Loss of HIF-1 accelerates murine FLT-3ITD-induced myeloproliferative neoplasia.

Velasco, Talia; Tornero Prieto, Daniel; Cammenga, Jörg

Published in:
Leukemia

DOI:
10.1038/leu.2015.156

2015

Citation for published version (APA):
Loss of HIF-1α accelerates murine FLT-3ITD-induced myeloproliferative neoplasia

Talia Velasco-Hernandez1, Daniel Tornero2 and Jörg Cammenga1, 3, 4, 5

1Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden; 2Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Skanes University Hospital, Lund, Sweden; 3Department of Hematology, Skanes University Hospital, Lund, Sweden, 4Department of Hematology, Linköping University Hospital and 5Institution for Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.

Running title: HIF-1α in FLT-3ITD myeloid neoplasia

Key words: Hypoxia, HIF-1α, myeloproliferative neoplasm (MPN), Flt-3, tumor suppressor gene.

Correspondence should be addressed to:

Jörg Cammenga

Department of Molecular Medicine and Gene Therapy

Lund Stem Cell Center BMC A12, Sölvegatan 17, 22184 Lund, Sweden

e-mail: jorg.cammenga@med.lu.se

The authors declare no conflict of interests.
Abstract:

Hypoxia-induced signaling is important for normal and malignant hematopoiesis. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in quiescence and self-renewal of hematopoietic stem cells (HSCs) as well as leukemia-initiating cells (LICs) of acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We have investigated the effect of HIF-1α loss on the phenotype and biology of FLT-3ITD-induced myeloproliferative neoplasm (MPN). Using transgenic mouse models, we show that deletion of HIF-1α leads to an enhanced MPN phenotype reflected by higher numbers of white blood cells, more severe splenomegaly and decreased survival. The proliferative effect of HIF-1α loss is cell-intrinsic as shown by transplantation into recipient mice. HSCs loss and organ specific changes in number and percentage of long-term hematopoietic stem cells (LT-HSCs) were the most pronounced effects on a cellular level after HIF-1α deletion. Furthermore, we found a metabolic hyperactivation of malignant cells in the spleen upon loss of HIF-1α. Some of our findings are in contrary to what has been previously described for the role of HIF-1α in other myeloid hematologic malignancies and question the potential of HIF-1α as a therapeutic target.
Introduction:

Hypoxia has been proposed to be a physiologic condition in the adult hematopoietic stem cell (HSC) niche and previous publications have provided experimental evidence for this hypothesis. Additionally, it has been shown that hypoxia signaling, through hypoxia-inducible factors (HIFs), is required for proper HSCs function, and that this might be mediated by HIF-induced pyruvate dehydrogenase kinase (PDK) and vascular endothelial growth factor (VEGF) expression. Further dissection of the HIF signaling pathway has indicated that HIF-1α, but not HIF-2α, seems to be the major player in HSCs self-renewal. Interestingly, deletion of both members of the HIF family had surprisingly little effect on hematopoiesis in steady state and functional HSC defects were only apparent after serial transplantations.

Normally, HIF-1α activity is regulated on a post-transcriptional, post-translational level by oxygen dependent hydroxylation of two proline residues in the oxygen-dependent domain (ODD) of the HIF-1α subunit followed by binding of the von Hippel Lindau (VHL) protein and degradation by the ubiquitination pathway. Other mechanisms than oxygen tension might regulate HIF-1α expression in the HSC niche. Cytokines, like stem cell factor (SCF) and thrombopoetin (TPO) that are highly expressed in the adult bone marrow (BM) niche have been shown to lead to HIF-1α stabilization. Moreover, the homeobox gene Meis1, highly expressed in HSCs, also stabilizes HIF-1α contributing to the quiescence of HSCs.

Members of the HIF family have been proposed to be crucial for self-renewal of human acute myeloid leukemia-initiating cells (AML-ICs). shRNA expression against HIF-1/2α in human AMLs showed impaired engraftment in NOD/SCID mice. Whether HIF was a direct target of the genetic alterations in the used AML samples has not been
addressed in these studies. On the other hand, Meis1, commonly overexpressed in
AML, induces HIF-1α stabilization, and accordingly, its deletion in transgenic mice
leads to HSCs exhaustion due to their inability to up-regulate HIF-1α9,12.
Additionally, it has been shown that the t(9;21) fusion protein BCR-ABL signals
directly to HIF-1α leading to its activation13. Deletion of HIF-1α in a murine model of
chronic myeloid leukemia (CML) showed that CML-initiating cells (CML-ICs) lacking
HIF-1α failed to generate leukemia in secondary transplanted mice arguing for an
important role of HIF-1α in CML-ICs self-renewal14.
Taking all these data into consideration, HIF-1α might be a good therapeutic target for
different types of leukemia if HSCs and leukemic initiating cells (LICs) had a different
requirement for HIF signaling. Since previous studies have used methods (shRNA
expression, unspecific inhibitors of HIF in human AML cells or retroviral
transduction/transplantation assays)10,11 that could bear potential technical problems
in the evaluation of LICs self-renewal, we have tested the requirement of HIF-1α in
myeloproliferative neoplasms (MPN) using a FLT-3ITD transgenic mouse model.
Internal tandem duplications (ITD) in the FLT3 gene are found in approximately 25%
of AML cases, constitutively activating this receptor and predicting increased relapse
rates and reduced overall survival15.
Here, we show that loss of HIF-1α leads to an enhanced FLT-3ITD-induced MPN
phenotype, indicated by higher numbers of white blood cells (WBC) and myeloid cells,
more severe splenomegaly and a shorter survival. The increased proliferation is cell-
intrinsic and this phenotype transplantable to primary recipient mice. Our data
question the role of HIF-1α as a target to eliminate LICs in MPN and show that loss of
HIF-1α can aggravate the disease.
Materials and methods:

Transgenic mice

Hif-1α^flox/flox^ mice\(^{16}\) were crossed with the interferon-inducible Mx1-Cre mice\(^{17}\) and with the knock-in Flt-3^ITD^ mice\(^{18}\) to generate conditional knock-out Hif-1α^flox/flox^; Mx1-Cre; Flt-3^ITD/+^ mice. All animals were bred and maintained in accordance with Lund University's ethical regulations (Ethical permit M86-12).

Monitoring of mice and bone marrow transplantation assays

Leukemia development was analyzed by measuring myeloid cells and total WBC in peripheral blood (PB) every 4 weeks. Myeloid cells were analyzed by flow cytometry and WBC counts were determined by a cell counter (KX-21N, Sysmex, Norderstedt Germany).

For HSC transplantation, 8 to 12-week-old B6SJL (CD45.1) recipient mice were lethally irradiated with 900 cGy 4-15 hours prior to transplantation. BM c-kit^+^ cells from donors (CD45.2) were isolated using the MACS® magnetic separation system and anti-c-kit magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). 5 x 10^5^ c-kit^+^ cells were injected into the tail vein of recipient mice accompanied by 2 x 10^5^ freshly isolated total BM supporting cells from B6SJL x C57BL/6J (CD45.1-CD45.2) mice. Donor chimerism and myeloproliferative development were determined after transplantation by PB analysis every 4 weeks.

For the transplantation of the cells kept in vitro, c-kit^+^ cells were cultured in serum free expansion media (StemCell Technologies, Vancouver, BC, Canada) supplemented with 20 ng/mL murine interleukin 3 (PeproTech, Stockholm, Sweden), 50 ng/mL human...
interleukin 6 (PeproTech), 50 ng/mL human TPO (PeproTech) and 50 ng/mL murine SCF (PeproTech) for 48 hours before transplant. Animals that had to be euthanized due to non-MPN-associated symptoms were excluded from the survival analysis. Deletion of Hif-1α was verified by polymerase chain reaction (PCR) analysis of DNA from BM cells of primary animals using the following primers: HIF$_{\Delta}$-forward: 5’ – GCAGTTAAGAGCAGTTG-3’ and HIF$_{\Delta}$-reverse: 5’ – TTGGGGATGAAACATCTGC-3’.

Flow cytometry analysis

Expansion of the MPN and engraftment of transplanted cells were monitored by flow cytometry analysis of PB, BM and spleen cells. PB samples were lysed with ammonium chloride (StemCell Technologies) prior to staining. 4,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA) or 7-amino-actinomycin D (7-AAD, BD Pharmingen, San Diego, CA, USA) was used to exclude dead cells. For chimerism and lineage analysis the following antibodies were used: Gr1-PE, -PECy5 (RB6-8C5), Mac1-PE, -PECy5 (M1/70), B220-PE, -APC, -PECy5 (RA3-6B2), CD3-PE, -PECy5 (145-2C11), Ter119-PECy5 (TER-119), CD45.1-PECy7 (A20), Sca1-BV, -APC (D7), CD48-FITC (HM48-1) and CD150-APC, -PECy7 (TC15-12F12.2) from BioLegend (San Diego, CA, USA) and CD45.2-APCe780 (104) and c-kit-APCe780 (2B8) from eBiosciences (San Diego, CA, USA).

For cell cycle analysis, cells were fixed in 0.4% formaldehyde (Merck, Darmstadt, Germany) and permeabilized with 0.1% Triton-X (Sigma-Aldrich). Thereafter, cells were stained with Ki-67-PE (B56) antibody (BD Pharmingen) and DAPI (Sigma-Aldrich). Cellular reactive oxygen species (ROS) production was analyzed using
CellROX® Deep Red Reagent (Life Technologies, Stockholm, Sweden); mitochondrial ROS production was analyzed using MitoSOX™ Red mitochondrial superoxide indicator (Life Technologies) at 2 μM concentration; mitochondrial activity was evaluated using MitoTracker® Deep Red FM probe (Life Technologies) at 10 nM concentration; apoptosis analysis was performed using the BD Pharmingen™ PE Annexin Apoptosis Detection Kit (BD Pharmingen); all according to manufacturer’s instructions. Samples were analyzed using a FACSCantoII (BD Biosciences, Stockholm, Sweden) and data was analyzed with FlowJo software (TreeStar, Ashland, OR, USA).

Histology

For morphological analysis, cells from BM and spleen were subjected to cytospin preparation onto glass slides and PB smears were stained with May-Grünwald (Merck) and Giemsa (Merck). For microscopic examination, an Olympus IX70 microscope and an Olympus DP72 camera were used (Olympus, Tokyo, Japan).

Statistical analysis

All data are expressed as the mean ± SEM. Differences between groups were assessed by unpaired two-tailed Student’s t-test. Statistical analysis of survival curves was performed using Mantel-Cox log-rank test. All analyses were performed with Prism software version 6.0 (GraphPad Software, San Diego, CA, USA). Animal cohort size was chosen according to the published literature and our previous studies. Since all experiments were performed with mice homogeneous regarding strain and age, no randomization method was used. Since this study did not include objective measurements, no blinding was performed.
Results:

Spontaneous deletion of Hif-1α by Mx1-Cre in the FLT-3ITD mice

To investigate the role of HIF-1α in FLT-3ITD-induced MPN and self-renewal of LICs, Flt-3ITD knock-in mice were crossed with Hif-1α conditional knock-out mice and Mx1-Cre mice to obtain Flt-3ITD/+; Hif-1αflox/flox; Mx1-Cre mice and Flt-3ITD/+; Hif-1αflox/flox control mice (refer hereafter as Hif-1αΔ/Δ and Hif-1α+/+, respectively). The phenotype of the FLT-3ITD-induced MPN mouse model resembles human chronic myelomonocytic leukemia (CMML), with an expansion of the myeloid/monocytic compartment. We intended to delete the Hif-1α gene using poly(deoxyinosinic/deoxycytidylic) acid (pIpC) for induction of the Cre recombinase under the control of the Mx1 promoter. However, investigation of untreated mice showed that recombination had occurred spontaneously, probably due to activation of signaling pathways downstream of the Flt3 receptor, triggering an interferon response and leading to the expression of Cre recombinase (Figure 1a and Supplementary Figure S1). Due to the very high spontaneous deletion frequency of the floxed HIF-1α gene none of the mice were treated with pIpC.

FLT-3ITD-induced MPN is aggravated by the loss of HIF-1α

Primary Hif-1αΔ/Δ mice surprisingly showed a more severe FLT-3ITD MPN phenotype than Hif-1α+/+ animals. While control mice suffered from a chronic MPN that mice normally did not succumb to, Hif-1αΔ/Δ mice started to die at week 26 of age, reaching 50% of survival at week 68 (Figure 1b). This enhanced MPN phenotype was also reflected in higher WBC counts (Figure 1c) and a higher percentage of Gr1+/Mac1+...
cells (myeloid cells) in PB at 8, 12, 16 and 20 weeks of age (Figure 1d-e and Supplementary Figure S2). Blood smears also showed more mature granulocytes in $Hif-1\alpha^{\Delta/\Delta}$ mice (Figure 1f).

20-week-old mice were sacrificed to analyze other MPN symptoms. Bones from mice lacking HIF-1α presented pale aspect (femurs, tibiae and hips) (Figure 2a), probably due to a combination of anemia (Table 1) and infiltration of myeloid cells in the BM.

FLT-3ITD-induced MPN in the absence of HIF-1α was characterized by a more severe splenomegaly and hepatomegaly indicated by higher spleen and liver weights (Figure 2a-b) in $Hif-1\alpha^{\Delta/\Delta}$ mice. Percentages of Gr1$^+$/Mac1$^+$ cells in BM and spleen were also increased upon loss of HIF-1α (Figure 2c-d). Taken together, our data indicate that loss of HIF-1α in an FLT-3ITD-induced MPN model accelerates disease progression and aggravates its severity.

Loss of HIF-1α affects cell cycle status of FLT-3ITD-induced MPN cells

To investigate whether higher number of myeloid cells in PB, BM and spleen was due to increased proliferation or decreased apoptosis, we first investigated cell cycle status in malignant myeloid cells from these tissues. Cell cycle analysis revealed that there was a higher percentage of cycling cells in spleen (G2/S/M phase) of $Hif-1\alpha^{\Delta/\Delta}$ mice compared to controls (Figure 2e and Supplementary Figure S3). Interestingly we observed no differences in BM cells from mice with different HIF-1α status. Overall these data indicate that loss of HIF-1α in FLT-3ITD-induced MPN results in an increased number of Gr1$^+$/Mac1$^+$ myeloid cells by enhance proliferation in spleen as shown by a higher percentage of cycling cells, even when expressing maturation surface markers.
When studying cell death of these neoplastic myeloid cells, we observed that loss of HIF-1α leads to a decrease in apoptosis both in BM and spleen (Figure 2f-g). Our data point to a dual role of HIF-1α loss in the observed phenotype by increasing the percentage of cells in active cycling and at the same time decreasing apoptosis resulting in an overall more severe MPN phenotype.

Loss of HIF-1α leads to an organ-specific change in stem and progenitor cell numbers

It has been previously shown that Flt-3ITD/+ mice present an expansion of multi-potent progenitor cells (MPPs) and a severe decrease in long-term hematopoietic stem cells (LT-HSCs) using either CD48/CD150 (SLAM) or FLT-3/CD34 staining of Lin-, Sca-1+, c-Kit+ (LSK) cells15,19,20. Having shown that deletion of Hif-1α leads to an enhanced FLT-3ITD-induced MPN we wanted to further characterize at which level of the hematopoietic hierarchy the effects occur. For this reason we analyzed and enumerated different hematopoietic stem and progenitor populations using staining for LSK and SLAM markers. Since expression of FLT-3ITD leads to an expansion of mature granulocytes in BM resulting in a change of cellular composition, both, percentages and total numbers of cells were analyzed (Figure 3a-c and Supplementary Figure S4). We observed the previously described reduction of LT-HSCs (LSK CD48- CD150+) in FLT-3ITD expressing mice compared to wild type (wt) mice, but even to a bigger extent when Hif-1α was deleted. When comparing BM cells from Hif-1αA/A mice to controls, we found an expansion of the more mature compartment (LK cells: Lin- c-Kit+ Sca1-) and a progressive decrease towards LT-HSCs, through the different levels of differentiation (LSK and MPPs (defined as LSK CD48- CD150-)). In spleen, the
scenario was different, showing an increment (although non-significant in some cases) of cells of all these different undifferentiated populations in the Hif-1αΔ/Δ mice.

When analyzing cell cycle status of these populations, we only observed higher percentage of cycling cells (G1-G2 phase) in Hif-1αΔ/Δ mice in the LSK population in spleen (Figure 3d and Supplementary Figure S5). These results, together with data presented in Figure 2e, indicate that the production of malignant cells in the Hif-1αΔ/Δ mice occurs mainly in the spleen through proliferation of committed progenitors.

Thus, the lost of HIF-1α changes the phenotype of FLT-3ITD malignancies in terms of proportions and location of primitive cells.

The effect of HIF-1α loss on FLT-3ITD-induced MPN is cell-intrinsic

To investigate whether the aggravation of the FLT-3ITD-induced MPN by HIF-1α loss is a cell intrinsic effect or a result mediated by cells in the microenvironment, and if this loss results in a defect in LICs homeostasis and self-renewal, transplantation assays were performed. To this end, c-kit+ BM cells from the different genotypes were transplanted into lethally irradiated recipient wt mice.

The disease was transplantable and additionally, the acceleration of the MPN phenotype by loss of HIF-1α was also observed in transplanted mice with Hif-1αΔ/Δ cells, arguing for a cell-intrinsic effect of HIF-1α on FLT-3ITD-induced MPN (Figure 4a and Supplementary Figure S6). However, the reduction in LT-HSCs observed in transgenic animals (Supplementary Figure S6f) is more severe in transplanted mice and accordingly, secondary recipients showed a loss of Hif-1αΔ/Δ donor contribution to PB (Supplementary Figure S7). The fact that Hif-1αΔ/Δ FLT-3ITD MPN was transplantable into primary recipients indicates that loss of HIF-1α did not result in a defect in LICs
engraftment, although the numbers of LT-HSCs are severely affected in primary recipients. Whether the effect in the secondary recipients is due to a loss of LIC self-renewal or a displacement of LT-HSC by expanding MPPs in the bone marrow remains elusive.

Previous studies, investigating the role of HIF-1α in CML, have used a retroviral transduction/transplantation model that requires cycling of the hematopoietic stem and progenitor cells (HSPCs), which is normally induced by in vitro culturing in the presence of cytokines. To test whether these experimental differences could explain the conflicting results between our experiments and previously published data, we cultured c-kit⁺ BM cells in presence of cytokines, as normally performed when using the transduction/transplantation method, and transplanted afterwards. Mice transplanted with in vitro cultured HiF-1αΔ/Δ BM cells showed, not only, a similar phenotype regarding the expansion of myeloid cells over time, but also a shorter survival ($P=0.0046$)(Figure 4b and Supplementary Figure S8a-b). Mice transplanted with HiF-1αΔΔ cultured BM cells started to die of progressive MPN around week 20 with most of the animals dead by week 40, while no animal died in the control group.

To evaluate the level of competition in our transplantation experiments, we calculated the number of LT-HSCs injected in each group. According to the obtained values in Figure 3 of c-kit⁺ cells and LT-HSCs in wt, HiF-1α⁺⁺ and HiF-1αΔΔ animals, we estimated that the ratio of competitor:donor cells was 1:3 for HiF-1αΔΔ and 1:65 for HiF-1α⁺⁺ cells respectively. Beside the higher competition in the HiF-1αΔΔ group, we observed similar levels of donor contribution to the myeloid compartment 20 weeks post-transplantation (Supplementary Figure S8c). To analyze donor contribution to the other cell lineages discarding the effect of the percentage variation when one
population is highly increased, we calculated donor contribution to each lineage in total number of cells. We observed equal contribution to the T cells from Hif-1α^{+/+} and Hif-1α^{Δ/Δ} animals. However, we observed more contribution from Hif-1α^{Δ/Δ} donor cells to myeloid and less to B cell lineage most likely due to the MPN phenotype resulting in an expansion of myeloid cells at the expense of B-cells (Supplementary Figure S8d).

In summary, our data indicate that FLT-3ITD-induced MPN is cell-intrinsic and transplantable, independently of HIF-1α status. Self-renewal of LICs was not lost even when cells were cultured in vitro for 48 hours prior to primary transplantations, although LT-HSCs numbers are highly reduced in recipient mice transplanted with Hif-1α^{Δ/Δ}.

HIF-1α status influences mitochondrial activity and ROS levels in FLT-3ITD-induced MPN

Mitochondrial respiratory chain constitutes the main intracellular source of ROS in most of the tissues. Because HIF-1α status influences the metabolism of cells³, which could affect the malignant properties of the FLT-3ITD cells, we examined mitochondrial membrane function and levels of ROS of these neoplastic myeloid cells. Two different tests showed an increment of cellular and mitochondrial ROS levels in Hif-1α^{Δ/Δ} mice in BM and an opposite effect in spleen (Figure 5a-b).

According to mitochondrial membrane function, we found three well-defined different populations, named as M1, M2 and M3 (Figure 5c). Whereas in BM there was an increase in the population with less mitochondrial activity (M1) when Hif-1α is deleted, we observed a reduction of this population in the splenic myeloid cells. This
could be indicating that high ROS production is a result of higher mitochondrial function caused by higher metabolic activity of Hif-1αΔ/Δ cells. Together this data could indicate a metabolic adaptation of these malignant cells to their new niches and an improvement of their tumorigenic capacities (less quiescence and more proliferation) when HIF-1α is lost in these cells.

Discussion:

Hypoxia signaling, mainly mediated by transcription factors HIF-1α and HIF-2α and their target genes, has been shown to play an important role in stem cell biology, particularly in normal and malignant HSPCs. Previous work has provided evidence that HIF-1α is required for HSCs quiescence and self-renewal as well as HIF-2α has a role in protecting HSCs from endoplasmic reticulum stress-induced apoptosis. Surprisingly, loss of HIF-1α function (and combined loss of HIF-1α and HIF-2α) seems rather weak since the phenotype comes only apparent after challenging HSCs by serial transplantation. Additionally, it has been demonstrated that HIF might play a role in murine and human leukemia. Inhibitors and shRNA against HIF-1α and HIF-2α have been used to show the requirement of these two transcription factors in human AML-ICs self-renewal and ability to induce AML in immune-compromised mice. The concept to target HIF in AML is intriguing but whether there is a therapeutic window for the treatment of leukemia by targeting HIF-1/2α without inducing major hematologic toxicity has not been extensively studied. It also remains elusive whether HIF can function as a therapeutic target for all genetic subtypes of AML. It has been shown that some genetic alterations in AML stabilize HIF in a hypoxia-independent
manner, making these specific subtypes maybe prime targets for therapy against HIF.

Requirement of HIF-1\(\alpha\) for CML-ICs self-renewal has been confirmed using retroviral overexpression of BCR-ABL oncogene in BM cells from HIF-1\(\alpha\) conditional knock-out mice\(^{14}\). All these approaches have some technical caveats that could influence the viability of LICs. First, inhibitors of HIF-1\(\alpha\) are rather unselective making it difficult to evaluate whether their effect is primarily caused by HIF-1\(\alpha\) inhibition. Expression of shRNA against HIF family members requires retroviral transduction of AML-LICs and might have off-target effects even though scrambled shRNA was used as control. Retroviral transduction of BM cells requires cytokine stimulation of HSPCs in vitro, which can change the properties of these cells. Therefore, we have investigated the role of HIF-1\(\alpha\) in FLT-3\(^{\text{ITD}}\)-induced MPN using just transgenic mouse models for both genetic alterations.

The first unexpected result was a spontaneous deletion of the floxed \textit{Hif-1}\(\alpha\) gene in Flt-3\(^{\text{ITD}}\); \textit{Mx1}-Cre background. We assume that FLT-3\(^{\text{ITD}}\) signaling triggers an interferon response that leads to activation of Cre recombinase via activation of \textit{Mx1} promoter. Our finding is in accordance with the published literature\(^{20,21}\) in which mice with either \textit{Runx1}\(^{\text{flox/flox}}\) or \textit{Npm1}\(^{\text{flox-cA/+}}\) in combination with a \textit{Flt-3}\(^{\text{ITD}}\) and \textit{Mx1}-Cre genotype develop AML spontaneously.

In contrary to the previously described role of HIFs in LICs of AML and CML, we found that HIF-1\(\alpha\) lost exaggerates FLT-3\(^{\text{ITD}}\)-induced MPN phenotype, as indicated by a shorter survival, higher number of myeloid cells in PB, BM and spleen, leading to a more severe splenomegaly.

It has been previously shown that \textit{Flt-3}\(^{\text{ITD}}\) knock-in mice have an expansion of the myeloid progenitor compartment while the LT-HSC population was severely
decreased. We observed that this effect is even more aggravated when Hif-1α is deleted. Surprisingly, reduction of LT-HSCs was not associated with a dramatic loss of LICs homeostasis, since the MPN could be transplanted into primary recipient animals even after in vitro incubation. Interestingly, transplanted MPNs lacking HIF-1α showed an even more aggressive phenotype as indicated by a shorter survival of transplanted mice. Whether the reduction in LT-HSCs in the bone marrow of primary recipients and the associated low contribution of Hif-1αΔ/Δ cells in the secondary recipients is due to a defect in self-renewal or a displacement by progenitors and mature myeloid cells needs further investigation.

Hypoxia-induced HIF expression has been linked to metabolic switch due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis, an effect that has been first described by Warburg and carries his name. Tumors that become hypoxic heavily depend on this mechanism but even tumors that are not hypoxic switch to energetically very inefficient glycolysis for reasons that still remain elusive. Therefore, we investigated the metabolic profile (mitochondrial function and ROS levels) of FLT-3ITD-MPN cells lacking HIF-1α. It has been described that changes in these parameters can affect self-renewal and differentiation of HSCs. For instance, when mitochondrial potential is blocked, HSCs are unable to initiate differentiation and high levels of ROS force cells to go out of quiescence. We found a correlation between cycling profile, ROS levels an mitochondrial function in FLT-3ITD-MPN cells (Figure 5d), indicating a more active status of Hif-1αΔ/Δ cells in spleen, the main (malignant) hematopoietic organ in animals with MPN and leading to a more aggressive disease. The fact that, in animals with the MPN, hematopoiesis is taking place in an extramedullary niche (spleen), with very different microenvironmental properties
from the BM, including oxygen tension, lead us to postulate that these observed differences are established by cell-intrinsic mechanisms that stabilize HIF-1α, imprinted already in the primary niche (BM) or by originating genetic alterations of the malignancy. These results are in concordance with our recently findings regarding the role of HIF-1α in AML pathogenesis using oncogenes that either do or do not signal directly towards HIF-1α. Expression of $MLL-AF9$ and $MEIS1/HOXA9$, that are supposedly activating HIF-1α, and $AML/ETO9a$, a truncated version of the AML1/ETO fusion protein with no known connection to HIF-1α, induced AML independent of HIF-1α status. HIF-1α was not needed for LIC self-renewal, but loss of HIF-1α rather lead to an accelerated and more severe phenotype, similar to the observations made for the FLT-3ITD-induced MPN model described in this paper. Based on previous studies, it has been proposed that HIF might be used as molecular therapeutic target to interfere with self-renewal of LICs. Our data indicate that targeting HIF-1α in FLT-3ITD-induced MPN rather leads to disease acceleration and a more severe phenotype. Whether the inhibition of HIF in combination with chemotherapy or targeted small molecules can be a useful therapeutic strategy needs further investigation.

Conflict of Interest

The authors declare no conflict of interest.
Acknowledgements

The authors thank Dr. D. Gary Gilliland (University of Pennsylvania, Philadelphia, USA) for kindly providing Flt-3ITD knock-in mice and Dr. David Bryder (Lund University, Lund, Sweden) for helpful discussions and advice on flow cytometry.

This work was supported by project grants from Barncancerfonden, Cancerfonden and SSF through the Hemato-Linné and StemTherapy consortium (Sweden) to J.C. and a post-doctoral grant from Barncancerfonden (Sweden) to T.V.-H.

Author’s contributions

T.V.-H. designed the research, performed experiments, analyzed data, created figures, and wrote the manuscript; D.T. performed experiments; J.C. conceived and supervised the project, designed the research, and wrote the manuscript. All authors read and approved the final manuscript.
References

22. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. *Nature reviews Cancer* 2008 Sep; 8(9): 705-713.

Figure legends

Figure 1. Loss of HIF-1α accelerates FLT-3ITD-induced MPN phenotype.

(a) Deletion of Hif-1α was checked by PCR amplification of DNA extracted from BM cells of the analyzed mice. Shown is a representative gel indicating deletion of Hif-1α in non-treated Hif-1α^{flox/flox} Mx1-Cre Flt-3^{ITD/+} mice. (b) Kaplan-Meier survival curve of FLT-3^{ITD} mice (Hif-1α^{Δ/Δ}, n= 10; Hif-1α^{+/+}, n= 14). Log-rank (Mantel-Cox) test was used to assess statistical significance. (c, d) Blood analysis of mice at different ages, showing increased WBC (c) and myeloid cells (Gr1⁺/Mac1⁺ cells) (d) in Hif-1α^{Δ/Δ} mice (Hif-1α^{+/+}, n=23; Hif-1α^{Δ/Δ}, n=18; wt, n=6). (e) Representative FACS plots of PB cells of 12-week-old mice, showing an increased myeloid population in PB of Hif-1α^{Δ/Δ} mice. Differentiated populations are stained with the following antibodies: CD3 for T cells (T), B220 for B cells (B) and Gr1/Mac1 for myeloid cells (M). (f) Representative blood smears of 12-week-old mice of both genotypes. Scale bar= 10μm.

Plots represent mean ± SEM. Unless otherwise stated, 2-tailed Student t test was used to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001. wt = wild type.

Figure 2. Accumulation of Hif-1α^{Δ/Δ}-mature myeloid cells in spleen is due to increased cycling and reduced cell death.

(a) Representative phenotype of bones and spleens from 20-week-old mice with the indicated genotypes. (b) Increment in spleen and liver weight in Hif-1α^{Δ/Δ} 20-week-old-mice as a consequence of accelerated MPN in these mice (n=12; wt, n=6). (c)
Percentage of mature myeloid cells (Gr1+/Mac1+) in BM and spleen of 20-week-old mice (n=12; wt, n=6). (d) Cytospins of BM cells with different genotypes showing the mature myeloid aspect of predominant cells in this compartment. Scale bar= 10μm. (e) Cell-cycle analysis of myeloid cells (Gr1+/Mac1+) from 3 independent experiments (16 to 20-week-old mice) (n= 12; wt, n=6). (f) Apoptosis analysis of myeloid cells (Gr1+/Mac1+) from 2 independent experiments (20-week-old mice) (wt, n=6; Hif-1α+/+, n=7; Hif-1αΔ/Δ, n=8). Plots represent mean ± SEM. Two-tailed Student t test was used to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001

Figure 3. LT-HSCs are highly reduced in BM and expanded in spleen of Hif-1αΔ/Δ mice with FLT-3ITD-induced MPN.

(a) Percentage of the indicated populations of undifferentiated cells from total BM or spleen cells (wt, n=5; Hif-1α+/+, n=12; Hif-1αΔ/Δ, n=13). (b) Absolute number of cells from the indicated population of undifferentiated cells in the BM (6 bones: 2 femurs, 2 tibiae and 2 hips) or spleen (wt, n=5; Hif-1α+/+, n=8; Hif-1αΔ/Δ, n=7). (c) Representative FACS plots of BM samples from both genotypes showing the gating strategy used for the analysis of LT-HSCs, MPPs, LSK and LK cells. First shown plots derived from a previous gating of singlets, alive, lineage negative cells. (d) Cell-cycle analysis of the indicated populations of undifferentiated cells from BM or spleen (20-week-old mice) (n= 3; wt, n=6). Plots represent mean ± SEM. Two-tailed Student t test was used to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001
Figure 4. *Hif-1α*-deleted-FLT-3^{ITD} MPN-initiating cells are able to engraft and recapitulate the disease in recipient mice.

(a) BM cells from a single donor were transplanted, without previous culturing in vitro, into 2-3 lethally irradiated wt mice. We show the phenotype of transplanted disease by several parameters: Kaplan-Meier survival curve, WBCs and myeloid (Gr1⁺/Mac1⁺) cells in PB at the indicated time points after transplantation (*Hif-1α^{+/+}, n=9; *Hif-1α^{Δ/Δ}, n=7). (b) BM cells from 3 different donors of each genotype were pooled together, kept in culture for 2 days and transplanted into 7 lethally irradiated wt mice. We show the phenotype of transplanted disease by several parameters: Kaplan-Meier survival curve, WBCs and myeloid (Gr1⁺/Mac1⁺) cells in PB at the indicated time points after transplantation (n=7). Log-rank (Mantel-Cox) test was used to assess statistical significance of the survival curve. Plots represent mean ± SEM. Unless otherwise stated, 2-tailed Student *t* test was used to assess statistical significance. *P*<0.05, **P*<0.01, ***P*<0.001

Figure 5. Malignant infiltrating cells in spleen present higher metabolic profile and oxidative stress.

We analyzed cellular levels of ROS (a), measured by CellROX Deep Red staining (n=16), and mitochondrial levels of ROS (b) measured by MitoSOX staining (*Hif-1α^{+/+}, n=7; *Hif-1α^{Δ/Δ}, n=8) in myeloid cells (Gr1⁺/Mac1⁺) of BM and spleen. Plots represent normalized MFI respect to controls (mean MFI set at 100%) of each experiment (2-4
independent experiments; 20-week-old mice). (c) Mitochondrial membrane function, measured by MitoTracker Deep Red staining \((\text{Hif-1}\alpha^{+/+}, n=8; \text{Hif-1}\alpha^{Δ/Δ}, n=9)\), in myeloid cells \((\text{Gr}1^{+/+}/\text{Mac}1^{+})\) of BM and spleen. We observed 3 different populations according to MitoTracker staining that we named M1, M2 and M3 from lower to higher intensity. We determined the percentage of myeloid cells in each of these populations (3 independent experiments; 20-week-old mice). (d) Summary of the metabolic profile of \(\text{Hif-1}\alpha^{Δ/Δ}\) and \(\text{Hif-1}\alpha^{+/+}\) myeloid cells in the BM and spleen. Dashed lines indicate statistically non significant data. Plots represent mean ± SEM. Two-tailed Student \(t\) test was used to assess statistical significance. \(^*P<0.05, \,**P<0.01, \,**!*P<0.001\)
Figure 1

Panel a: Gel electrophoresis showing the expression of Hif-1α in different groups.

Panel b: Survival curve showing the percentage of survival over time (weeks) for Hif-1αfl/fl and Hif-1αΔ/Δ mice. The survival rate for Hif-1αΔ/Δ mice is significantly lower than that for Hif-1αfl/fl mice (P=0.0149).

Panel c: Scatter plot showing the WBC counts (x10^9/L) over time (weeks) for different groups. There is a significant difference in WBC counts between the groups.

Panel d: Scatter plot showing the proportion of Gr1+Mac1+ cells (%). The proportion of these cells is significantly higher in Hif-1αΔ/Δ mice compared to Hif-1αfl/fl mice.

Panel e: Flow cytometry analysis showing the expression of B220, CD3, and Gr1 Mac1 in different groups. The expression levels are significantly different between the groups.

Panel f: Immunohistochemical staining showing the expression of Hif-1α in different groups.
Velasco-Hernandez et al. Figure 2

a

wt	Hif-1α^{+/−}	Hif-1α^{Δ/Δ}
Spleen

b

- **Spleen Weight** (% of body weight)
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}
- **Liver Weight** (% of body weight)
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}

c

- **Gr1⁺/Mac1⁺ cells in BM (%)**
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}
- **Gr1⁺/Mac1⁺ cells in spleen (%)**
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}

d

- **Hif-1α^{+/−}**
- **Hif-1α^{Δ/Δ}**

e

- **BM**
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}
 - **Gr1⁺/Mac1⁺ cells (%)**
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}

- **Spleen**
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}
 - **Gr1⁺/Mac1⁺ cells (%)**
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}

f

- **Annexin V+ cells (%)**
 - BM
 - Spleen
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}

- **Annexin V**
 - DAPI
 - wt
 - Hif-1α^{+/−}
 - Hif-1α^{Δ/Δ}
Cells on culture and pooled Transplant

1 donor

3 recipients

Survival (%)

Time (weeks)

0 10 20 30 40

0

20

40

60

80

100

Hif-1α

α+/+

Hif-1αΔ

/Δ

**

P=0.0046

WBC (x 10^9/L)

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Hif-1α

α+/+

Hif-1αΔ

/Δ

Time after transplantation

4 weeks 8 weeks 14 weeks 18 weeks

Gr1+/Mac1+ cells (%)

0

20

40

60

80

100

Hif-1α

α+/+

Hif-1αΔ

/Δ

3 weeks 8 weeks 14 weeks 18 weeks

WBC wo no engraft mice

0 20 40 60 80 100

0

20

40

60

80

100

150

200

250

300

4 weeks 8 weeks 16 weeks 20 weeks

Gr1+/Mac1+ cells in PB (%)

0

20

40

60

80

100

Hif-1α

α+/+

Hif-1αΔ

/Δ

4 weeks 8 weeks 16 weeks 20 weeks

0.0373

P=0.0373

Velasco-Hernandez et al. Figure 4
Table 1. Peripheral blood counts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>wt mice</th>
<th>Hif-1α⁺⁺ mice</th>
<th>Hif-1αΔΔ mice</th>
<th>P-value (+/Δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (x10¹²/L)</td>
<td>10.04 ± 0.11</td>
<td>9.275 ± 0.19</td>
<td>7.707 ± 0.39</td>
<td>0.0007 ***</td>
</tr>
<tr>
<td>HGB (g/L)</td>
<td>148.7 ± 1.59</td>
<td>142.8 ± 2.44</td>
<td>137.3 ± 3.68</td>
<td>0.2069</td>
</tr>
<tr>
<td>HCT</td>
<td>0.5158 ± 0.006</td>
<td>0.4795 ± 0.009</td>
<td>0.4507 ± 0.014</td>
<td>0.0835</td>
</tr>
<tr>
<td>Platelets (x10⁹/L)</td>
<td>1140 ± 61.11</td>
<td>1093 ± 93.76</td>
<td>880.0 ± 127.2</td>
<td>0.1829</td>
</tr>
</tbody>
</table>

RBC: red blood cells; HGB: hemoglobin; HCT: hematocrit. Wt: n=6, Hif-1α⁺⁺: n=13, Hif-1αΔΔ: n=9. Values represent mean ± SEM. P-values are calculated between Hif-1α⁺⁺ and Hif-1αΔΔ groups.
Loss of HIF-1α accelerates murine FLT-3ITD-induced myeloproliferative neoplasia

Talia Velasco-Hernandez¹, Daniel Tornero² and Jörg Cammenga¹, ³, ⁴, ⁵

¹Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden; ²Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Skanes University Hospital, Lund, Sweden; ³Department of Hematology, Skanes University Hospital, Lund, Sweden, ⁴Department of Hematology, Linköping University Hospital and ⁵Institution for Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.

Correspondence should be addressed to:

Jörg Cammenga

Department of Molecular Medicine and Gene Therapy
Lund Stem Cell Center BMC A12, Sölvegatan 17, 22184 Lund, Sweden

e-mail: jorg.cammenga@med.lu.se
Supplementary Figure S1. Spontaneous deletion of *Hif-1α*.

(a) Deletion of *Hif-1α* was checked by PCR amplification of the DNA extracted from BM cells of the mice used in this manuscript. All 14 additionally genotyped mice showed deletion of the HIF-1α gene, providing evidence that spontaneous recombination is a general phenomenon in these mice.
Supplementary Figure S2. Gating strategy used for the identification of the different cell lineages.

(a) For the identification of the specific lineage populations, we gated entire cells using FSC-A/SSC-A, singlets according to FSC-A/FSC-H, alive cells discarding the DAPI positive cells and finally a combination of Gr1-PE, Mac1-PE, B220-PE, B220-APC and CD3-APC. PE+ cells are myeloid cells (M) (Gr1+/Mac1+), PE+APC+ are B cells (B) (B220+) and APC+ are T cells (T) (CD3+).
Supplementary Figure S3. Cell-cycle analysis of myeloid cells.

(a) Representative plots of the cell-cycle analysis of myeloid cells (Gr1⁺/Mac1⁺) located in BM and spleen of HIF-1αΔ/Δ and HIF-1α⁺/⁺ mice.
Supplementary Figure S4. Percentages and total cell numbers of LSK CD48+ CD150- cells in FLT-3ITD mice.

(a) Percentage of LSK CD48+ CD150- cells of total BM or spleen cells (wt, n=5; HIF-1α+/+, n=12; HIF-1αΔ/Δ, n=13). (b) Absolute number of LSK CD48+ CD150- cells in BM (6 bones: 2 femurs, 2 tibiae and 2 hips) or spleen. Plots represent mean ± SEM. Two-tailed Student t test was used to assess statistical significance. **P<0.01.
Supplementary Figure S5. Cell-cycle analysis of primitive populations.

(a) Representative plots of the cell-cycle analysis of the indicated primitive populations located in BM and spleen of HIF-1αΔ/Δ and HIF-1α+/+ mice.
Supplementary Figure S6. Enhanced FLT-3ITD-induced MPN phenotype in mice transplanted with HIF-1αΔ/Δ BM cells.

(a) Donor reconstitution of transplanted mice 47 weeks after transplantation (end point) (n=5-8). (b) Blood analysis of mice at the end point, showing increased WBC (n=5-8). (c) Percentage of mature myeloid cells (Gr1+/Mac1+) in PB, BM and spleen at the end point (n=5-8). (d) Representative phenotype of bones and spleens at the end point from mice with the indicated genotypes. (e) Spleen and liver weights in relation to body weight for the different genotypes (n=5-8). (f) Percentage of the indicated populations of undifferentiated cells from total BM or spleen cells (n=5-8). Plots represent mean ± SEM. Two-tailed Student t test was used to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001
Supplementary Figure S7. Donor contribution of FLT-3ITD cells in secondary recipients.

(a) Experimental design of the secondary transplantation assay. Donor cells from one primary recipient were transplanted into 3 secondary recipients. Donor cells were harvested 47 weeks after transplantation (end point of the experiment). (b) Donor reconstitution of transplanted mice in PB at different time points after transplantation (n=10). (c) Donor contribution to the myeloid compartment in PB at different time points after transplantation (n=10). Plots represent mean ± SEM. Two-tailed Student t test was used to assess statistical significance. ***P<0.001.
Supplementary Figure S8. Donor contribution of transplanted FLT-3ITD cells.

(a) Donor contribution of mice transplanted with \textit{in vitro} cultured cells (see also Figure 4b) in PB at different time points after transplantation (n=7) and their donor reconstitution (b) in BM, PB and spleen at 62 weeks after transplantation (end point). Notice that at this time point, there is only one HIF-1αΔ/Δ survivor. (c) Donor contribution to the myeloid compartment in secondary recipients (see also Figure 4a) at different time points after transplantation cells and (d) donor contribution to the different lineages in total cell numbers from the same transplantation at 20 weeks after transplantation. Plots represent mean ± SEM. Two-tailed Student t test, and Mann-Whitney test for (d) due to the different variances, were used to assess statistical significance. *P<0.05, ***P<0.001.