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Introduction
Patients who qualify for intensive care are generally 
severely ill with failure of vital organs. � e major threat 
for comatose cardiac arrest patients with stabilized cardiac 
function is imminent brain injury, which accounts for 
approximately two thirds of the mortality [1,2].

�  e clinical picture of neurologic recovery has been 
altered in recent years because of more active care of 
cardiac arrest survivors, including the use of induced 
hypothermia [3,4]. Clinical signs of recovery or deteriora-
tion are now concealed by sedation, analgesia, and 
muscle paralysis. Clinically overt seizures as well as non-
convulsive electrographic seizures, including electro-
graphic status epilepticus (ESE), are common features 

after cardiac arrest [5-10] and may be provoked by re-
warming and weaning of sedative drugs. Continuous 
electroencephalography (cEEG) is a non-invasive tech-
nique that may be used to monitor the post-ischemic 
brain after cardiac arrest but is not yet common practice 
in most intensive care units (ICUs). In fact, few centers 
outside the major hospitals have the ability to perform 
high-quality EEG monitoring around the clock, probably 
because of its complexity and a lack of resources [11].

�  anks to recent technical advances, EEG monitoring 
has become more available, allowing large amounts of 
EEG data to be linked within a hospital or between 
neighboring hospitals for support and expert opinion. 
cEEG provides dynamic information and can be used to 
monitor the evolution of EEG patterns and to detect 
seizures, and this has prognostic impli cations. For cEEG 
to reach general use, it should be simple, cost-e� ective, 
and possible to apply bedside. A step in that direction is 
to reduce the number of electrodes and to add trend 
analysis to the original EEG curves [11]. In our version of 
simpli“ ed cEEG, we combine a reduced montage, 
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displaying two channels of the original EEG, with 
amplitude-integrated EEG (aEEG) trend curves [10,12,13]. 
�  is is a convenient method to monitor cerebral function 
in comatose patients after cardiac arrest but has yet to be 
validated against the gold standard, a multichannel cEEG 
[11]. In this topical review, we will discuss cEEG for 
monitoring of brain function after cardiac arrest in 
general and how a simpli “ ed cEEG, with a reduced 
number of electrodes and trend analysis, may facilitate 
and improve care in the ICU.

Evaluation of prognosis after cardiac arrest
�  e best indicator of a good recovery after cardiac arrest 
is for a patient to awaken and make intentional move-
ments spontaneously or as a response to painful stimu-
lation soon after rewarming, when sedation and analgesia 
have been turned o�  [14]. Some patients recover later, 
and this may be due to a residual e� ect of sedative drugs, 
a more pronounced ischemic insult, or a combination 
thereof. For those patients who remain in coma 4 to 
5� days after the arrest, the prognosis is generally poor, 
but a minority will still make a good recovery [15]. A 
signi“ cant number of patients develop electrographic 
epileptic activity with or without clinically overt seizures 
[7-9]. �  is may evolve into an ESE, which is a poor sign, 
although survivors with good neurologic outcome are 
increasingly reported [16-18].

As a consequence of modern post-cardiac arrest care 
and related di�  culties in assessing neurologic function, 
we need to improve and standardize our diagnostic and 
prognostic procedures. Early prognostication is impor-
tant in order to give appropriate information to relatives 
and as a foundation for decisions on emergency inter-
ventions. Reliable prognostication at a later stage (�4 to 
5�days) is of paramount importance for decisions on level 
of care, including withdrawal of life-sustaining therapy in 
patients with presumed poor outcome (vegetative state 
or death).

Several authors have stressed the importance of a 
multimodal strategy, implying that several methods 
should be used in parallel in order to strengthen the 
clinicians• capability to accurately predict a poor as well 
as a good outcome [19-21]. Recommended methods, 
other than a clinical neurologic examination, include 
EEG [10,22,23], somatosensory evoked potentials (SSEPs) 
[24,25], biochemical markers in peripheral blood [26], 
and brain imaging [27].

Electroencephalography
EEG has been used for many years to diagnose seizure 
activity in comatose patients after cardiac arrest and as 
an aid in evaluating prognosis. Since EEG patterns are 
depressed by sedatives, EEG may be used to monitor the 
depth of sedation as well as the e� ect of sedatives on 

electrographic epileptic activity. It may, however, be 
di�  cult to di� erentiate whether a speci“ c EEG pattern is 
the result of sedation or of an underlying pathologic 
condition. Temperature also a� ects the EEG but is of less 
importance in the range down to 33°C [28]. Other 
limitations of EEG include its relative complexity; a 
conventional EEG is usually recorded from 20� scalp 
electrodes or more and requires expertise for inter pre ta-
tion of data. Also, the limited time allowed for a conven-
tional EEG, usually 20 to 30� minutes, may not give the 
correct picture in a patient with intermittent seizure 
activity or varying levels of sedation.

Testing for EEG reactivity implies that the comatose 
patient is exposed to external stimuli (sound or pain) to 
assess whether the background EEG pattern reacts 
(amplitude or frequency content). Absence of EEG reac-
tivity to stimuli during hypothermia treatment after 
cardiac arrest is shown to be strongly [29] but not 
invariably [30] associated with poor outcome.

Continuous electroencephalography monitoring
cEEG can be used to monitor evolution of EEG patterns, 
follow trends, and detect seizures over time. Traditionally, 
a multichannel montage, similar to that used in routine 
EEGs, has been used. In the neonatal ICU, cEEG has 
been used to monitor maturity of the brain in pre-term 
deliveries and to assess brain injury in the newborn, 
especially after asphyxia [31,32]. cEEG has also been used 
to assess brain injury in pediatric cardiac arrest patients 
treated with hypothermia, in whom it was found to be 
safe and feasible [33]. In the adult neuro-ICU, cEEG is 
increasingly used to evaluate conditions such as ESE [34], 
neurotrauma [35], and subarachnoidal hemorrhage [36], 
but its use in adult patients after cardiac arrest is still 
limited. �  e present use, limitations, and future direc-
tions of cEEG monitoring in the ICU were recently 
reviewed [11].

Continuous electroencephalography with 
simpli�  ed montage
To ease the introduction of cEEG in the ICU, a simpli“ ed 
montage with a reduced number of channels can be 
applied, but the limitations with this technique should be 
recognized. Sensitivity and speci“ city to detect (for 
example, seizures) are not the same as with a full-lead 
EEG [11]. In encephalopathic neonates, systematic studies 
of seizures indicate that approximately 80% of all seizures 
recorded with a conventional multichannel technique 
appear in the reduced montage [37]. Whether this rather 
high sensitivity to detect seizures holds true for adult 
encephalopathic patients after cardiac arrest is not 
known and needs to be addressed in future trials. 
Another example of a simpli“ ed cEEG montage is the 
commer cially available four-channel subhairline montage, 
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which recently was validated against conventional cEEG 
in patients at high risk of seizures [38]. cEEG can also be 
made more simple and accessible to the clinician by 
introducing computer-assisted EEG monitoring [39,40], 
which is an area of active research [41].

Continuous electroencephalography with trend 
analysis
When monitoring is performed over several days, quanti-
tative EEG (qEEG) variables can be used to construct 
trend curves with compressed timescales [42]. � e trend 
curve facilitates interpretation and helps identify certain 
events (for instance, seizures or changes in background 
pattern). �  ere are many di� erent qEEG variables to 
choose from, depending on what pathologic events you 
want to detect. For instance, spectral array analyses can 
be used to detect seizures, asymmetry index to detect 
ischemia due to vasospasm, and suppression ratio to 
monitor depth of sedation [42]. qEEG software is incor-
porated in most modern digital EEG monitors. In the 
present review, we will focus on trend analyses with 
aEEG, displayed in combination with a reduced number 
of original EEG channels to monitor brain function after 
cardiac arrest (Figure� 1) [10,12]. Our experience is that 
cEEG with a simpli“ ed montage and aEEG trend analysis 
is well suited to follow transitions in background patterns 
and has acceptable sensitivity to detect clinically relevant 
electrographic seizures [10,13]. In a prospective study of 
95� consecutive patients [10], ESE was diagnosed in 
26� patients (27%), which is comparable to “ ndings in a 
retrospective study using conventional multichannel EEG 
recordings [9].

�  e relative simplicity of cEEG with a reduced 
montage and aEEG trend analysis makes it attractive 
and more accessible to generalists in the ICU. First, only 
two original EEG channels are displayed with standard 
“ lter settings (1 to 70�Hz). Second, the EEG signal that 
builds up the aEEG is modi“ ed and “ ltered; signals with 
frequencies of clinical interest (2 to 15�Hz) are ampli“ ed, 
and frequencies corresponding to artefacts, such as 
breathing (<2�Hz) or muscle activity (>20 to 25�Hz), are 
reduced. � ird, the amplitude scale is linear up to 10�µV 
and semi-logarithmic thereafter, thereby facilitating 
interpretation of the lower amplitudes, which has 
clinical relevance. Fourth, the aEEG timeline is 
compressed to 4 or sometimes 6� hours per screen as 
compared with 10� seconds per screen in the original 
EEG. � e upper edge of the aEEG, the aEEG maximum, 
correlates with periods of high amplitude in the EEG 
signal, whereas the lower border, the aEEG minimum, 
correlates with periods of low amplitude (Figure�1). In 
other words, the aEEG is an integrated and “ ltered 
signal of the maximum and minimum amplitudes of the 
original EEG.

We use subdermal needle electrodes according to the 
SI system in left frontal (F3), right frontal (F4), left 
parietal (P3), and right parietal (P4) positions with 
ground and reference electrodes in the midline (Figure�2). 
Impedance measurements are performed by the ICU 
nurse every 2 to 4�hours, and clinical events that are likely 
to produce artefacts are marked on the screen. Whenever 
in doubt about whether a change in the trend curve 
represents seizures or artefacts, the treating physician 
has immediate access to the corresponding original EEG 
in the lower panel by scrolling the bar to the speci“ c time 
of interest (Figure�1). Suspected seizures in the simpli“ ed 
montage will lead, in many cases, to a routine EEG with 
video-recording in our institution in order to con“ rm or 
dismiss ongoing electrographic seizures.

cEEG montage with reduced number of electrodes has 
several advantages over the multichannel cEEG, above all 
its relative simplicity. Moreover, no expertise is needed to 
initiate monitoring of the patient, and the procedure can 
easily be integrated in general ICU care [10,13]. � ere-
fore, we consider a simpli“ ed cEEG with aEEG trend 
analysis to be better adapted to a complex ICU environ-
ment than the more labor-intensive multichannel mon-
tage, which needs trained EEG technologists to start and 
maintain monitoring. As with conventional cEEG, 
patient data can easily be linked within a hospital or 
between hospitals in order for the attending physician to 
receive relevant support and help to interpret data from 
the neurophysiologists or neurologists. A close collabora-
tion between intensivists, neurophysiologists, and neuro-
logists is highly recommended and is probably a key to 
success. Also, all sta�  in the ICU should be o� ered basic 
education regarding potential sources of error and inter-
pretation of cEEG in order to maximize its bene“ ts 
[43,44].

Epileptic activity following cardiac arrest tends to be 
generalized, but whether focal seizures are missed with a 
simpli“ ed montage needs to be addressed in a clinical 
trial, comparing a simpli“ ed montage with a full EEG 
montage. As with all EEG techniques, the simpli“ ed 
montage is relatively sensitive to movement and muscle 
artefacts, but as the monitoring spans over many hours, 
sections free of artefacts are almost always present. � e 
prolonged monitoring may also facilitate interpretation 
of the EEG activity in relation to sedation. A disadvantage 
with a simpli“ ed montage is that it does not allow 
adequate evaluation of EEG reactivity to stimuli, which 
requires a multichannel conventional EEG. In our insti tu-
tion, we test for reactivity in a conventional EEG in all 
patients who remain in coma after recovery of normo-
thermia and weaning of sedation.

Experience from simpli“ ed cEEG with aEEG trend 
monitoring originates above all from the neonatal 
environ ment, where the technique has become standard 
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monitoring procedure for assessment of brain maturity 
and asphyxia in newborns. aEEG recordings within 

6�hours after birth have been shown to correctly predict 
outcome after perinatal asphyxia in term infants [31]. 
Early normalization of aEEG and early onset of sleep-
wake cycling predict a good outcome [45]. Interestingly, 
hypothermia treatment changes the predic tive value of 
early aEEG since normalization of an infant•s aEEG 
pattern is delayed by hypothermia. Moreover, time to 
recover a normal aEEG is a better predictor than time to 
recover a sleep-wake cycling pattern in hypothermia-
treated infants [46].

Seizures, myoclonus, and electrographic status 
epilepticus after cardiac arrest
An epileptic seizure is the manifestation of an abnormal 
and excessive synchronized discharge of cerebral neurons. 
Each seizure can be classi“ ed as a clinical seizure, which 
is what is observed, or an electrographic seizure, which is 
what is monitored with an EEG device.  Clinical seizures 
are reported in approximately one fourth of all patients 
after cardiac arrest [7], but seizure mimics are common 
in the intensive care setting and may be di�  cult to 
di� erentiate from true epileptic seizures without the aid 
of EEG [47]. Correspondingly, electro graphic seizures 
may or may not have clinical correlates [48].

Figure 1. Trend monitor displays original electroencephalography (EEG) and amplitude-integrated EEG (aEEG) from two channels. The 
channels correspond to the left and right sides of the scalp. The aEEG timescale is compressed, showing 4 to 6�hours per screen. The aEEG trend 
is scanned by the interpreter for changes in background pattern or seizures, and details are explored in the corresponding original EEG. Clinical 
notes can be used to mark clinical events (for example, convulsions) to facilitate interpretation. In this display, a burst suppression pattern is shown. 
Suppression periods with low amplitudes in the original EEG correspond to the lower border of the aEEG trends (aEEG minimum level), and the 
burst periods correspond to the upper border (aEEG maximum level).

Figure 2. Example of a simpli� ed electroencephalography 
montage. Four recording electrodes in left frontal (F3), right frontal 
(F4), left parietal (P3), and right parietal (P4) positions are shown with 
ground (GND) and reference (REF) electrodes in the midline. The 
original electroencephalography is displayed as two bipolar channels 
(F3-P3, F4-P4), one on each side (red�= left, blue�= right).

Friberg et al. Critical Care 2013, 17:233 
http://ccforum.com/content/17/4/233

Page 4 of 9



Myoclonus is a common form of motor manifestation 
in the comatose survivor of cardiac arrest and consists of 
brief repetitive jerks, which may be irregular or rhythmic 
and spontaneous or stimulus-induced. It may occur in 
isolated muscles (focal) or be generalized in face, limbs, 
and axial musculature. Myoclonus may be of cortical or 
subcortical origin and occurs in approximately 20% of 
patients after cardiac arrest; myoclonus of cortical origin 
is the more common [30]. Prognosis is generally poor, 
especially when myoclonus occurs early after arrest of 
cardiac origin (<24�hours) and when it is generalized and 
persis tent [49,50]. However, several case reports show 
that even an early and generalized myoclonus may be 
com patible with good neurologic recovery [51,52]. In a 
recent retrospective report from � e Netherlands, 12% of 
all patients who had some kind of myoclonus eventually 
had a good outcome [30], but whether hypothermia 
treat ment a� ects the incidence and prognosis of myo-
clonus is not clear. Lance-Adams syndrome denotes a 
chronic form of action-induced post-hypoxic myoclonus, 
which is more common after cardiac arrest of a primary 
hypoxic cause and compatible with a good outcome [53].

ESE occurs in a signi“ cant fraction of hypothermia-
treated patients who remain unresponsive after rewarm-
ing [15] and is a predictor of a poor neurologic prognosis 
after cardiac arrest [9], although some patients may re-
cover [16,18]. In a recent report, a subgroup of hypo-
thermia-treated cardiac arrest patients with post-anoxic 

ESE and a good outcome was described, and all had 
preserved brain stem re” exes and a reactive EEG [29]. 
�  is group of patients may be similar or identical to those 
who develop a late ESE from a cEEG pattern [10] and 
with a potentially good outcome.

A major question, yet to be answered, is whether post-
anoxic ESE is a condition that causes further brain injury, 
as indicated by a recent study [54], or is simply a sign of 
the hypoxic-ischemic encephalopathy. No systematic 
trials regarding treatment of post-anoxic ESE have been 
performed, and the available observational data do not 
allow conclusions about whether survival of patients is 
due to aggressive anti-epileptic treatment or merely to 
prolonged intensive care [55]. Nevertheless, most 
clinicians agree that visible seizures should be treated 
with anti-convulsive drugs, but there is no consensus on 
treatment strategy or duration.

Evolution of electroencephalography patterns 
after cardiac arrest
Our group recently proposed a simpli“ ed system for 
interpreting EEG rhythms in the post-ischemic brain 
after cardiac arrest in order to make EEG more 
comprehensible and more accessible at the bedside [10]. 
We de“ ned four common EEG patterns after cardiac 
arrest, which are presented in Figure 3. Using these four 
patterns to classify the EEG generated valuable prog-
nostic information, positive as well as negative [10]. In a 

Figure 3. Four typical electroencephalography (EEG) patterns after cardiac arrest. (a)�Flat. (b)�Continuous background. (c)�Burst suppression 
(BS). (d)�Electrographic status epilepticus (ESE). The arrows in the amplitude-integrated EEG timescales represent the corresponding original EEG 
below.
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meticulous study using intermittent EEG, Jørgensen and 
Holm [56] reported that cortical inactivity and a ” at EEG 
curve are common immediately after cardiac arrest and 
that cortical activity eventually returns in most patients. 
Studies using a simpli“ ed cEEG montage have shown 
that initial cortical inactivity or a ” at pattern (<10�µV) is 
common during the early phase of hypothermia treat-
ment after cardiac arrest but that it has no prognostic 
signi“ cance [10,13]. On the other hand, persistence of 
low-voltage or isoelectric patterns at 24�hours after the 
arrest was found to be a strong indicator of poor prog-
nosis [5]. Evolution from a non-continuous to a continu-
ous background pattern during hypothermia or at the 
time of normothermia is strongly associated with 

awaken ing and a good outcome [5,10]. A spontaneous 
and maintained burst suppression (BS) pattern after 
cardiac arrest indicates that the prognosis is poor in most 
[10], but not in all [5,23,51], cases. � is discrepancy 
between studies might be related to di� erent de“ nitions 
of BS since the development of a continuous background 
activity usually proceeds through a phase of intermittent 
cortical activity [57]. Our group has identi“ ed patients 
with two types of post-anoxic ESE, evolving from 
di� erent background patterns; one develops early (typi-
cally during hypother mia) and from a BS back ground 
pattern (Figure�4). � ese patients had a uniformly poor 
outcome. � e other type of ESE develops late (typically 
during or after rewarming) and from a continuous 

Figure 4. Electrographic status epilepticus (ESE) evolving from a burst suppression (BS) pattern. (a)�BS pattern (12�hours after cardiac arrest). 
(b)�BS pattern with short periods of repetitive epileptiform discharges (14�hours after cardiac arrest). (c)�ESE with repeated electrographic seizures 
(>1�Hz) for more than 30�minutes (16�hours after cardiac arrest).
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background pattern (Figure� 5), and in this group 
survivors were reported [10,15].

Patient categorization based on evolution of the 
electroencephalography
Our experience in the ICU is that comatose patients after 
cardiac arrest can be categorized into one of three main 
groups. � e three groups have di� erent prognoses, and 
the use of cEEG is helpful in di� erentiating between 
them. In addition to using the simpli“ ed cEEG with a 
trend monitor, we use serial neurologic investigations 
and biomarker measurements and tailor the use of 
additional prognostic methods such as SSEP, routine 
EEG, and magnetic resonance imaging (MRI) on an 
individual basis.

�  e “ rst group consists of comatose patients with a 
mild or limited brain injury characterized by return of a 
continuous and reactive EEG pattern during hypother-
mia. In this group, brain stem functions such as pupillary 
and corneal re” exes usually return early, and patients 
recover motor response to pain as sedation wears o� . 
Levels of the brain damage biomarker neuron-speci“ c 
enolase (NSE) are not elevated [15]. � ese patients are 
relatively easy to identify, and information to relatives 
should be cautiously positive.

�  e second group consists of patients with severe brain 
injury characterized by a ” at or long-lasting BS EEG 
pattern, which often evolves into an ESE pattern during 
hypothermia (Figure�4), and still shows a malevolent and 
unreactive EEG pattern when sedation is stopped at 

Figure 5. Electrographic status epilepticus (ESE) evolving from a continuous background pattern. (a)�Continuous background (45�hours 
after cardiac arrest). (b)�Onset (arrow) of repetitive epileptiform discharges (>1�Hz, >30�minutes), consistent with ESE (46�hours after cardiac arrest). 
(c)�Ongoing ESE (47�hours after cardiac arrest).
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normothermia. �  ese patients often present with early 
myoclonus, and NSE levels are high. Corneal and 
pupillary re” exes may return, but the patients remain 
deeply comatose with an extensor or no response to pain. 
SSEP may be used to con“ rm the poor prognosis in most 
cases (no cortical responses) [15]. � is group is also 
relatively easy to identify, and information to relatives 
should be pessimistic.

�  ird, there is a group with intermediate brain injury, 
which is the most di�  cult group to assess. � ese patients 
typically recover a cEEG pattern during hypothermia but 
with some epileptic activity that increases during re-
warming and weaning from sedation, eventually evolving 
into ESE (Figure� 5). � e background EEG activity is 
usually reactive, SSEP responses are preserved, and NSE 
levels may be low or moderately increased. MRI typically 
does not show widespread ischemic damage [15]. 
Patients may develop myoclonus and even generalized 
tonic-clonic seizures but rarely during the “ rst 24�hours. 
In this group of patients, we have experienced several 
survivors, and we would like to stress that observation 
time and active ICU care should be prolonged, possibly 
for 1 to 2�weeks or longer. Active treatment of ESE with 
sedatives and anti-epileptics mandates repeated routine 
EEGs or preferably cEEG guiding.

Conclusions
Simpli“ ed cEEG monitoring with a reduced montage and 
trend analysis is a convenient and promising method to 
monitor the evolution of EEG patterns and to detect and 
assess seizures in comatose patients after cardiac arrest. 
It provides dynamic information and is well suited to the 
ICU environment. Before simpli“ ed cEEG with trend 
analysis can reach general use, it should be validated 
against multichannel EEG recordings. We propose that 
not only a simpli“ ed cEEG montage with trend analysis 
but also a simpli“ ed system for interpretation of EEG 
rhythms with four de“ ned major patterns be used. We 
hope that these actions will help disseminate the use of 
cEEG in ICUs in years to come.
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