mellanrum i tunneln, ca var 50:e meter (Start, 2012). Ljudet från högtalarna förskjuts tidsmässigt i syfte att minska effekten av eko och det faktum att ljudet färdas i tunneln. Dessutom kan ljudet anpassas något för att minska problem med den svåra akustiska miljön (Start, 2012). Även om detta system kan ge ökad uppfattbarhet, så är det ett dyrt system på grund av de många högtalare som måste installeras i tunneln.

Ett alternativ eller komplement till externa utrymningslarm är att försöka förmedla larm och information till bilisterna via bilradion (inkl RDS), telefonen eller i framtiden via bilens inbyggda kommunikationssystem. I dagsläget används radioinbrytning och detta kan för flera bilister vara den tydligaste källan som bekräftar att det uppstått en brand och som kan förmedla lämpliga instruktioner. Detsamma gäller för framtida intelligenta IT-lösningar som byggs in i bilar där det kan finnas en kommunikation mellan bil och infrastruktur, men också mellan bilar. För att denna form av information ska vara verksam krävs att branden upptäcks i ett tidigt skede och att VTS kan agera på kort tid. De som har nytta av denna informationskälla är främst de som är på väg in i tunneln eller på väg i tunneln mot branden. Beroende på gällande hastighetsbegränsning handlar det om några minuter för att aktivera systemet om det ska ge någon nytta.

Den mest lovande tillämpningen i närtid bör vara att utnyttja det faktum att väldigt många har tillgång till en smartphone. Med en så kallad "tunnelapp", figur 3, kan både information om vad som har hänt och instruktioner förmedlas på samma sätt som via bilradion via radioinbrytning. För dem med en mer traditionell mobiltelefon kan meddelanden skickas som SMS.

Figur 3. Information via mobiltelefonen.

Figur 4. Exempel på VMS-skylt som ingick i undersökningen (Ronchi m fl, 2016).

Flera av de aktuella tunnellarna har någon form av dynamiska skyltar som i första hand används för att förändra den gällande hastighetsbegränsningen. VTS kan vid behov sänka hastighetsgränsen om omfattande köer uppstår. Detta kan vara en signal till bilisten att något har hänt.

En mer utvecklad form av dynamiska hastighetsskyltar kan användas ungefär som VMS, dvs de kan förmedla mer information än bara hastighetsgräns, figur 5. Dessa system finns inte idag, men kan utgöra en potentiellt användbar lösning för att informera trafikanter i tunnlar där enklare system är nödvändiga. Dessa skyltar kan då kombinera hastighetsinformation med till exempel information om att det brinner och att bilisten bör att vända fordonet och köra ut ur tunneln. På det viset informeras bilisten både om vad som har hänt och om vad den ska göra, vilket är grundtanken med ett utrymningslarm.

För övrigt finns idag skyltar, som VTS kan tända upp, med informationen om att vänta om och köra ut. Om denna strategi är lämplig bör dessa skyltar finnas i den omfattning att alla bilister som ännu inte nått platsen för brand eller rök omgående kan nås av informationen.

Åven enklare former av ljussignaler har visat sig vara effektiva i en utrymningssituation. Flera av dem har syftet att informera och underlätta i samband med att personer ska välja en utrymningsväg, dvs att välja en okänd men nära belägen utrymningsväg istället för den normala in- och utgången från exempelvis en byggnad. Forskning har dock visat att dessa enkla signaler i form av gröna blinkande lampor också är betydelsefulla för att personer ska förstå att något allvarligt som associeras med utrymning har hänt.

Under tolkningsfasen söker personerna efter mer information om vad som hänt och om de måste agera på något sätt. I en vardagsituation behöver de normalt bara bli informerade om vad som har hänt eftersom det inte handlar om brand i de flesta annorrunda situationerna som uppstår. Det innebär att andra sidan att ett agerande som innebär att personen måste lämna bilen för att eventuellt tala med andra personer, som också stannat i tunneln, om vad som har hänt är en väldigt ovanlig situation. Det betyder att social påverkan är mycket betydelsefull och det är lättare att agera om någon annan redan lämnat sin bil. Kinateder m fl (2014) har bland annat undersökt hur andra personers beteende i en tunnel påverkar en försöksperson i en tunnelmiljö. Försöken genomfördes i en VR-miljö med så kallade virtuella agenter eller avatarer (datoriserade personer) som agerade på olika sätt, bland annat i konflikt med vad som kan vara ett önskvärt beteende. Det visade sig att försökspersonerna var benägna att följa de beteenden som avatarerna gjorde t.ex att gå mot en nödutgång eller att inte gå mot nödutgången beroende på avantarnas beteende. Utfallet är inte 100 % lika i försökspersonens beteende och avatarens beteende, men experimenten visar på styrkan i social påverkan och att det är viktigt att tidigt rädda någon eller några personer att ta första steget att agera för att skaffa information om läget och senare att agera för att minska konsekvensen.

I huvudsak är det mest tekniska system för att underlätta för bilisterna att tolka situationen som behandlats ovan, men även närvaron av rök kan bidra till att övertyga bilister om behovet av utrymning. Dock är rök i tunneln i sig inte tillräckligt för att säkerställa en bilist att utrymma, vilket visats t.ex vid branden i Mont Blanc, se ovan. Röken kommer på sikt att tolkas som brand med ett efterföljande behov att utrymma, men problemet är att det kan ta lång tid. Tillsammans med andra indikatorer och informationskällor är röken dock effektivt på att informera bilister om vad som har hänt och vad de bör göra. I vissa fall kan tydliga signaler erhållas från andra säkerhetssystem i tunnel, dvs system som inte är utformade med det huvudsakliga syftet att meddela trafikanterna. Exempelvis var aktiviteten av sprinklersystemet en viktig signal vid branden i Burnleytunneln (Kissane, 2007; Johnson & Barber, 2007).

Flera av tunnelns tekniska system kan var för sig bidra till att personerna förstår att en brand uppstått. Enskilt behöver de inte ha den effekten, men sammantaget kan det leda till en korrekt tolkning och övertygelse om att agera. Flertalet av tunnelns tekniska system kräver en aktiv handling av VTS, vilket innebär att VTS-funktionen är mycket betydelsefull för att bilisterna ska få information och för att minska osäkerheten som råder i en inledningssituation (Canter f fl, 1980). Vid utformningen av rutiner för VTS ska dessa i första hand baseras på bilistens behov av stöd eftersom detta är mest akut. Det behov som exempelvis räddningstjänsten har att hantera olyckan är sekundär då möjligheten att utrymma vid en brand i en tunnel alltid bygger på självräddningsprincipen.
3.4 Utrymningssagerande

Så snart som personen förstått att det uppstått en brand i tunneln handlar resterande aktiviteter om att på olika sätt hantera situationen genom att försöka minska konsekvensen och sätta sig och andra personer i säkerhet. Även i detta fall bör målsättningen vara att utforma utrymningsstrategin för tunneln så att tiden för agerandet minimeras.

Personerna kan välja olika strategier för att sätta sig i en bättre situation t ex genom att försöka bekämpa branden, förbereda sig för att lämna platsen, utrymma till fots eller med bilen och att stanna kvar i bilen då den kan utgöra en bättre miljö jämfört med tunneln. Grundstrategin är att personerna på egen hand måste bedöma situationen, baserat på tillgänglig information och tidigare kunskap, och sedan besluta sig för lämpliga åtgärder, dvs det är självräddningsprincipen som gäller.

Vilka aktiviteter som sker påverkas alltså sannolikt av en rad faktorer såsom anstånd till branden, vindriktning, avståndet till den säkra platsen, närvaron av andra personer, tidpunkten under förloppet och hur miljön ser ut på platsen.

Med hjälp av olika former av tekniska installationer kan personerna påverkas att vidta de aktiviteter som är önskvärda. Detta kan bland annat åstadkommas ger olika former av information som presenteras för bilisterna i tunneln eller genom information de redan har skaffat sig genom tidigare utbildning och informationsinsatser. I det förra avsnittet introducerades flera system som syftar till att få bilisterna att förstå att det utbrutit en brand. Dessa system kan därför även användas för att förmedla information om vad personerna förväntas göra för att undkomma branden eller agera på ett sätt som minskar konsekvensen av den inträffade händelsen. De närvarande bilisterna har ett informationsbehov att fylla och genom att förse dem med instruktioner kan tiden det tar innan de vidtar lämpliga åtgärder minskas.

Det önskvärda är att personer ges möjlighet att lämna platsen så snabbt som möjligt för att undvika att i ett senare skede tvingas utrymma genom rök. Erfarenheterna från flera tunnelbränder visar att utrymning i en rökfyld miljö är ytterst besvärlig och farlig. Personer som befinner sig i direkt anslutning till branden kommer sannolikt att försöka bekämpa branden med i första hand egen utrustning, men bör kunna lämna platsen om detta inte lyckas.

Två kategorier av personer kan därför identifieras, nämligen de som är långt från branden och som har goda möjligheter att utrymna i en rökfri miljö, samt de som är nära branden eller de som upptäcker faran genom den annalkande röken och därför redan från början befinner sig i rök.
Utrymning för personer som inte ser brand eller rök

De som inte ser branden eller röken bör förmås att vända fordonen och köra ut ur tunneln. För att detta ska vara möjligt måste det dels finnas plats att göra detta på och bilisterna måste informeras om detta. En väl fungerande Vägtrafikcentral (VTS) är därför väsentligt liksom att bilisterna uppfattar informationen på ett tydligt sätt. Olika tekniker för att förmedla information till bilisterna kan övervägas, t ex talade larm i tunneln, informationstavlor som ger visuell information (t ex vänd om och kör ut), radioinbrytning inkl DAB-information och mer högteknologiska metoder som mobilappar och Vehicle Infrastructure Integration (VII). Traditionell teknik med informationsavsläpp är relativt väl undersökt och det finns rekommendationer om hur meddelandet bör formuleras eller hur man kan bestämma detta (Ronchi och Nilsson, 2013; Ronchi, Nilsson, Modig and Lindgren Walter, 2015). Innebörden av meddelandena bör ge vägledning om vad som har hänt och vad personerna förväntas göra, se även avsnitt 3.3.

Utrymning för personer som befinner sig i rök

Personerna som redan från början befinner sig i roken eller de som uppmärksammar branden genom att de möter roken har svårare att utrymma. De förstår säkert att de är i en allvarlig situation, men även dessa personer behöver få information om vad som kan vara lämpligt agerande för att agerandefasen ska bli så kort som möjligt. Systemen som redovisas ovan kan i viss utsträckning vara behjälpliga även för dem i roken.

I flera fall har det observerats att bilister försöker att vända bilen i den rökfyllda miljön och köra ut (SHT, 2015). Från utredningar efter inträffade bränder kan det konstateras att detta sker och att det är svårt att genomföra. Det är dessutom stora risker förenade med att köra med bilen ut. Dels kan bilen krocka med tunneln och andra fordon och dels kan andra personer som utrymmer till fots bli påkörda. Sikten i dessa fall är i praktiken ofta oförmögen. Det bör utredas om detta är ett beteende som bör uppmuntras och i så fall under vilka förutsättningar.

Människors förflyttning

Som alternativ till att köra med bil ut ur tunneln kan personerna försöka utrymma till fots, vilket också sker. Möjligheten att komma till en säker plats beror då på individernas fysiska förutsättningar att förflytta sig och att orientera sig i roken. Möjligheterna att förflytta sig i rök har studerats och det finns kunskap om förflyttningstiden. Gånghastigheten i tät och irrerande rök ligger i storleksordningen 0,2 - 0,9 m/s beroende på siktsträckan (Frantzich & Nilsson, 2003). Dessa hastigheter ska jämföras med gånghastigheten utan rök som kan variera mellan 0,65 m/s och 1,9 m/s (Fruin, 1971) för en ordinär population.

Figur 7. Person som förflyttar sig i tät rök genom att följa väggen med en hand.

Underlagets betydelse för förflyttning

I de försök som Boer (2002a) genomförde utrymde personerna uppför lutande delar i tunneln (cirka 4,5 % lutning i båda riktningarna) men det gick inte att se någon skillnad mellan hastighet uppför eller nedför en tunnel (Norén & Winér, 2003) utan båda låg kring 1,4 m/s i en rökfri miljö. I dessa försök var gångvägen till en säker plats inte så lång (ca 100 meter) så någon uttrötningseffekt bör inte ha varit aktuell.

Utrymningsmarkeringar

Figur 8. Utrymningskylt för tunnel

![Figur 8. Utrymningskylt för tunnel](image)

Figur 9. Utrymningskylt i vägtunnel.

Utformningen av installationer i tunneln bör utformas så att de underlättar för bilisterna att besluta sig om önskade ageranden. Exempelvis bör utrymningskyltal utformas på ett sätt så de känns igen, de bör placeras så att de är tydliga i jämförelse med bakgrunden (Sixsmith, Sixsmith och Canter, 1988 och Kobes, 2010) och meddelandet bör utformas så att innebörden är tydlig (Ronchi m fl, 2015). Detta gäller alla de system som man avser att bilisterna ska interagera med dvs traditionella utrymningsmarkeringar, VMS-skyltar och enklare dynamiska vägmarkeringar, se avsnitt 3.3. Som stöd för sådan utformning kan Gibsons affordance-teori användas, se avsnitt 2.4. Eftersom bilisterna sannolikt använder flera av landets tunnlar finns det en fördel om system i tunnlar har ett likartat utseende och funktion för att öka igenkänningseffekten.
Punktbelysning

Orientering i rök underlättas också av regelbundet återkommande belysningspunkter (Fridolf, 2013). Försök har visat att när avståndet mellan dessa är kort, i storleksordningen 10 meter, så förflytta sig personerna med hjälp av dessa då de syns tydligare genom den täta röken i förhållande till andra ytor som belyses. Ljus som emitteras direkt från en ljuskälla uppfattas betydligt effektivare än ytor som belyses och ger ett reflekerat ljus (Jin, 1978). Det är samma effekt som ligger bakom rekommendationen att utrymningsskyltar bör vara genomlysta eller i sig själva emitterande istället för att vara belysta.

Markering av utgång med belysning

Lokalt utrymningslarm vid utgång

Orienteringsassistans

Förutom fasta installationer i tunneln kan hjälp med att orientera sig skapas med mobila lösningar. Idag har i princip alla tillgång till en smartphone som kan hantera mobilapplikationer. En sådan "Tunnelapp" skulle kunna användas för att förmedla information om lämplig förflyttningsriktning och även information om lämpligt agerande för de som befinner sig i röken, se figur 3. Det finns även möjligheter idag att gansa detaljerat lokalisera en mobiltelefon, vilket kan hjälpa både VTS att identifiera antalet individer i en tunnel men också att förmedla denna information till övriga personer i tunneln så de i viss utsträckning kan "se" varandra genom röken. Detta kan hjälpa dem som kör med bilen genom röken att undvika att köra på andra personer som utrymmer och de som utrymmer genom röken till fots att undvika att bli påkörda. Ett sådant system kräver en god beständighet mot brandpåverkan. Detta område kan på sikt utvecklas och idag finns bara tankar och idéer.

Uttrymning vs. stanna i bilen

Räddningskammare

Räddningskammare eller liknande kan fungera som en tillfällig säker plats för dem som av någon anledning inte kan ta sig hela vägen till det fria ex om utrymmingen sker uppför en brant lutande tunnel i tät rök, figur 10. En sådan utrymningssituation kan vara mycket ansträngande för många personer också om utrymmen sker i en rökfri miljö. Alternativet till förflyttning till en räddningskammare kan vara att behöva gå till fots i flera kilometer i tät rök vilket fallet vid branderna i Gudvangatunneln 2013 och Oslofjordstunneln 2011.

Figur 10. Exempel på räddningskammare, samt dess interiör.

Erfarenheter från tunnelbränder har visat att personer söker sig till mer säkra platser om de inte kan ta sig hela vägen ut till det fria. Vid branden i Oslofjordtunneln (SHT, 2013) kunde utrymmet mellan tunnelkonstruktionen och bergväggen används som tillfälligt väntplats eftersom luften var bättre där än i själva tunneln. Vid branden i Mont Blanc använde flera av bilisterna de räddningskammare som fanns i den tunneln (Duffé & Marec, 1999). I det fall omkom några personer som väntade i en räddningskammare vilket indikerar att utformningen och tiden som den ska kunna användas måste anpassas efter förväntade brandförlopp och brandplatser.

Erfarenheter från användning av räddningskammare finns främst från gruvindustrin och bland företag som bygger tunnlar (Ingason m fl, 2010). Utformningen av räddningskammare för ovanu bilister måste därför beakta denna skillnad så att bilisterna uppfattar miljön inne i kammaren som säker och godtagbar. Om räddningskammaren inte uppfattas som säker och godtagbar är risken stor att bilisterna inte stannar. Några inledande försök för att undersöka personers uppfattning situationen baserat på räddningskammarens utformning redovisas i Andrée m fl(2013). De resultat som författarna kommer fram till handlar mer om att räddningskammaren ska vara trevlig och inbjudande att vistas i även om rena tekniska aspekter såsom tillräckligt med frisk luft, tillgång till vatten och toalett samt möjligheter till kommunikation också är väsentliga.
3.5 Övriga undersökningar och erfarenheter

En del av den forskning som genomförts anknyter inte direkt till den använda uppdelenningen i utrymningssekvensen i avsnitten ovan. Det gäller till exempel aspekter som är kopplade till brandrisken dvs som inkluderar frekvensaspekten i olyckan eller då arbetena är av mer generell karaktär. I detta avsnitt redovisas en del sådan forskning som bedömts som väsentlig för att få en bredare förståelse för utrymningsproblematiken.

Colombo (2001) ger i det sk Nedies project, Lessons learnt from tunnel accidents en översikt från utredningar efter några stora inträffade tunnelbränder. Han redovisar slutsatser man dragit från dessa incidenter, bland andra

- att tunga fordon ska inspekteras innan de körs in i tunneln,
- att information till bilister i tunneln är nödvändig (kommunikationssystem),
- att trafik utanför tunneln märkt stoptas vid brand,
- att nödtelefoner och brandsläckare ska finnas i tunnlar,
- att ventilationsflödet inte ska ändras vid brandtillfället och
- att det mäster finnas en trafikövervakning som kan agera vid brand.

Han anger vidare att det förekommer flera dödsfall i eller nära bilarna vilket indikerar att fördöjning att utrymma förekommer. Problem förekommer främst om branden är stor och en liten brand innebär sällan stora problem med omkomna personer. Men slutsats är att utrymningslarm som kan initiera en utrymning samt instruktioner om vad som är lämpligt agerande är viktig.

Response-delen beskriver de genom att anknuta till exempel på beteenden från inträffade olyckor. De ageranden som redovisas förekommer i flera av de granskade olyckorna;

- non-egress behaviour (brandsläckning, larma brandkåren, rädda andra personer, rädda egna föremål),
- gruppstående (aktiviteter som sker tillsammans med andra individer),
- oöverlig att lämna sitt eget fordon (vanligt är att försöka vända sitt fordon och köra ut, egna fordonet uppfattas som en trygg plats, i flera fall går personen ur fordonet men stannar kvar och ser vad som händer, personer försöker köra förbi branden, busspassagerare noteras vilja ta med sitt bagage).
4 Relevanta studier för aktuella tunnlar

Ett av målen med arbetet är att presentera studier som genomförts vilka kan anses vara särskilt relevanta för långa tunnlar och tunnlar som har en kraftig lutning. Med långa tunnlar avses de som är längre än 3 km och branta tunnlar har en lutning som överstiger 5 %.

Även om litteratur genomgången varit omfattande har den inte resulterat i några studier som särskilt inriktats mot att undersöka förutsättningarna för utrymning just för dessa aktuella tunnlar. Därmed inte sagt att det inte finns information, kunskap och forskning som kan vara applicerbara för dessa. Mycket av den forskning som redovisas i rapporten kan anses vara relevant även för de mycket långa eller branta tunnlarna. Det handlar mer om att identifiera de typiska problemet för tunnlar som är långa och branta och dessutom som är utförda för dubbelriktad trafik.

Sett utifrån ett utrymningsperspektiv handlar mycket av problemställningarna vid en tunnelbrand om att tidigt detektera en brand och att därefter underlätta för personer att utrymma. Det som kännetecknar förutsättningarna för bilisternas möjlighet till utrymning är:

- att de saknar information om vad som har hänt och vad som förväntas av dem.
- att de har svårigheter att tolka situationen eftersom signalerna kan vara otydliga och inte nödvändigtvis associerade till brand.
- att det finns svårigheter för dem att sätta sig i säkerhet, antingen genom direkt förflyttning till det fria eller genom förflyttning till en annan säker plats t ex en räddningskammare.

Eftersom arbetet identifierat en rad områden där kunskapsläget är svagare föreslås en rad kommande forskningsaktiviteter. Dessa redovisas som kortfattade idébeskrivningar i kapitel 5.

4.1 Övriga relevanta studier

I övrigt citeras övriga arbeten som bedöms vara relevanta i texten ovan. Utöver dessa citerade referenser finns ytterligare dokumentation i referenslistan som, i förekommande fall, anses fungera som bakgrundsmaterial som ger en bredare förståelse för aspekter kring utrymning vid brand i tunnlar.
5 Framtida forskning

Litteraturstudien om tidigare forskning och slutsatser från flera av de olycksutredningar som granskats visar att det finns osäkerheter kopplade till (1) i vilken mån dagens tunnlar kan anses vara tillräckligt anpassade för att möjliggöra självräddning och (2) på vilket sätt som ett förbättringsarbete bör genomföras för att tillgodose det behovet. Uppenbart är att det finns ett behov av vidare forskning för att säkerställa att tunnlar blir tillräckligt säkra, med beaktande av kostnader för åtgärderna, genom att minska den osäkerhet i kunskap som trots allt finns. Inom ramen för projektet föreslås nedanstående forsknings- och utvecklingsinsatser. Fokuseringen för projekten bör vara mot långa enkelrörstunnlar med kraftig lutning som passerar under vatten. Vissa av förslagen är redan idag relativt väl utforskade, medan kunskapsläget för andra områden är i det närmaste obeftänt. En systematisk inventering och översiktlig sammanställning av forskningsaktiviteter bör ske och finnas allmänt tillgänglig. Det bör beaktas att flera av projektförslagen kan integreras, t ex kan arbeten om information till bilister med dynamiska system integreras med vägledning genom rök.

5.1 Förflyttning i tunnlar med kraftig lutning

Kunskapen om människors möjligheter till förflyttning uppför lutande vägar är liten. Speciellt gäller detta uttröttningseffekter för långa uppförslutningar. Undersökningar bör göras för att studera gånghastighet, kapacitet mm för en representativ population och för olika lutningar, upp till cirka 10 %. Om möjligt kan även aspekter som påverkar förflyttningen, till exempel närvaron av irriterande ämnen och dålig sikt, inkluderas. Försök bör göras i en tunnelliknande miljö för att erhålla en hög grad av realism.

5.2 Utformning av räddningskammare

5.3 Information med enkla dynamiska vägskyltar

I flera större tunnlar finns möjlighet att kommunicera med bilister via så kallade VMS och TIS. Sådana är kanske inte alltid möjliga att montera i många befintliga tunnlar utan enklare system som kombinerar dynamiska hastighetsskyltar med möjligheter till annan information bör undersökas. Forskning bör inriktas på vilken typ av meddelanden som är lämplig att förmedla till trafikanter, hur denna bör utformas och hur mycket information bilisterna kan tillgodogöra sig. Arbetet bör även inkludera systemutformningen, dvs hur de ska användas i en tillämpbar situation, vilket sannolikt inkluderar någon form av system för detektion av brand.

5.4 Kommunikation via VII

Användningen av Vehicle Infrastructure Integration (VII) kan komma att underlätta för samtliga aktörer vid en tunnelbrand. En pilotstudie bör genomföras för att kartlägga framtidiga möjligheter att förmedla information till och från en bil som befinner sig i en tunnel. Kartläggningen bör utföras brett eftersom olika system utvecklas och det är idag inte möjligt att definiera hur tekniken kommer att utvecklas.

5.5 Vägledning genom tät rök

Många av de system som idag används för information vid utrymning utgår från att de ska användas i rökfri miljö. Men om utrymningen måste ske genom tät rök så behöver de utrymmande personerna få besked om exempelvis avstånd till en säker plats, vägledning för att
kunna orientera sig och få en miljö som är tillrättalagd för förflyttning. Arbetet inriktas på att
utvärdera behovet de utrymmande har och utveckla system för att informera och vägleda
personer till det fria. I arbetet bör det ingå att studera nyttan med vägledande markeringar,
ledbelysning, handledare, ljudsignaler, tillfälliga väntplatser för kortvariga uppehåll under
utrymningen och möjligheter till kommunikation med VTS.

5.6 Utveckling av strategier för brand i tunnel
Rutiner och andra procedurer bör utvecklas så att de överensstämmer med de förväntningar som
bilisterna har vad gäller självräddningsprincipen. Idag finns en princip att tunnelns
brandventilation aktiveras så snart en brand detekterats vilket inte alltid stämmer överens med
önskemål från bilister som försöker utrymma. En integrerad strategi bör undersökas för att på
sikt eventuellt genomföras. Denna strategi bör inkludera räddningstjänstens insats.

5.7 Information via smarta telefoner
Bilister som kör i en tunnel där brand utbrutit är eller kommer att vara i behov av information
om vad som händer och vad de förväntas göra. En kommunikationsväg är via en applikation i
mobiltelefonen som kan aktiveras av VTS vid brand eller annan olycka. En pilotstudie bör
inledas för att undersöka behoven av en sådan tunnelapp och ge rekommendationer för hur den
bör utformas och integreras med andra system, en så kallad feasibility study. Möjligheten att
kombinera information med positioneringsfunktioner bör undersökas för att relevant
information ska kunna presenteras beroende på var i tunneln personen befinner sig, vilket
påverkar behovet och utformningen av den specifika informationen. Systemet med dedikerad
information för olika platser finns under utveckling vid vissa större varuhusföretag, men
forskning in en tunnelmiljö saknas ännu.

5.8 Förhandsinformation och utbildning
Rapporten tar upp forskning som indikerar att utbildning och information till bilister innan en
olycka inträffar är betydelsefull för agerandet den gång branden uppstår. Däremot är det inte väl
utvecklat hur denna utbildning och information ska kunna förmedlas till bilister eftersom det
får en rad olika typer av bilister som kan ha olika behov och förutsättningar att ta emot ny
kunskap, t ex yrkesförare, bilister som redan har körkort, utländska bilister (turister), personer
som håller på med sin körutbildning, etc. Frågan är hur dessa ska informeras om agerande vid
brand i tunnel och vad de kan förvänta sig i den situationen. I uppgiften kan det ingå att utreda
möjligheterna att använda körsimulatorer i samband med körskoleutbildning. Dessa synpunkter
delas även av Riksrevisjonens (2016) utredning som pekar på behovet av ökad kunskap bland
bilister i allmänhet.

5.9 Tunnelns utformning
De flesta vägtunnlar är förhållandevis mörka och endast försett med takmonterad belysning.
Detta innebär att tunneln uppfattas som en främmande miljö som inte inbjuder till närvaro.
Arbete bör genomföras för att undersöka vilka faktorer som är väsentliga för bilisternas
uppfattning av tunnelmiljön och som kan vara väsentliga i samband med en
utrymmingssituation. Exempel på faktorer som skulle kunna vara viktiga är belysningsnivå,
kulör på väggar och tak, ljudmiljö, materialval och tvärsnittets utformning. Sannolikt har
utformningen också en påverkan på den normala trafiken i tunneln och normaldriften bör
inkluderas i arbetet. Sannolikt finns forskning inom området, men utveckling bör ske för att
anpassa till befintliga tunnlar.

5.10 Brandsläckning
Flertalet av de som är nära en brand gör försök att släcka branden med egen eller tunnelns
brandsläckare. Utgångspunkten är att brandsläckare i tunneln placeras på speciella
räddningsstationer med regelbundet intervall. Behovet av sådana släckare bör undersökas för att
utreda om de ska finnas kvar och om de ska vara fler eller ersättas med mer anpassade släcksystem. Användningen av brandsläckningsutrustning bör undersökas utifrån bilisternas uppfattning av situationen och hur en släckinsats stämmer med övriga förväntade beteenden vid en brand. I första hand är det brandsläckningsutrustning som den enskilde använder i enlighet med självräddningsprincipen som ska undersökas. Ett utvidgat arbete kan även inkludera fasta släcksystem.

5.11 Möjligheter att vända i tunneln
En bärande princip för möjligheten att utrymma är att bilister kan vända bilen och köra ut innan röken når dem. Förutsättningarna för hur detta ska kunna ske på ett säkert sätt bör undersökas och speciellt för fallen där trafikflödet inte är ringa. Behovet av vändplatser och utformningen av dessa bör utredas liksom kopplingen till information som ges till bilisterna i händelse av brand. Arbetet bör inkludera information till bilister beroende på vilken typ av fordon de kör.

5.12 Egen bil som tillfällig säker plats
6 Case-studie Ålesundstunnelnarna

För att kunna föreslå genomtänkta säkerhetshöjande åtgärder genomfördes en behovsanalys för olika trafikantergrupper vid brandutrymning i de två tunnelarna. Analysen, vilken inspireras av en studie genomförd av Groner (2009), bygger på att brand- och utrymningsscenariot först tydligt definieras. Scenariot behöver inte kvantifieras, utan det är tillräckligt att kvalitativt beskriva branden och utrymningssförutsättningarna i tunneln. Därefter identifieras olika typer av trafikanter baserat på vilka utrymningsförhållanden de utsätts för, t ex om de måste utrymma genom rök eller kan gå/köra i en rökfri miljö, etc. Därefter bestäms det önskade utrymningsbeteendet för varje typ av trafikant, dvs det beteende som de lämpligen följer för att snabbt komma till en säker plats. Avslutningsvis identifieras det behov, t ex informationsbehov eller behov av vägledning, som respektive typ av trafikant har för att de ska agera enligt det önskade beteendet, och förslag ges på vilka tekniska system som kan tillgodose trafikanternas behov.

I nedanstående avsnitt beskrivs först brand- och utrymningsscenariot för Ellingsøytunnelen och Valderøytunnelen. Detta innefattar även förslag på ändringar av den befintliga säkerhetsstrategin in tunnelarna, nämligen styrningen av brandgasventilationen. Därefter beskrivs de olika typerna av trafikanter, deras önskade beteende och behov, samt förslag på tekniska system som kan tillgodose trafikanternas behov.

Generellt bör systemen utformas på ett robust sätt så att otydligheter för bilisterna minimeras och att personalen i VTS inte ska behöva stå inför tvetydiga beslutsalternativ.

Resonemangen nedan utgår från att en olycka uppstår. Tekniska system för att detektera exempelvis varma bromsar eller inspektioner av tunga fordon som görs innan de kör in i tunneln bör övertägas och värderas med avseende på nytta och besvär (kostnad). Analysen utgår från att det finns ett utrymningsbehov. Mest fördelaktigt är naturligtvis om en brand och utrymning kan undvikas helt och hållet.

6.1 Brand- och utrymningsscenario

Det scenario som används vid analysen utgörs av en medelstor brand, dvs en buss eller en lastbil med lite last (ca 30 MW), i en av de två tunnelarna. Brandens placering ansätts inledningsvis till att vara nära mitten av tunneln då det leder till allvarliga utrymningsförhållandena. I tunneln finns ett naturligt vinddrag på ca 1,5 m/s i riktning mot Ålesund.

Den normala säkerhetsstrategin i detta scenario hade varit att, när branden rapporteras/detekteras, starta fläktarna i riktning från Ålesund för att underlätta räddningstjänstens insats. Dock har inträffade incidenter, t ex branden i Gudvangatunneln, visat att situationen för utrymnande personer kan drastiskt försämras om brandgaserna först rör sig i en riktning pga det naturligt vinddraget och sedan omvänds med mekanisk ventilation. I detta fall fattar personer sitt vägvalsbeslut baserat på en vindriktning och en stund senare överrumplas de av röken bakifrån. Det rekommenderas därför att den mekaniska ventilationen används för att bibehålla den naturliga ventilationsriktningen i tunneln, vilket också utgör en del av det valda scenariot.

Vid brand stängs båda tunnelarna med bommar. För att förhindra köbildningen precis framför tunneln kan bommar även placeras en bit innan tunnelmynningen (vid avfartsvägen ut till Ellingsøyvägen) tillsammans med hänvisning ut på Ellingsøyvägen.
Nuvarande strategin att stänga båda tunnlarna även om det bara brinner i en av dem bibehålls, men det bör i framtiden undersökas vad motivet till detta beslut är eftersom det kan finnas skäl att bara stänga den tunneln där det brinner för att minska konsekvensen för samhället.

Vid rapportering/detektion av brand ska samtliga säkerhetssystem aktivera, dvs tunnlarna stängas med bommar och alla utrymningsssystem startas. Enligt tidigare ska även den mekaniska ventilationen aktiveras för att bibehålla den naturliga ventilationsriktningen. Ett lågt flöde bör eftersträvas i syfte att sprida röken långsamt och inte erhålla höga bullernivåer i den brandutsatta tunneln.

Enligt tidigare ansattes brandens placering nära mitten av tunneln. Ovanstående scenario är visserligen ett specialfall, men många av slutsatserna nedan anses vara relevanta även för andra scenarier.

6.2 Typer av trafikanter och analys

Trafikanter kan potentiellt delas in i många olika typer beroende på deras roll och egenskaper, t.ex bilister, bussförare eller lastbilschaufförer. Samtliga av dessa roller har olika erfarenheter som sannolikt påverkar deras beteende vid utrymning. I följande analys görs dock en uppdelning baserat på de utrymningsförhållanden som personerna utsätts för. Denna indelning görs eftersom förhållandena påverkar hur personerna agerar och vilken information de behöver. Totalt kan sex olika typer av trafikanter identifieras (se figur 11):

1. Trafikant som befinner sig i brandens omedelbara närhet
2. Trafikant som kör eller står stilla i rök (nedströms)
3. Trafikant som kör mot röken i en rökfri miljö (nedströms)
4. Trafikant som kör från röken i en rökfri miljö (nedströms)
5. Trafikant som kör mot röken i en rökfri miljö (uppströms)
6. Trafikant som kör från röken i en rökfri miljö (uppströms)

I nedanstående avsnitt beskrivs de olika typerna av trafikanter tillsammans med deras önskade utrymningsbeteende, behov och förslag på tekniska system som tillgodoser behoven. Dessutom görs noteringar om hur hänsyn bör tas till kraftig lutning i tunneln.

![Vindriktning](image)

Figur 11. Identifierade kategorier med bilister som befinner sig i en vägtunnel med dubbelriktad trafik i samband med en brand.

6.2.1 Trafikant i brandens omedelbara närhet – typ 1

Trafikant typ 1 ser branden (eller en olycka) i ett tidigt skede, men kan även avgöra vilket håll röken förflyttas, dvs det naturliga vinddraget. Utifrån denna information kan trafikanterna avgöra åt vilket håll han/hon ska utrymma och förhoppningsvis besluta sig för att utrymma bort från röken. Detta innebär att större delen av utrymningen kan ske i rökfri miljö om scenariot följs, dvs om det naturliga vinddraget upprätthålls.

Önskat utrymningsbeteende: Trafikanterna kan om möjligt göra en första släck- och räddningsinsats i de fall det är möjligt. Därefter ska de utrymma i rökfri miljö till en tunnelportal.

52
Behov: Trafikanterna behöver veta var brandsläckare och nödtelefon finns, dvs nödstationernas placering i tunneln. De anses inte behöva ytterligare information för att hitta vägen ut i den rökfria miljön, men kan fortfarande ha nytta av information som i huvudsak är avsett för andra typer av trafikanter, t ex avstånd till säker plats.

Tekniska system (utrymning): I syfte att tillgodose behovet behövs tydligt markerade nödstationer i tunneln.

6.2.2 Trafikant som kör eller står stilla i rök (nedströms) – typ 2

Trafikant typ 2 hinner köra så långt att de tvingas stanna i den del av tunneln som är rökfylld. Detta kan bero på att de antingen står nära branden och överraskas av att vara omsluta av röken eller så kör de in i röken eftersom de inte hinner stanna. Alternativt är det trafikanter som är mycket nära branden och inte kan eller vill passera förbi branden i tunneln och därför uttrymer i samma riktning som röken. Trafikant typ 2 kan även inledningsvis vara en trafikant typ 3 som försöker vända sitt fordon i en rökfri miljö, men som tar lång tid på sig för att utföra manövern (eller tvingas avsluta vändningen).

Behov: Trafikanterna är medvetna om att de befinner sig i en rökfylld miljö och behöver få information om att dels börja förflyttningsbehovet och dels att gå i rätt riktning. Behovet av information måste tillgodoses via system som inte endast är beroende av att bilisten ser informationssystemet eftersom sikten i den rökfyllda delen kan förvanskas vara minimal. Trafikanterna har således behov av taktilda, akustiska och visuella system. Under förflyttningen måste trafikanterna ha vägledning för att kunna orientera sig i röken och att hitta till säker plats. Sannolikt behövs räddningskammare för att möjliggöra för trafikanterna att stanna där under en längre tid eller för att temporärt vila (se separat beräkning i bilaga A som exemplifierar vissa av principerna för en sådan behovsanalys).

Tekniska system (utrymning): Snabb och tydlig information (flera signaler samtidigt) behövs för att få bilisterna att lämna sina fordon och bege sig mot en säker plats. Detta ställer krav på tidig detektering, varför det rekommenderas att någon typ av detektionssystem installerats, t ex detektion av stillstående fordon med CCTV (pris 1) eller branddetektörer (pris 2). Vid misstänkt brand ska samtliga relevanta system aktiveras.

Det bör undersökas om akustiska signaler, t ex traditionella larmsignaler eller talade meddelanden, kan användas i syfte att fånga uppmärksamheten. Även användningen av radioinbrytning förespråkas av samma anledning. Om möjligt bör de akustiska signalerna, t ex radioinbrytning och talade meddelanden, också informera trafikanterna om branden och eventuellt vad de ska göra, dvs att de bör lämna sina fordon och utrymma till fots eftersom risken är stor att de kör på andra bilister om de försöker köra ut med bilen. Denna information är ett komplement till röken, och behövs för att trafikanterna snabbt ska lämna sina fordon.

Vägledande markerings och ledbelysning bör monteras längs med båda tunnelväggarna och vid position för räddningskammare ska information om att en kammare finns på motsäende sida. Lämpligen ska den vägledande markeringen innehålla information om avstånd till säker plats i respektive riktning. Någon form av handledare längs med vägen underlättar förflyttningen.

Räddningskammare bör förses med lokalt utrymningslarm som hörs på ca 30 meters avstånd, dvs en ljudfyr. Dessutom bör man undersöka hur räddningskammare ska inredas för att trafikanterna ska känna sig trygga och vilja vistas där. Idag är forskningen inom detta område begränsad, men initiala resultat tyder på att det åtminstone måste finnas ett tvåvägskommunikationssystem (kommunikation med bemannad plats) i räddningskammaren.
I framtida tunnlar kan även tunnelappar användas för att skicka meddelanden och ge instruktioner. Denna typ av teknologi måste dock utvecklas och strategi för information och utbildning måste tas fram.

Notering: Utrymmning kommer sannolikt att ske uppför en brant lutande väg. Detta medför att utmattning bör beaktas. Gånghastigheten kommer troligen inte att påverkas av annat än dålig sikt och brandrökens toxiska effekt på förflyttningstkomnigheten.

6.2.3 **Trafikant som kör mot röken i en rökfri miljö (nedströms) – typ 3**

Trafikant typ 3 är initialt inte medveten om att något har hänt. Miljön som de kör i är rökfri och från deras perspektiv är situationen inledningsvis normal. Trafikanterna kan eventuellt få signaler från mötande bilister, t ex helljusblink. Förutsättningarna liknar de som gäller för trafikant typ 5, men situationen är avsevärt mycket allvarligare för trafikant typ 3 eftersom de kör mot branden och röken. De kommer således att möta röken om de inte agerar tidigt.

Önskat utrymningsagerande: Det är önskvärt att trafikanterna saktar ner, vänder sitt fordon och kör ut i en rökfri miljö. Detta måste hinnas med innan de nås av röken. Stora fordon kan om möjligt använda en vändnisch (snunisje), men om detta inte är möjligt måste de överge sitt fordon och gå eller "lifta" ut ur tunneln.

Behov: Trafikanterna måste snabbt bli varse och informeras om branden för att kunna fatta beslut om att utrymma. Denna information måste vara mycket tydlig och övertygad eftersom de i de flesta fall inte ser någon rök. Därefter måste de informeras om att de ska vända och förare till stora fordon att de ska parkera och utrymma på annat sätt. Stora fordon omfattar buss, lastbil och personbil med släp. Det finns ett behov av att sänka hastigheten för att inte kör på trafikanter eller krocka med andra fordon, t ex trafikant typ 4.

Tekniska system (utrymning):

Trafikant typ 3 är stort behov av snabb information för att inte utsättas för farliga förhållanden. Precis som för trafikant typ 2 ställer detta krav på tidig detektering, varför det rekommenderas att någon typ av detektionssystem installeras, t ex detektion av stillstående fordon med CCTV (prio 1) eller branddetektorer (prio 2). Vid misstänkt brand ska samtliga relevanta system aktiveras.

För att trafikanterna ska påbörja utrymning och för att säkerställa säker vändning av fordon i tunneln bör följande system finnas:

- Dynamiska hastighetsskyltar som sänker hastigheten till 30 km/h
- Dynamiska skyltar med information om att trafikanterna ska vända om.
- Dynamiska skyltar om att brand har utbrutit och eventuellt instruktion om utrymning.

Dessa skyltar ska vara försedda med orangefärgade blinkande lampor som fängar uppmärksamheten. Det bör undersökas om det även går att förmedla information om vem som ska vända om respektive stoppa sitt fordon med visuella system, eller om denna kunskap kan uppnås med utbildning istället.

2 Motivet att välja 30 km/h som rekommenderad hastighet baseras på konsekvensen av en eventuell påkörning av gångtrafikanter. Hastighetsskyldningen kommer att vara synlig i hela tunneln dvs även i den del där trafikanter av typ 2 finns. Om dessa bilister väljer att vända fordonet och försöka köra ut ur tunneln kan det finnas risk att de kör på gående i röken. Sannolikheten att dessa påkörda gångtrafikanter omkommer vid collisionen minskar avsevärt om hastigheten är 30 km/h jämfört med 40 km/h eller 50 km/h (Lindberg, 2012). Hastigheten bör vara tillräcklig för att inte hinnas upp av röken för bilist typ 4. Nivån för hastighetsbegränsningen har dock inte analyserats mer utförligt och ska främst ses som en indikation på att hastigheten måste sänkas för att inte risken för tillkommande collisioner ska öka.
I syfte fånga uppmärksamheten och, om möjligt, informera om brand bör akustiska signaler, t ex traditionella larmsignaler eller talade meddelanden, användas. Även användningen av radioinbrytning förespråkas av samma anledning.

I framtida tunnlar kan även tunnelappar användas för att skicka meddelanden och ge instruktioner. Denna typ av teknologi måste dock utvecklas och strategi för information och utbildning måste tas fram.

Notering: Trafikant typ 3 som inte kör ut utan går lite längsammare pga lutning på tunneln kan då bli upphunnen av röken. De blir då typ 2.

6.2.4 Trafikant som kör från röken i en rökfri miljö (nedströms) – typ 4

Trafikant typ 4 är ofta inte medveten om att något har hänt, men kan ha passerat en liten brand och är i så fall medvetna. Miljön som de kör i är rökfri och från deras perspektiv upplevs situationen oftast som normal.

Önskat utrymningsagerande: Trafikanterna ska fortsätta att köra ut till det fria in en rökfri miljö, men ska undvika att köra på vändande bilister och utrymmande i tunneln (trafikant typ 3). Om möjligt bör de plocka upp gående på vägen ut, t ex buss- och lastbilstrafikanter som inte lyckats vända sitt fordon (trafikant typ 3).

Behov: Trafikanterna bör bli varse och informeras om branden, för att öka sannolikheten att de plockar upp gående (trafikant typ 3). Information om brand medför dock att de också måste informeras om lämpligt körbeteende, dvs att de ska köra rakt fram (inte vända) och att de ska sänka hastigheten. Syftet med den sänka hastigheten är att inte köra på trafikanter eller krocka med vändande fordon.

Tekniska system (utrymning):

Baserat på trafikanternas behov bör följande system finnas:

- Dynamiska hastighetsskyltar som sänker hastigheten^2 till 30 km/h
- Dynamiska skyltar med information om att trafikanterna ska fortsätta rakt fram.
- Dynamiska skyltar om att brand har utbrutit.

Dessa skyltar ska vara försettade med orangefärgade blinkande lampor som fängar uppmärksamheten.

Radioinbrytning förespråkas i syfte att informera trafikanterna om branden. Eventuellt kan akustiska signaler också användas, tex traditionella larmsignaler eller talade meddelanden, men dessa kan vara svåra att höra i ett fordon som kör i tunneln.

6.2.5 Trafikant som kör mot röken i en rökfri miljö (uppströms) – typ 5

Trafikant typ 5 är initialt inte medveten om att något har hänt. Miljön som de kör i är rökfri och från deras perspektiv är situationen inledningsvis normal. Trafikanterna kan eventuellt få signaler från mötande bilister, t ex helljusblink. Förutsättningarna liknar dem som gäller för trafikant typ 3, men situationen är inte lika allvarlig för trafikant typ 5 då de kör i den delen av tunneln som är tänkt att förbli rökfri.

Önskat utrymningsagerande: Det är önskvärt att trafikanterna saktar ner, vänder sitt fordon och kör ut i en rökfri miljö. Detta måste hinnas med innan de nås av röakens backlayeringeffekt som sker uppströms från branden. Stora fordon kan om möjligt använda en vändnish (snunisje), men om detta inte är möjligt kan de överge sitt fordon och gå eller lifta (haike) ut ur tunneln.

Behov: Trafikanterna måste bli varse och informeras om branden för att kunna fatta beslut om att utrymma. Därefter måste bilisterna informeras om att de ska vända och föra till stora fordon att de ska parkera och utrymma på annat sätt. Stora fordon omfattar buss, lastbil och
personbil med släp. Det finns ett behov av att sänka hastigheten för att inte köra på trafikanter eller krocka med andra fordon.

Tekniska system (utrymning):

Denna grupp är i stort behov av snabb information för att inte komma nära branden. Precis som för trafikant typ 2 och 3 ställer detta krav på tidig detektering, varför det rekommenderas att någon typ av detektionssystem installeras, t ex detektion av stillstående fordon med CCTV (prio 1) eller branddetektorer (prio 2). Vid misstänkt brand ska samtliga relevanta system aktiveras.

För att trafikanterna ska påbörja utrymning och för att säkerställa säker vändning av fordon i tunneln bör följande system finnas:

- Dynamiska hastighetsskyltar som sänker hastigheten\(^2\) till 30 km/h
- Dynamiska skyltar med information om att trafikanterna ska vända om.
- Dynamiska skyltar om att brand har utbrutit och eventuellt instruktion om utrymning.

Dessa skyltar ska vara förserda med orangefärgade blinkande lampor som fångar uppmärksamheten. Det bör undersökas om det även går att förmedla information om vem som ska vända om respektive stoppa sitt fordon, eller om denna kunskap kan uppnås med utbildning istället.

I syfte att informera om brand och fänga uppmärksamheten, bör det undersökas om akustiska signaler, t ex traditionella larmsignaler eller talade meddelanden, kan användas. Även användningen av radioinbrytning förespråkas av samma anledning.

I framtida tunnlar kan även tunnelappar användas för att skicka meddelanden och ge instruktioner. Denna typ av teknologi måste dock utvecklas och strategi för information och utbildning måste tas fram.

6.2.6 Trafikant som kör från röken i en rökfri miljö (uppströms) - typ 6

Trafikant typ 6 är ofta inte medveten om att något har hänt, men kan ha passerat en liten brand och är då medveten. Miljön som de kör i är rökfri och från deras perspektiv upplevs situationen oftast som normal.

Önskat utrymningsagerande: Trafikanterna ska fortsätta att köra ut till det fria in en rökfri miljö, men ska undvika att köra på väntande bilister och utrymmande i tunneln (trafikant typ 5).

Behov: Trafikanterna bör bli vare och informeras om branden, för att öka samnolikheten att de plockar upp gående (trafikant typ 5). Information om brand medför dock att de också måste informeras om lämpligt körbeteende, dvs att de ska köra rakt fram (inte vända) och att de ska sänka hastigheten. Syftet med den sänka hastigheten är att inte köra på trafikanter eller krocka med väntande fordon.

Tekniska system (utrymning):

Baserat på trafikanternas behov bör följande system finnas:

- Dynamiska hastighetsskyltar som sänker hastigheten\(^2\) till 30 km/h
- Dynamiska skyltar med information om att trafikanterna ska fortsätta rakt fram.
- Dynamiska skyltar om att brand har utbrutit.

Dessa skyltar ska vara förserda med orangefärgade blinkande lampor som fångar uppmärksamheten.

Radioinbrytning förespråkas i syfte att informera trafikanterna om branden. Eventuellt kan akustiska signaler också användas, tex traditionella larmsignaler eller talade meddelanden, men dessa kan vara svåra att höra i ett fordon som kör i tunneln.
6.3 Sammanfattning av tekniska system för utrymning

Enligt analysen ovan måste branden detekteras tidigt på grund av behoven för trafikant typ 2, 3 och 5. Detta ställer krav på att någon typ av detektionssystem installerats, t ex detektion av stillastående fordon med CCTV (prio 1) eller branddetektorer (prio 2). Detektionssystemet måste även kunna avgöra var branden brutit ut, eftersom de olika typerna av trafikanter ska utsättas för olika tekniska system. Vid misstänkt brand ska samtliga relevanta system aktiveras, vilket inkludera både brandgasventilation och utrymningssystem. Avsikten med aktiveringen av brandgasventilationen är i princip att den ska säkerställa att rådande luftflöden bibehålls och inte förändras, varken vad gäller hastighet eller riktning. Bilisterna fattar sina beslut utifrån de förutsättningar som är aktuella och baserade på en princip som ska minimera den egna risken. Då är det inte lämpligt att enbart ha en generell princip för aktiveringen som inte beaktar den rådande situationen.

Samtliga trafikanttyper behöver tillräcklig belysning i tunneln, dvs allmänbelysningen måste vara tillräcklig för att gå eller köra ut ur tunneln samt så tunneln upplevs som väl upplyst. Dessutom behöver trafikant typ 1 tydligt markerade nödstationer för att de snabbt ska kunna inleda en första släck- eller räddningsinsats.

I tunneln förespråkas följande dynamiska system:

- Dynamiska hastighetsskyltar som sänker hastigheten till 30 km/h
- Dynamiska skyltar med information om att trafikanterna ska fortsätta rakt fram (område A och B i figur 12) eller dynamiska skyltar med information om att trafikanterna ska vända om (område C och D i figur 12).
- Dynamiska skyltar om att brand har utbrutit och i vissa fall instruktion om utrymning.

I figur 12 anges de olika regionerna i tunneln och i figur 13 ges några förslag på konceptuella utformningar av de dynamiska skyltarna. Utformningarna i figur 13 har inte testats, vilket måste göras innan de implementeras i tunnlarerna.

Enligt vad som ses i figur 13 ska vissa skyltarna vara försedda med orangefärgade blinkande lampor som fångar uppmärksamheten. Det bör undersökas om det även går att förmedla information om vem som ska vända om respektive stoppa sitt fordon, eller om denna kunskap kan uppnås med utbildning istället.

Figur 12. Olika områden i tunneln.

Det rekommenderas att akustiska signaler, t ex traditionella larmsignaler eller talade meddelanden, används i tunneln med huvudsyftet att fänga trafikanters uppmärksamhet och förstärka övriga signaler. Om möjligt bör talade meddelanden användas, vilka i så fall även ska innehålla information om att det brinner. Även användningen av radioinbrytning förespråkas för att påkalla uppmärksamhet och informera om branden. Det kan övervägas att informera bilister som befinner sig i röken (typ 2) att de bör lämna sina fordon och utrymma till fotom om risken är stor att de kör på andra bilister om de försöker köra ut med bilen. Denna information behövs eftersom att de dynamiska skyltarna faktiskt uppmanar bilisten att vända om, vilket olyckligtvis innebär att motsidande information i viss utsträckning förmedlas. Denna konflikt kan behöva utredas ytterligare.

Räddningskammare med lokalt utrymningslarm som hörs på ca 30 meters avstånd, dvs en ljudfyr, bör efter verifiering finnas i tunneln för att förbättra förutsättningarna för trafikant typ 2. Det måste dock undersökas hur räddningskammarna ska inredas och utrustas för att trafikanter ska känna sig trygga och vilja vistas där. Ett minimikrav är att det i räddningskammaren finns tvåvägskommunikationssystem med bemannad plats.

För att hjälpa främst trafikant typ 2 förespråkas taktil handledare, vägledande markeringar och ledbelysning längs med båda tunnelväggarna i hela tunneln. Vid positioner för räddningskammare ska information om att det finns en kammare på motsäende sida finnas. Lämpligen ska den vägledande markeringen innehålla information om avstånd till säker plats i respektive riktning.

I framtid kan även tunnelappar användas för att skicka specifika meddelanden och ge instruktioner till olika typer av trafikanter. Denna typ av teknologi måste dock utvecklas och strategi för information och utbildning måste tas fram.

6.4 Övriga synpunkter

Ytterligare aspekter som underlättar en utrymning bör beaktas när en tunnels sammanlagda system för säkerhet ska definieras. Sådana kan vara aktuella vid arbetet med tunnelns riskanalys eller när beredskapsplanen ska utformas. Det kan t ex handla om tekniska system eller andra åtgärder som är relevanta, t ex utbildning och kommunikation till bilister innan en olycka (se även Riksrevisjonens kommentar, avsnitt 1.1), närvaron av tekniska system som påverkar brandförförlippet (vattensprinkler) och system som påverkar sannolikheten för att olyckan ska inträffa (detektion av varma fordonsdetaljer innan tunneln). Det bör dock åter poängteras att föreliggande rapport, vilken fokuserar på utrymning, ska fungera som ett underlag för kommande förbättringsarbeten, riskanalyser och beredskapsplaner.
Referenser och anknytande litteratur

Boer LC, Veldhuijzen van Zanten DW (not publ). Behaviour on tunnel fire. TNO Human Factors, Soesterberg.

Dreyfuss, I. (2015) How Members of the Public Have Used Facebook and Twitter in Response to a Disaster: A Comparative Case Study. A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts at George Mason University

Marlair G Et al. (2004). Human behaviour as a key factor in tunnel fire safety issues. 6 Asia-Oceania Symposium on fire science & technology, Mar 2004 Daegu, pp 658-668.

Nilsson D (2014). Design of fire alarms: Selecting appropriate sounds and messages to promote fast evacuation. Proc. of an interdisciplinary symposium the 28th april 2014 arranged by The

Peacock, RD, Averill, JD & Kuligowski, ED. (2009), Stairwell evacuation from buildings: what we know we don’t know, NIST Technical Note 1624, National Bureau of Standards and Technology, Gaithersburg, MD

PIARC (2016) Improving safety in road tunnels through real-time communication with users. 2016R06EN, La Défense cedex: Word Road Association (PIARC)

8 Bilaga A Utrymningsanalys från vägtunnel.

8.1 Förutsättningar

Som en del i verifieringen av föreslagna åtgärder för att uppgadera personsäkerheten i Ellingsøytunnelen och Valderøy–tunnelen i Ålesund har en preliminär utrymningsanalys genomförts. Metoden som använts baseras på den utrymningsmodell som presenteras i Ingason m fl (2005) och som bygger på en en-dimensionell beskrivning av brandgasflödet i tunneln. Temperatur, sikt och andra förhållanden som orsakas av branden beräknas för den plats som utrymmade personer vistas på som funktion av tiden och de utrymmade påverkas av dessa förhållanden. Eftersom modellen är endimensionell blir alla brandinducerade variabler endast beroende på avståndet från branden och som en variation av tiden. Förhållandena är således lika över tunnelns tvärsnitt. Förhållandena från branden definieras av en given brandeffekt vilket i aktuellt fall ska illustrera en bussbrand som har en maximal brandeffekt på 30 MW. Olika brandförlopp ingår i beräkningen men tillväxten är generellt sett snabb och baseras på Ingason och Lönnermark (2012). Tunnelns tvärsnitt antas vara 70 m² och det antas att normala luftvårdhastigheten är 1,5 m/s.

Utrymmande bilister befinner sig från början nära branden dvs de har kört nästan ända fram till den brinnande bussen och står stilla där. Efter en fördröjningstid påbörjar de sin förflyttning mot tunnelns mynning. I analysen nedan finns tre bilister som har parkerat sina bilar 10, 20 och 30 meter från branden på den sidan dit röken blåser. Dessa bilister har en respektive fördröjningstid på 30, 60 respektive 90 sekunder.

Analysen genomförs för att visa på möjligheten med liknande analyser och för att få en uppfattning om vilka förutsättningar som gäller för en utrymning som sker i rök.

Två olika brandförlopp analyseras; \(\alpha = 0,13 \text{ kW/s}^2 \) (8 minuter till maximal effekt) respektive \(\alpha = 0,17 \text{ kW/s}^2 \) (7 minuter till maximal effekt) vilket baseras på genomförda experiment (Ingason och Lönnermark (2012)). Bränderna växer som \(\alpha \cdot t^2 \) dvs exponentiellt. I några fall sätts lägsta gånghastigheten till 0,2 m/s istället för 0,5 m/s vilket är ett mer konservativt antagande. En luftvårdhastighet på 2 m/s används i några scenarier.
8.2 Resultat

Några grundläggande resultat redovisas i tabellen nedan. I samtliga fall där personerna inte kommer hela vägen till tunnelns mynning är det på grund av att de andats in för mycket toxiska gaser. Det är beräkningen av FED som vid en given tidpunkt leder till medvetslöshet.

<table>
<thead>
<tr>
<th>Scen</th>
<th>Brand, kW/s²</th>
<th>Lägsta gånghastighet, m/s</th>
<th>Vindhastighet, m/s</th>
<th>Resultat</th>
</tr>
</thead>
</table>
| 1 | 0,13 | 0,5 | 1,5 | Uttrymning i rök efter 250-750 meter
Alla kommer ut
Totaltid cirka 40 minuter |
| 2 | 0,13 | 0,2 | 1,5 | Uttrymning i rök efter 300-800 meter
Ingen kommer ut, stannar vid 850-1300 meter
Stopptid cirka 50 minuter |
| 3 | 0,17 | 0,5 | 1,5 | Uttrymning i rök efter 200-600 meter
Alla kommer ut
Totaltid cirka 40 minuter |
| 4 | 0,17 | 0,5 | 2 | Uttrymning i rök efter 200-300 meter
Alla kommer ut
Totaltid cirka 45 minuter |
| 5 | 0,17 | 0,2 | 2 | Uttrymning i rök efter 200-300 meter
Ingen kommer ut, stannar vid 1000 meter
Stopptid cirka 70 minuter |
| 6 | 0,17 | 0,2 | 1,5 | Uttrymning i rök efter 150-600 meter
Ingen kommer ut, stannar vid 700-1100 meter
Stopptid cirka 50 minuter |
| 7 | 0,13 | 0,5 | 2 | Uttrymning i rök efter 250-400 meter
Alla kommer ut
Totaltid cirka 45 minuter |

Figur A2. Gångsträcka i tunneln för bilister i scenario 2.
8.3 Slutsats

Det är tydligt att för aktuella fall så betyder gånghastigheten ganska mycket för resultatet. Om personerna kan gå hyfsat fort även när sikten är dålig så finns det möjligheter att gå hela vägen ut. Nu är beräkningarna förhållandevis generella och individuella aspekter som utmattning inte inkluderade. Det innebär att förutsättningarna för utrymning ligger på gränsen vad tunneln klarar av att hantera för den aktuella branden.

Eftersom de utrymmande efter ett tag tvingas utrymma ut tät rök och vindhastigheten är högre än gånghastigheten kommer förutsättningarna inte att bli bättre under förloppet. Anledningen till att gånghastigheten är högre i början är att röktätheten inte är så hög att gånghastigheten påverkas. Men efter en tid in i brandförloppet ökar branden i omfattning och producerar tätare rök. Denna kommer ikapp de utrymmande bilisterna och förbättrar sikten.

För de fall där man kan förvänta sig att personer kan gå långsamt i den täta röken kan det finnas ett behov av räddningskammare. Om behovet av räddningskammare skulle grundas på ovanstående analys så kan det vara rimligt att placera en sådan kammare med cirka 700 m mellanrum baserat på de sämsta förutsättningarna (scenario 6). Gångavståndet till en säker plats blir då aldrig längre. Det ska dock påpekas att den presenterade analysen enbart är avsedd för att illustrera metodiken att ta fram ett beslutsunderlag och en mer noggrant genomförd analys rekommenderas.