Dynamic parameter estimation of atomic layer deposition kinetics applied to in situ quartz crystal microbalance diagnostics

Holmqvist, Anders; Törndahl, Tobias; Magnusson, Fredrik; Zimmermann, Uwe; Stenström, Stig

Published in:
Chemical Engineering Science

DOI:
10.1016/j.ces.2014.02.005

2014

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Creative Commons License:
Unspecified
Dynamic Parameter Estimation of Atomic Layer Deposition Kinetics Applied to in situ Quartz Crystal Microbalance Diagnostics

A. Holmqvista,*, T. Törndahlb, F. Magnussonc, U. Zimmermannb, S. Stenströma

aDepartment of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
bÅngström Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden
cDepartment of Automatic Control, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

Abstract

This paper presents the elaboration of an experimentally validated model of a continuous cross-flow atomic layer deposition (ALD) reactor with temporally separated precursor pulsing encoded in the Modelica language. For the experimental validation of the model, in situ quartz crystal microbalance (QCM) diagnostics was used to yield submonolayer resolution of mass deposition resulting from thin film growth of ZnO from Zn(C\textsubscript{2}H\textsubscript{5})\textsubscript{2} and H\textsubscript{2}O precursors. The ZnO ALD reaction intrinsic kinetic mechanism that was developed accounted for the temporal evolution of the equilibrium fractional surface concentrations of precursor adducts and their transition states for each half-reaction. This mechanism was incorporated into a rigorous model of reactor transport, which comprises isothermal compressible equations for the conservation of mass, momentum and gas-phase species. The physically based model in this way relates the local partial pressures of precursors to the dynamic composition of the growth surface, and ultimately governs the accumulated mass trajectory.

*Corresponding author. Tel.: +46 46 222 8301; fax: +46 46 222 4526

Email addresses: anders.holmqvist@chemeng.lth.se (A. Holmqvist), tobias.torndahl@angstrom.uu.se (T. Törndahl), fredrik.magnusson@control.lth.se (F. Magnusson), uwe.zimmermann@angstrom.uu.se (U. Zimmermann), stig.stenstrom@chemeng.lth.se (S. Stenström)
at the QCM sensor. Quantitative rate information can then be extracted by means of dynamic parameter estimation. The continuous operation of the reactor is described by limit-cycle dynamic solutions and numerically computed using Radau collocation schemes and solved using CasADi’s interface to IPOPT. Model predictions of the transient mass gain per unit area of exposed surface QCM sensor, resolved at a single pulse sequence, were in good agreement with experimental data under a wide range of operating conditions. An important property of the limit-cycle solution procedure is that it enables the systematic approach to analyze the dynamic nature of the growth surface composition as a function of process operating parameters. Especially, the dependency of the film growth rate per limit-cycle on the half-cycle precursor exposure dose and the process temperature was thoroughly assessed and the difference between ALD in saturating and in non-saturating film growth conditions distinguished.

Keywords: Atomic layer deposition, Mathematical modeling, *in situ* film characterization, Experimental model validation, Parameter identification, Optimization

1. Introduction

Atomic layer deposition (ALD) is a gas-phase deposition process capable of producing conformal thin films with controlled uniform thickness in the nanometer range (George, 2010). Conventional thermal ALD is a special modification of the chemical vapor deposition (CVD) technique and relies on decoupling self-terminating (Puurunen, 2005b) gas–surface reactions (Masel, 1996). Precursors are injected in a non-overlapping alternate manner, separated by intermediate purge steps, and this prevents reaction in the gas-phase (Miikkulainen et al., 2013).

Industrial semiconductor processing has been a major stimulant for the development of the ALD process (Ritala and Niinisto, 2009; Sneh et al., 2002). Novel applications of ALD are expanding beyond semiconductor processing in several emerging areas, such as surface passivation layers in c-Si solar cells, buffer
layers in CuIn$_{1-x}$Ga$_x$Se$_2$ (CIGS) solar cells (Bakke et al., 2011), and diffusion
barrier layers in OLEDs and thin-film photovoltaics (Carcia et al., 2009). High-
throughput and low cost ALD production techniques are consequently becoming
ever-more necessary (Poodt et al., 2012). In this context, Wolden et al. (2011)
have pointed out that the development of comparative manufacturing techniques
requires sophisticated modeling to understand how to maintain cross-substrate
film thickness uniformity (Cleveland et al., 2012; Henn-Lecordier et al., 2011).

The development of validated, predictive physical ALD process models is
limited by a lack of reliable values for the parameters of the physicochemical
phenomena that govern the ALD film growth. Thus, the calibration and exper-
imental validation of models have been identified as an essential step in the field
(Semiconductor Industry Association, 2011). There are two generic method-
ologies for development of ALD reaction intrinsic kinetic mechanisms in the
literature:

i) Methods based on *ab initio* quantum chemistry, in which the energy pa-
rameters of the relevant gas–surface reactions are estimated using calcula-
tions based on density functions, and the associated rate parameters, us-
ing Rice–Ramsperger–Kassel–Marcus theory (Deminsky et al., 2004; Travis
and Adomaitis, 2013a,b). Elliott (2012) gives an overview of primary stud-
ies of ALD via atomic-scale simulation.

ii) Methods based on statistical model calibration and experimental valida-
tion, in which the kinetic parameters are obtained from *ex situ* experimen-
tal film characterization that elucidates ALD chemistry (Holmqvist et al.,
2013a; Lim et al., 2000; Park et al., 2000).

The ITRS, however, has suggested that *in situ* monitoring technologies, includ-
ing transmission Fourier transform infrared spectroscopy (Dillon et al., 1995;
Ferguson et al., 2000), quartz crystal microbalance (QCM) (Aarik et al., 1994a,b,
2001; Fan and Toyoda, 1992) and quadrupole mass spectroscopy (Juppo et al.,
2000; Lei et al., 2006; Rahtu and Ritala, 2002b), should be used to analyze
highly non-equilibrium ALD processes, in order to increase the accuracy of
the model calibration (Semiconductor Industry Association, 2011). These techniques provide extensive real-time information of the process chemistry and reactor conditions.

The overall objective of this study was to develop a general method to calibrate the parameters of reduced ALD reaction intrinsic kinetic mechanisms, including only the principal sequential and parallel elementary surface reactions, using *in situ* QCM diagnostics. This methodology developed was subsequently applied to a case study in which thin ZnO films were deposited from Zn(C$_2$H$_5$)$_2$ and H$_2$O precursors. This paper focuses around three main points:

i) To investigate experimentally transient film growth in the continuous cross-flow ALD reactor system F-120 manufactured by ASM Microchemistry Ltd. (Suntola, 1992) with *in situ* QCM diagnostics.

ii) To develop a physically based model of continuous cross-flow, low-volume ALD reactors with temporal precursor pulsing, and to incorporate ALD surface reaction intrinsic kinetics.

iii) To formulate and solve a dynamic non-convex parameter estimation problem using measurements from the *in situ* QCM, and to assess the reliabilities of the parameter estimates and the predicted model responses.

This paper is organized as follows. Section 2 presents the continuous cross-flow ALD reactor system and the experimental investigation. Section 3 outlines the ALD reaction intrinsic kinetic mechanism. Section 4 is dedicated to the development of the ALD reactor model. Section 5 describes the formulation of the dynamic non-convex parameter estimation problem, while Section 6 outlines the modeling and optimization environment. Section 7 presents the primary results from the statistical model calibration and experimental validation, and Section 8 contains concluding remarks.
2. Reactor System Setup and Experimental Investigation

2.1. Process Description

The continuous cross-flow ALD reactor system F-120 (Fig. 1a) manufactured by ASM Microchemistry Ltd. (Suntola, 1992) was used for the controlled deposition of thin ZnO films from Zn(C$_2$H$_5$)$_2$ and H$_2$O precursors. Briefly, the reactor setup incorporates actuator subsystems that provide flow control (FC) of the carrier gas and each precursor inflow, \dot{Q}_α and $\alpha \in \{N_2, Zn(C_2H_5)_2, H_2O\}$, and that enable alternate injections with variable dose times, Δt_α, of the αth precursor. The normalized boxcar function, $\Pi_\alpha(t, \Delta t_\alpha) \in [0,1]$, was used to model non-overlapping precursor injections in a cyclic time sequence, where this function is:

$$\Pi_\alpha(t, \Delta t_\alpha) = \begin{cases} 1 & \gamma_\alpha \sum_{\beta \neq \alpha} \Delta t_\beta \leq \bar{t} \leq \gamma_\alpha \sum_{\beta \neq \alpha} \Delta t_\beta + \Delta t_\alpha \\ 0 & \text{otherwise} \end{cases}$$

in which $\bar{t} = (N_{\Delta t} - [N_{\Delta t}])\Delta t$ is the normalized cycle time, $N_{\Delta t} = t(\Delta t)^{-1}$ is the cycle number, $\Delta t = \Delta t_{Zn(C_2H_5)_2} + \Delta t_{N_2} + \Delta t_{H_2O} + \Delta t_{N_2}$ denotes one complete ALD cycle, and $[\gamma_{Zn(C_2H_5)_2}, \gamma_{H_2O}] = [0,1]$.

The continuous inert gas flow, \dot{Q}_{N_2}, transports traveling waves of adsorptive precursors laterally across the substrate holders, which are mounted on opposite sides of the reaction chamber (RC), see Fig. 1b. The equipment has been redesigned such that a wall-mounted quartz crystal resonator can be mounted horizontally inside the chamber at the level of the surface of the custom-built substrate holder, thereby avoiding any perturbation of the hydrodynamic flow field (Riha et al., 2012; Yousfi et al., 2000). The rear of the crystal is exposed to a higher partial pressure of N$_2$ to prevent back-side deposition (Elam et al., 2002).

The reaction chamber and the precursor forelines are placed into a quartz glass tube of length 1.20 (m), divided into five independently heated zones. The temperature, T, is controlled by external induction heating that provides the desired temperature profile. The temperature control (TC) equipment comprises
Figure 1: a) Simplified P&ID of the continuous cross-flow ALD reactor system F120 by ASM Microchemistry Ltd. (Suntola, 1992). It is noteworthy that the three-way gas switching mechanism (GSM) is an inherent physical structure of the RC inlet (see, e.g. Baunemann (2006)). b) Representation of the reaction chamber showing the wall-mounted quartz crystal resonator. The soda lime glass (SLG) substrate dimension is \(z_{\text{end}} - z_0 = 5.0 \) (cm) and the exposed quartz crystal dimension is \(\zeta_{\text{end}} - \zeta_0 = 0.9 \) (cm).

The chromel-alumel thermocouples attached to the outside of the flow tube under the heaters, maintained by PID controllers. Finally, the pressure, \(p \), at the reaction chamber outlet (subject to the total \(N_2 \) mass flow and temperature) is maintained by pressure control (PC) equipment that comprises a rotary vane vacuum pump (VP) operating at constant flow, \(\dot{V}_{\text{VP}} \). The vector of manipulated variables is thus \(\mathbf{u} = [T, \dot{V}_{\text{VP}}, \dot{Q}_{N_2}, \Delta t_{N_2}, \dot{Q}_{\text{Zn(C}_2\text{H}_5)_2}, \Delta t_{\text{Zn(C}_2\text{H}_5)_2}, \dot{Q}_{\text{H}_2\text{O}}, \Delta t_{\text{H}_2\text{O}}]^T \).
QCM measurements were obtained using a commercial Inficon SQM-160 thin film deposition monitor, from which the period of the QCM crystal was recorded by a personal computer at 10.0 Hz. The quartz crystals were AT-cut, had a diameter of 1.9 cm, and operated at a nominal frequency of 6.0 MHz in the fundamental mode. A detailed description of the QCM used to monitor ALD in viscous flow reactor designs has been previously presented: see, e.g., Elam et al. (2002). Assuming that the acoustic impedance of the deposited film is equal to the acoustic impedance of an AT-cut crystal (Dunham et al., 1995), the relationship between the change of resonant frequency, $\Delta \hat{f}_q$, and the incremental change in mass, $\Delta \hat{m}_q$, can be obtained from the Sauerbrey equation (Sauerbrey, 1959):

$$\Delta \hat{f}_q = -\frac{2f_0^2}{A_q(\mu_q\rho_q)^{\frac{1}{2}}} \Delta \hat{m}_q$$ \hspace{1cm} (2)

in which f_0,q is the fundamental resonant frequency, A_q the exposed surface area, ρ_q the density of the quartz crystal, and μ_q its shear modulus. However, Eq. (2) must be extended for heavily loaded crystals to incorporate the acousto-elastic properties of the deposit (Lu and Lewis, 1972; Wajid, 1991).

In addition, reference values of the total mass gain per cycle (MGPC) (Wind and George, 2010) were obtained from ex situ measurements conducted using X-ray reflectivity (XRR) with a Philips X’pert MRD powder diffractometer equipped with a slit system, see e.g. Holmqvist et al. (2012); Törndahl et al. (2007) for detailed descriptions. These measurements were taken at the central sampling position on the SLG substrate (see Fig. 1b) after $N_{\Delta t} = 2.5 \times 10^2$ (cycles), and were used to calibrate the MGPC, $d\Delta \hat{m}_q|_{\Delta t}(dN_{\Delta t})^{-1}$, extracted from the film mass increment trajectories, $\Delta \hat{m}_q$. Table 1 lists MGPC values obtained from experimental QCM and XRR measurements.

2.3. Minimization of Temperature-induced Apparent QCM Mass Transients

The QCM is extremely useful for probing the ALD surface reactions because of its submonolayer resolution and rapid time response. However, the
Table 1: Outline of the experimental design. The determined mass gain per cycle, \(d\Delta m_i|_{\Delta t}(dN_{\Delta t})^{-1} \), and the average number of hydroxyl groups that reacted with each Zn(C₂H₅)₂ molecule, \(\hat{\nu} \), are listed for each experimental index, \(j \). All experiments were performed with the following process operating parameters: \([Q_{Zn(C₂H₅)₂}, Q_{H₂O}, Q_{N₂}] = [8.9, 3.7, 500.0] \) (sccm) [standard cubic centimeters per minute at STP]. It is noteworthy that the real pulse duration, \(\Delta t_{\alpha} \), is approximately equal to \(1.12 \cdot \hat{\Delta t} \) and that \(\forall \alpha \in \{N₂, Zn(C₂H₅)₂, H₂O\} \). The density, \(\rho_{\alpha} \), of the ZnO film deposited at \(T = 150 \) (°C) was 5.4 (g cm⁻³) when analyzed with XRR (Törndahl et al., 2007).

| \(j \) | \(\Delta t_{Zn(C₂H₅)₂} \) (s) | \(\Delta t_{H₂O} \) (s) | \(\Delta t_{N₂} \) (s) | \(T \) (°C) | \(\frac{d\Delta m_i|_{\Delta t}}{dN_{\Delta t}} \) (Å cycle⁻¹) | \(\hat{\nu} \) (a.u.) |
|---|---|---|---|---|---|---|
| 1 | 0.4 | 0.4 | 0.8 | 100 | 0.55 ± 0.031 | 1.25 ± 0.172 |
| 2 | 0.4 | 0.4 | 2.0 | 100 | 0.56 ± 0.034 | 1.33 ± 0.210 |
| 3 | 1.0 | 1.0 | 2.0 | 100 | 1.12 ± 0.037 | 1.30 ± 0.118 |
| 4\(^a \) | 2.0 | 2.0 | 2.0 | 100 | 1.62 ± 0.056 | 1.28 ± 0.084 |
| 5 | 0.4 | 0.4 | 0.8 | 125 | 1.32 ± 0.041 | 1.38 ± 0.079 |
| 6 | 0.4 | 0.4 | 2.0 | 125 | 1.30 ± 0.023 | 1.39 ± 0.059 |
| 7\(^a \) | 1.0 | 1.0 | 2.0 | 125 | 1.77 ± 0.060 | 1.44 ± 0.066 |
| 8 | 2.0 | 2.0 | 2.0 | 125 | 1.97 ± 0.069 | 1.39 ± 0.076 |
| 9 | 0.4 | 0.4 | 0.8 | 150 | 1.66 ± 0.081 | 1.34 ± 0.082 |
| 10 | 0.4 | 0.4 | 2.0 | 150 | 1.63 ± 0.048 | 1.41 ± 0.067 |
| 11 | 1.0 | 1.0 | 2.0 | 150 | 1.94 ± 0.082 | 1.30 ± 0.102 |
| 12 | 2.0 | 2.0 | 2.0 | 150 | 2.05 ± 0.070 | 1.33 ± 0.084 |
| 13\(^a \) | 0.4 | 0.4 | 0.8 | 175 | 1.80 ± 0.061 | 1.34 ± 0.101 |
| 14 | 0.4 | 0.4 | 2.0 | 175 | 1.78 ± 0.036 | 1.44 ± 0.064 |
| 15 | 1.0 | 1.0 | 2.0 | 175 | 2.00 ± 0.058 | 1.31 ± 0.106 |
| 16 | 2.0 | 2.0 | 2.0 | 175 | 2.06 ± 0.057 | 1.35 ± 0.150 |
| 17 | 0.4 | 0.4 | 0.8 | 200 | 1.80 ± 0.050 | 1.40 ± 0.129 |
| 18 | 0.4 | 0.4 | 2.0 | 200 | 1.76 ± 0.038 | 1.38 ± 0.053 |
| 19 | 1.0 | 1.0 | 2.0 | 200 | 1.98 ± 0.054 | 1.33 ± 0.109 |
| 20 | 2.0 | 2.0 | 2.0 | 200 | 2.04 ± 0.066 | 1.35 ± 0.070 |

\(^a \)Experimental validation set.

\(^b \) Ex situ XRR references set with \(N_{\Delta t} = 2.5 \cdot 10^3 \) (cycles).
most serious limitation to the QCM technique is that the resonant frequency of the AT-cut quartz crystal is dependent on temperature (Elam et al., 2002; Elam and Pellin, 2005). Consequently, fluctuations in temperature lead to large fluctuations in apparent mass. Rocklein and George (2003) demonstrated that temperature transients caused by gas pulsing can be minimized by tuning the temperature profile along the zones that lie upstream of the reaction chamber. Many studies have subsequently shown that nearly ideal ALD growth that behaves according to the expectations from the ALD surface chemistry can be successfully monitored once the temperature profile has been optimized to minimize the temperature-induced apparent mass changes (see, e.g. Larrabee et al. (2013); Riha et al. (2012) and the reference cited therein).

In this study, the temperature profile prescribed by the four individually heated zones upstream of the RC (see Fig. 1) was tuned for each deposition temperature studied (see Table 1) in order to minimize the temperature-induced mass changes when a fully hydroxylated QCM sensor was exclusively exposed to the H₂O precursor. Hence, no ALD growth is expected to occur in these conditions and the apparent mass change was a result of temperature fluctuations. Furthermore, baseline subtraction of the temperature-induced drift (Rahtu and Ritala, 2002a) was not considered necessary.

2.4. Experimental Investigation

The experimental design was intended to assess the impact of Δt_{α}, $\alpha \in \{N_2, Zn(C_2H_5)_2, H_2O\}$, and the RC temperature, T, on the rate at which the film was deposited. Furthermore, the design ensured that the experiments gave the maximum possible information, in a statistical sense, which maximized the capacity to discriminate between calibration parameters (Franceschini and Macchietto, 2008). The ALD reactor was operated in a wide range of process conditions in order to understand the complex interdependence between the sequential and parallel elementary surface reactions. This complexity arises in that the reactivity in one half-cycle is influenced by that in the half-cycle that precedes it (Kuse et al., 2003; Ritala and Leskelä, 2002). The examined range of process
conditions defines the region of validity of the model and includes the bounds of the ALD window (Yousfi et al., 2000) for both saturated and non-saturated (Park et al., 2000) deposition. The dose times for Zn(C$_2$H$_5$)$_2$ and H$_2$O were varied between $\Delta t_{\alpha} \in [0.4, 2.0]$ (s), with purge times in the range $\Delta t_{\beta} \in [0.8, 2.0]$ (s) between precursor pulses (see Table 1). The N$_2$ purge times were intentionally longer than necessary to separate the QCM signals that resulted from the individual precursor exposures (Jur and Parsons, 2011). Rocklein and George (2003) have shown also that long purge times decrease the QCM error.

In this study, datasets of $N_{\Delta t} \geq 50$ (cycles) were collected for each experimental case, j, and the average mass increment trajectory, $\langle \Delta \hat{m}_q \rangle$, was used for experimental validation, see Fig. 2. The rate of deposition deviated from constant MGPC, $d^2 \Delta \hat{m}_q |_{\Delta t} (dN_{\Delta t}^2)^{-1} \neq 0$, during the first $N_{\Delta t} \leq 25$ (cycles) for every combination $j \in \{1, 2, \ldots, N_j\}$ of dose times. These changes have been attributed to the terminal coverage of active surface sites (Holmqvist et al., 2012) from the previous experimental case, j, and their extent is ultimately determined by the precursor dose times. Thus, we considered that the data collected from the $N_{\Delta t} > 25$ (cycles) of growth did not suffer from this complication, and used this data to determine $\langle \Delta \hat{m}_q \rangle$ and the associated deviation, $\hat{\sigma} (\langle \Delta \hat{m}_q \rangle)$. Furthermore, the average number of hydroxyl groups that reacted with each Zn(C$_2$H$_5$)$_2$ molecule, ν, was determined from the ratio of mass change that occurred during the half-reactions (Elam and George, 2003) (see Table 1). The QCM mass ratio for ZnO ALD is given by:

$$\frac{\Delta \hat{M}_B}{\Delta \hat{M}_A} = \frac{M_{H_2O} - (2 - \hat{v})M_{C_2H_6}}{M_{Zn(C_2H_5)_2} - \hat{v}M_{C_2H_6}}$$

in which the quotients of the differences in molecular masses of the outermost surface species, i.e. $\Delta \hat{M}_B (\Delta \hat{M}_A)^{-1}$, were extracted from the QCM trajectories (see Fig. 2). The temperature averaged mean value of the number of reacting hydroxyl groups was determined to $\langle \hat{v} \rangle = 1.361 \pm 0.030$, based on the mean values of \hat{v} at each temperature in the range $T \in [100, 200]$ ($^\circ$C). This value can be compared with that determined by Elam and George (2003), $\nu = 1.37$ at $T = 177$ ($^\circ$C). In addition, the full monolayer-limiting molar
Figure 2: a) Apparent mass trajectory, $\Delta \hat{m}_q$, as a function of time for the experimental index $j = 5$ (Table 1 gives the process operating conditions). MGPCs, $d\Delta \hat{m}_q|_{\Delta t}(dN_{\Delta t})^{-1}$, have been calibrated using reference ex situ XRR thickness measurements. b) Fractionation of the apparent mass trajectory into individual ALD cycles, $t \in [0, \Delta t]$ (s). The shaded rectangles indicate the precursor pulse interval endpoints. c) Estimated mean mass gain, $\langle \Delta \hat{m}_q \rangle$, and associated confidence intervals, $\sigma_{\langle \Delta \hat{m}_q \rangle}$, from the individual ALD cycles.

Concentration of surface sites, Λ_{ML}, can be deduced from the density of the ZnO film $\rho_s = 5.4 \cdot 10^3$ kg m$^{-3}$ (Törndahl et al., 2007), using the definition...
\[
\Lambda_{\text{ML}} = (\nu_s M_s^{-1} \bar{N})^{2/3} \bar{N}^{-1} = 1.94 \cdot 10^{-5} \text{ (mol m}^{-2}\text{)}, \quad \text{which corresponds to a film monolayer thickness } h_{\text{ML}} = 2.93 \text{ (Å cycle}^{-1}\text{)}. \text{ Full theoretical monolayer growth is normally not reached, however, and steric hindrance determines when saturation occurs, at which the ligand packing is at its real maximum (Puurunen, 2003). Travis and Adomaitis (2013b) have recently used the ligand group concentration at the close-packing limit experimentally determined by Puurunen (2005a) to compute the limiting surface concentrations associated with saturating ALD growth per cycle. Corresponding data are not available for the precursors used in the present study, and the limiting molar concentration of surface sites, \(\Lambda = 1.37 \cdot 10^{-5} \text{ (mol m}^{-2}\text{)}, \) was instead determined from the maximum growth per cycle, \(\max d\Delta \hat{m}_q|_{\Delta t} (dN_{\Delta t})^{-1} \), (see Table 1). Finally, it is noteworthy that only this quasi-steady state growth regime is considered in this experimental investigation and, consequently, elementary surface reactions of the initial regime (Alam and Green, 2003; Puurunen, 2004), in which \(d^2 \Delta \hat{m}_q|_{\Delta t} (dN_{\Delta t}^2)\) \(-1 \neq 0\), were excluded.}

3. ALD Reaction Intrinsic Kinetic Mechanism

It was assumed that both the Zn(C\(_2\)H\(_5\))\(_2\) and the H\(_2\)O half-reactions proceed through the trapping-mediated mechanism, analogous to that proposed by Ren (2009):

\[
\text{reactants} \xrightarrow{\text{ads}} \text{[adsorbed adduct state]} \xrightarrow{\text{fwd}} \text{[transition state]} \xrightarrow{\text{rev}} \text{desorption state} \quad \text{(R1)}
\]

where the reactions under consideration proceed through stable intermediate transition complexes formed by the species in the gas-phase reacting with an active surface site through a typical donor–acceptor coordination bond (Deminsky et al., 2004; Musgrave, 2012; Travis and Adomaitis, 2013b). The elementary gas–surface reaction mechanisms for the Zn(C\(_2\)H\(_5\))\(_2\) precursor and a normally
hydroxylated surface are thus:

\[
(-\text{OH})_\nu(s) + \text{Zn(C}_2\text{H}_5)_2(g) \overset{i=1}{\rightleftharpoons}\text{Zn(C}_2\text{H}_5)_2(s) + \nu\text{C}_2\text{H}_6(g)
\] (R2a)

\[
[(-\text{OH})_\nu : \text{Zn(C}_2\text{H}_5)_2](s) \overset{i=2}{\rightleftharpoons}
\]

\[
[(-\text{OH})_\nu : \text{Zn(C}_2\text{H}_5)_2](s) \overset{i=3}{\rightarrow}
\]

\[
(-\text{O} -)_\nu\text{Zn(C}_2\text{H}_5)_2 -\nu(s) + \nu\text{C}_2\text{H}_6(g)
\] (R2b)

\[
[(-\text{O} -)_\nu\text{Zn(C}_2\text{H}_5)_2(s) + \nu\text{C}_2\text{H}_6(g)
\]

\[
in which \langle s \rangle \text{ and } \langle g \rangle \text{ denote the surface and gaseous species, respectively, and } \nu \text{ is } \]

\[
\text{the average number of hydroxyl groups that react with each } \text{Zn(C}_2\text{H}_5)_2 \text{ molecule (Elam and George, 2003; Yousfi et al., 2000). The adsorption and decomposition of } \text{H}_2\text{O at the } (-\text{O} -)_\nu\text{Zn(C}_2\text{H}_5)_2 -\nu(s) \text{ surface site occur sequentially:}
\]

\[
(-\text{O} -)_\nu\text{Zn(C}_2\text{H}_5)_2 -\nu(s) + \text{H}_2\text{O}(g) \overset{i=4}{\rightleftharpoons}
\]

\[
[(-\text{O} -)_\nu\text{Zn(C}_2\text{H}_5)_2 -\nu : \text{H}_2\text{O}](s) \overset{i=5}{\rightleftharpoons}
\]

\[
[(-\text{O} -)_\nu\text{Zn(C}_2\text{H}_5)_2 -\nu : \text{H}_2\text{O}](s) \overset{i=6}{\rightarrow}
\]

\[
(-\text{O} -)\text{Zn}(-\text{OH})_\nu(s) + (2 - \nu)\text{C}_2\text{H}_6(g)
\] (R3c)

It is assumed that the elimination reaction \((i = \{3, 6\})\) is irreversible in both half-reactions due to the removal of \text{C}_2\text{H}_6, and that it is the rate-limiting step of the sequence of reactions. The intermediate complexes in Reactions (R2 and R3) have a significant adsorption energy, which becomes important at low temperatures \((T < 200 (\degree\text{C}))\), where the growth rate of the film can decrease significantly due to the stabilization of the adsorption complex (Ren, 2009). The apparent fall in MGPC at high temperatures is generally attributed to a gradual decrease in the density of the surface hydroxyl groups (Deminsky et al., 2004; Matero et al., 2000; Rahtu et al., 2001). This decrease results from an increase in the rate of the recombination reaction with increasing temperature. Reactions (R2 and R3), however, suppose that the entropy of the gas-phase precursor molecules increases significantly as the temperature increases, making desorption of the adsorbed precursor more favorable, and consequently lowering the equilibrium surface coverage. This causes the growth rate to fall (Travis and Adomaitis,
Table 2: Summary of gaseous and fractional surface coverage species in Reactions (R2 and R3), with their abbreviations.

<table>
<thead>
<tr>
<th>Gaseous species (g)</th>
<th>α</th>
<th>Surface species (s)</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(C_2H_5)_2</td>
<td>A</td>
<td>(−OH)</td>
<td>A*</td>
</tr>
<tr>
<td>H_2O</td>
<td>B</td>
<td>[(−OH)_ν : Zn(C_2H_5)_2]</td>
<td>B*</td>
</tr>
<tr>
<td>C_2H_6</td>
<td>C</td>
<td>[(−OH)_ν : Zn(C_2H_5)_2]^†</td>
<td>C*</td>
</tr>
<tr>
<td>N_2</td>
<td>P</td>
<td>(−C_2H_5)_2−ν</td>
<td>D*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[(−O−)_ν Zn(C_2H_5)_2−ν : H_2O]</td>
<td>E*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[(−O−)_ν Zn(C_2H_5)_2−ν : H_2O]^†</td>
<td>F*</td>
</tr>
</tbody>
</table>

2013b; Widjaja and Musgrave, 2002a,b). Table 2 lists the abbreviations for the gaseous and fractional surface species in Reactions (R2 and R3).

4. Physical Modeling

The modeling of an ALD continuous flow reactor system can be performed at several levels of detail and with various assumptions (see e.g. (Aarik and Siimon, 1994; Yanguas-Gil and Elam, 2012; Ylilammi, 1995)). The level of detail chosen depends on the goal of the modeling, as defined by Hangos and Cameron (2001), and how the model is to be applied. Despite the diversity of published work in the field, the deposition process depends strongly on the characteristic time scales (Adomaitis, 2010; Granneman et al., 2007), on the underlying reactor-scale mass transport (Aarik et al., 2006; Jur and Parsons, 2011; Mousa et al., 2012), and on the reaction mechanism at the gas–surface interface (Ritala and Leskelä, 2002).

4.1. Formulation of Underlying Model Assumptions

The model described here was based on the two-dimensional model described in a recently published three-part article series (Holmqvist et al., 2012, 2013a,b). Several assumptions have been made in order to simplify the overall modeling framework and reduce the computational requirements, without sacrificing the accuracy and applicability of the model. Some of the assumptions arise from the
operation of the ALD reactor system (see Section 2.1), while others are based on theory (Holmqvist et al., 2012). The additional theory related assumptions made in the work presented here are:

i) That the one-dimensional representation of the spatial domain, \(z \in [z_0, z_{\text{end}}] \), subject to fully developed channel flow with the z-axis coincident with the apex of the direction of the flow (Bird et al., 1960):

\[
v_z(y) := v_{z,\text{max}} \left(1 - \left[\frac{y}{\delta y}\right]^2\right)
\]

(4)

is sufficiently accurate. This assumption implies that the velocity of the flow in contact with the plates is zero, so that \(v_z = 0 \) at \(y = \pm \delta y \), and \(v_{z,\text{max}} := (3/2)v_z \) (see Fig. 1b). Eq. (4) shows that the shear stress is:

\[
\Phi_z = \mu \left(\frac{3}{\delta y^2}\right) v_z
\]

(5)

ii) That a steady-state representation of the reversible chemisorption of precursors (\(i = \{1, 4\} \)) in Reactions (R2 and R3) is sufficiently accurate, and that the reaction rates of the consecutive forward and reverse surface reactions (\(i = \{2, 5\} \)) establish a dynamic equilibrium.

4.2. Governing Equations of the ALD Reactor Sub-model

The mathematical model of the low-volume, continuous cross-flow ALD reactor with temporal precursor pulsing is based on fully coupled, compressible equations (Bird et al., 1960) for the conservation of mass, momentum, and individual gas-phase species defined in the one-dimensional spatial domain, \(z \in [z_0, z_{\text{end}}] \).

The model uses transient conditions for all governing equations in the temporal domain, \(t \in [t_0, t_f] \), in order to capture details of the process dynamics at the level of a single ALD pulse sequence:
in which ω_α denotes the mass fraction of the αth gas-phase species, and ρ is the density of the gas mixture. The pressure, p, is governed by the equation of state:

$$p = \frac{\rho}{M}RT$$ \hspace{1cm} (9)

$$\frac{1}{M} = \sum_{\forall \alpha} \frac{\omega_\alpha}{M_\alpha}$$ \hspace{1cm} (10)

The sum over all chemical reaction source terms, S_α, does not drop out in Eq. (6) because the total mass is not conserved in the ALD gas–surface reactions.

The transport coefficients, $D_{\alpha \beta}$ and μ_α, were determined from the Chapman–Enskog kinetic theory of dilute gases (Hirschfelder et al., 1964; Reid et al., 1988), while the viscosity for the multicomponent mixture of gases, μ, was determined using the semi-empirical mixing formula (Wilke, 1950).

4.2.1. Boundary Conditions

The inlet, $z = z_0$, boundary condition prescribes that the mass flow is a standard volumetric flow rate. Hence, the mass fluxes for each component and for the gas mixture, along with a Neumann condition on the velocity, are given by the equations:

$$\left. (\rho v_z) \right|_{z=z_0} = \frac{1}{A'} \sum_{\forall \alpha} \rho_{\text{STP}, \alpha} \dot{Q}_\alpha \Pi_\alpha (t, \Delta t_\alpha)$$ \hspace{1cm} (11)

$$\left. \frac{\partial v_z}{\partial z} \right|_{z=z_0} = 0$$ \hspace{1cm} (12)

$$\left. \left(\rho \omega_\alpha v_z - \rho D_{\alpha \beta} \frac{\partial \omega_\alpha}{\partial z} \right) \right|_{z=z_0} = \frac{1}{A'} \rho_{\text{STP}, \alpha} \dot{Q}_\alpha \Pi_\alpha (t, \Delta t_\alpha)$$ \hspace{1cm} (13)

Moreover, the outlet, $z = z_{\text{end}}$, boundary condition prescribes that the diffusive mass is zero, along with a Dirichlet condition on the velocity:

$$\left. \frac{\partial \omega_\alpha}{\partial z} \right|_{z=z_{\text{end}}} = 0$$ \hspace{1cm} (14)

$$\left. v_z \right|_{z=z_{\text{end}}} = \frac{\dot{V}_{\text{VP}}}{A'}$$ \hspace{1cm} (15)

where \dot{V}_{VP} denotes the constant flow rate for the vacuum pump (see Fig. 1a).
4.3. Governing Equations of the ALD Film Growth Sub-model

The general surface reaction model that describes the spatial and temporal fractional surface coverage is:

\[
\frac{\partial \Lambda \theta_{\kappa}}{\partial t} = \sum_{i=1}^{N_i} \xi_{\kappa,i} r_i^{eq} \tag{16a}
\]

\[
0 = \sum_{\forall \kappa} \frac{\partial \Lambda \theta_{\kappa}}{\partial t} \tag{16b}
\]

where \(\Lambda \) denotes the maximum molar concentration of surface sites per unit substrate area that are available for deposition. The heterogeneous ALD gas–surface reactions mean that there will be a net mass consumption at the substrate surface, and thus the fractional surface coverage dynamics of Eq. (16) governs the source term, \(S_\alpha \), of the continuity equation for the precursor density (see also Eq. (8)):

\[
S_\alpha = -\frac{A_{\text{sub}}}{V_{\text{RC}}} M_\alpha \left[\sum_{\forall \kappa} \xi_{\beta,\kappa} \frac{\partial \Lambda \theta_{\kappa}}{\partial t} - \sum_{i=1}^{N_i} \xi_{fwd, i}^{\text{fwd}} r_i^{\text{fwd}} \right] \tag{17}
\]

where \(\xi_{\beta,\kappa} \) denotes the stoichiometric coefficient that corresponds to the \(\beta \)th species. Consequently, the mass accumulated from the adsorption/chemisorption of the precursor on the surface per unit QCM sensor area is given by:

\[
\frac{d[m_\alpha]}{dt} = \frac{1}{(\zeta_{\text{end}} - \zeta_0)} \int_{\zeta_0}^{\zeta_{\text{end}}} \left[\sum_{\forall \alpha} M_\alpha \sum_{\forall \kappa} \xi_{\beta,\kappa} \frac{\partial \Lambda \theta_{\kappa}}{\partial t} + \sum_{i=1}^{N_i} \Delta M_i r_i^{\text{fwd}} \right] d\zeta \tag{18}
\]

in which \(\zeta \in [\zeta_0, \zeta_{\text{end}}] \) is the spatial coordinate variable of the exposed quartz crystal surface. The mass gain in Eq. (18), for the integration limits \(\zeta \in [\zeta_0, \zeta_{\text{end}}] \), equals the mass loss in Eq. (6): \(V_{\text{RC}} (A_{\text{sub}})^{-1} \sum_{\forall \alpha} S_\alpha \).

Finally, the molar reaction rate of the \(i \)th elementary gas–surface and surface reaction in Eqs. (16–18) is given by the general formulation:

\[
r_i^{\text{eq}} = k_i^{\text{ads}} p_\alpha \left(\Lambda - \sum_{\forall \ell} \Lambda \theta_\ell \right)^{n_i^{\text{ads}}} - k_i^{\text{des}} \left(\Lambda \theta_\kappa \right)^{n_i^{\text{des}}} \tag{19a}
\]

\[
r_i^{\text{fwd}} = k_i^{\text{fwd}} \left(\Lambda \theta_\kappa \right)^{n_i^{\text{fwd}}} \tag{19b}
\]
in which the subscript ℓ represents all κth surface species with which the αth gaseous species cannot undergo a reaction, n^{ads}_i is the adsorption order related to the interaction between adsorbents, and n^{des}_i is the corresponding desorption order. Hence, imposing the equilibrium relationship, $r_i^{eq} := 0$, allows to rewrite Eq. (19a) as (introducing $K^{eq}_i = k^{\text{ads}}_i (k^{\text{des}}_i)^{-1}$):

$$0 = K^{eq}_i p_\alpha \left(\Lambda - \sum_{\forall \ell} \Lambda \theta_{\ell} \right)^{n^{\text{ads}}_i} - \left(\Lambda \theta_\alpha \right)^{n^{\text{des}}_i}$$ \hspace{1cm} (19c)

The temperature dependency of the forward, k^{fwd}_i, adsorption, k^{ads}_i, and desorption, k^{des}_i, rate constants is governed by reparameterization of the Arrhenius equation by introducing a reference temperature, $T_{\text{ref},i}$, in the form (Schwaab et al., 2008; Schwaab and Pinto, 2007, 2008):

$$k_i = k_{\text{ref},i} \exp \left(-\frac{E_i}{RT_{\text{ref},i}} \right)$$ \hspace{1cm} (20a)

$$k_{\text{ref},i} = A_i \exp \left(-\frac{E_i}{RT_{\text{ref},i}} \right)$$ \hspace{1cm} (20b)

where $k_{\text{ref},i}$ is the specific reaction rate coefficient at $T_{\text{ref},i}$, A_i is the frequency factor, and E_i is the activation energy of the ith elementary reaction. The expression for chemical reactions in equilibrium is thus:

$$K^{eq}_{\text{ref},i} = \frac{k^{\text{ads}}_{\text{ref},i}}{k^{\text{des}}_{\text{ref},i}} = K^{eq}_{\text{ref},i} \exp \left(-\frac{\Delta E^{eq}_{\text{ref},i}}{R} \left(\frac{1}{T} - \frac{1}{T^{eq}_{\text{ref},i}} \right) \right)$$ \hspace{1cm} (20c)

in which $K^{eq}_{\text{ref},i} := k^{\text{ads}}_{\text{ref},i} (k^{\text{des}}_{\text{ref},i})^{-1}$, $\Delta E^{eq}_{\text{ref},i} := E^{\text{ads}}_i - E^{\text{des}}_i$, and $T^{eq}_{\text{ref},i} := T^{\text{ads}}_{\text{ref},i} = T^{\text{des}}_{\text{ref},i}$.

4.3.1. Surface State Limit-cycle Dynamics

The differential-algebraic equation (DAE) system that governs the fractional surface-coverage species, θ_κ, and that gives the dynamics for both ALD half-
reactions (Reactions (R2 and R3)) is:

\[
\begin{align*}
\zeta_{B+1}^{eq} \frac{\partial \Lambda \theta_{A+}}{\partial t} + \zeta_{A+1}^{eq} \frac{\partial \Lambda \theta_{B+}}{\partial t} &= - \zeta_{A+1}^{eq} \zeta_{B+2}^{eq} f_2^{fwd} + \zeta_{B+1}^{eq} \zeta_{A+6}^{fwd} f_6^{fwd} \quad (21a) \\
\frac{\partial \Lambda \theta_{C+}}{\partial t} &= \zeta_{C+2}^{eq} f_2^{eq} - \zeta_{C+3}^{fwd} f_3^{fwd} \quad (21b) \\
\frac{\partial \Lambda \theta_{E+4}}{\partial t} + \zeta_{D+4}^{eq} \frac{\partial \Lambda \theta_{D+}}{\partial t} &= - \zeta_{D+4}^{eq} \zeta_{E+5}^{eq} f_5^{fwd} - \zeta_{E+4}^{eq} \zeta_{D+3}^{fwd} f_3^{fwd} \quad (21c) \\
\frac{\partial \Lambda \theta_{F+}}{\partial t} &= \zeta_{F+6}^{eq} f_6^{eq} - \zeta_{F+6}^{fwd} f_6^{fwd} \quad (21d) \\
0 &= K_{pA}^f \beta (\Lambda \theta_{A+})^{n_{A+}} - (\Lambda \theta_{B+})^{n_{B+}} \quad (21e) \\
0 &= K_{pB}^f (\Lambda \theta_{D+})^{n_{D+}} - (\Lambda \theta_{E+})^{n_{E+}} \quad (21f)
\end{align*}
\]

The sum of Eqs. (21a–21d) is zero, and Eq. (16b) is thus fulfilled. Furthermore, the mathematical formulation of the ith equilibrium, \(r_i^{eq} \), and forward reactions rates, \(r_i^{fwd} \), (see Eq. (19)) in Eq. (21) are:

\[
\begin{align*}
r_2^{eq} &= k_2^{fwd} (\Lambda \theta_{B+})^{n_{B+}} - k_2^{rev} (\Lambda \theta_{C+})^{n_{C+}} \quad (22a) \\
r_5^{eq} &= k_5^{fwd} (\Lambda \theta_{E+})^{n_{E+}} - k_5^{rev} (\Lambda \theta_{F+})^{n_{F+}} \quad (22b) \\
r_3^{fwd} &= k_3^{fwd} (\Lambda \theta_{C+})^{n_{C+}} \quad (22c) \\
r_6^{fwd} &= k_6^{fwd} (\Lambda \theta_{F+})^{n_{F+}} \quad (22d)
\end{align*}
\]

It is, however, worth noting that Eq. (21) must be reformulated before the dynamic optimization problem is considered. The remaining kinetic parameters, including the specific reaction rate at \(T_{ref,i} \), \(k_{T_{ref,i}} \), and the associated activation energy, \(E_i \), for the ith elementary surface reaction (Reactions (R2 and R3)) can be gathered into a calibration parameter vector \(\beta \in \mathbb{R}^{N_\beta} \):

\[
\beta = [K_{pA}^{eq} T_{ref,i}^eq, \Delta E_i, k_{T_{ref,i}}^{fwd}, k_{T_{ref,i}}^{rev}, \kappa_{T_{ref,i}}^{eq}, E_{ref,\ell}^{rev}]^T \quad (23)
\]

where \(i \in \{1, 4\}, j \in \{2, 3, 5, 6\}, \ell \in \{2, 5\} \), and where \(T_{ref} = [T_{ref,i}^{eq}, T_{ref,i}^{fwd}, T_{ref,i}^{rev}]^T \) is a vector that collects all reference temperatures. Finally, all exponential factors, \(n_i \), are set to unity and the stoichiometric coefficients \(\xi_{e,i} \) and \(\forall_i \) are associated with the ith elementary gas–surface and surface reaction are defined according to Reactions (R2 and R3).
4.4. Limit-cycle Solutions

The ALD reactor sub-model and film growth sub-model described above can be used to study the dynamic nature of precursor pulsation and the resulting film growth process as a function of surface state initial conditions and process operating parameters. However, computing the limit-cycle solution over the time horizon \([t_0, t_f]\) requires one additional important criterion; that the state of the surface returns to its initial condition at the end of the cycle, \(t = t_f\) (Travis and Adomaitis, 2013a,b):

\[
\theta_\kappa(t_0) := \theta_\kappa(t_f), \quad \forall \kappa \in \{A^*, \cdots, F^*\} \tag{24a}
\]

In addition, the non-differentiated form of Eq. (16b) must be satisfied at \(t \in \{t_0, t_f\} \):

\[
1 = \sum_{\forall \kappa} \theta_\kappa(t) \tag{24b}
\]

Eq. (24b) reduces the number of free variables of the initial equations to \(N_\kappa - 1\). Section 6 presents numerical aspects of computing limit-cycle solutions.

4.5. Model Form and Size

The non-linear partial differential algebraic equations (PDAEs) of the ALD reactor sub-model (see Section 4.2) and the film growth sub-model (see Section 4.3) were approximated using the method-of-lines (Davis, 1984; Schiesser, 1991) and the finite volume method (FVM). In this study, FVM was used mainly due to its mass conservation property (Fornberg, 1988) and because it is easy to implement, in particular at the system boundaries. The first-order spatial derivative of the density, \(\rho\), in Eq. (6) and of the gas-phase mass fractions, \(\omega_\alpha\), in Eq. (8) have been approximated using a first-order downwind discretization scheme, while a first-order upwind discretization scheme was utilized to approximate the bulk velocity, \(v_z\), in Eq. (7), yielding a large system of non-linear differential algebraic equations. Thus, the process model may be written...
collectively as a general non-linear index-1 DAE system as:

\[0 = F(\dot{x}(t), x(t), u(t), w(t), \beta) \]

\[0 = F_0(\dot{x}(t_0), x(t_0), u(t_0), w(t_0), \beta) \]

\[0 = C_e(t_0, t_f, x_e, u_e, w_e, \beta) \]

\[x(t_0) = x_0 \]

in which \(F \) is the DAE that represents the dynamics of the system, \(F_0 \) represents the DAE augmented with initial conditions, and \(C_e \) is a point equality-constraint function that assures that the limit-cycle criterion (see Eq. (24a)) is fulfilled. Finally, \(x, u \) and \(w \) represent dependent states, free design variables (see Section 2.1), and algebraic variables:

\[x = [\rho, v_z, \omega_\alpha, \theta_\alpha, m_q]^T, \quad \alpha \in \{A, B, C\}, \kappa \notin \{B*, E*\} \]

\[w = [p, \dot{M}, \theta_\kappa]^T, \quad \kappa \in \{B*, E*\} \]

\[y = \langle m_q \rangle \]

\[u = [\Delta t_\alpha, \dot{Q}_\alpha, T, \dot{V}_VP]^T, \quad \alpha \in \{A, B, P\} \]

Consequently, when the number of FVM elements, \(N_{FVM} \), is 20, the number of states, \(N_x \), is \(10N_{FVM} \) and the number of algebraic variables, \(N_w \), is \(4N_{FVM} \). The number of FVM elements is a compromise between accuracy and computational complexity, and gives adequate representation of the dispersion.

5. Dynamic Parameter Estimation

5.1. Non-convex Dynamic Optimization Problem Formulation

The dynamic parameter estimation problem aims to solve for the calibration parameter vector, \(\beta \in \mathbb{R}^{N_\beta} \), of the dynamic model outlined in Section 4, supplied as a fully implicit DAE system (see Eq. (25)). Thus, this problem can be formulated as a general dynamic optimization problem (DOP) over the time interval \([t_0, t_f]\), with differential algebraic constraints (Biegler, 2010; Biegler...
et al., 2002) of the form:

$$\min_{\beta \in \mathbb{K}^{N_{\beta}}} \Phi(\beta) \tag{26}$$

subj. to Eq. (25)

$$y = g_y(x(t), u(t), w(t), \beta)$$

$$x_{\text{min}} \leq x \leq x_{\text{max}}, \quad w_{\text{min}} \leq w \leq w_{\text{max}}$$

$$u_{\text{min}} \leq u \leq u_{\text{max}}, \quad \beta_{\text{min}} \leq \beta \leq \beta_{\text{max}}$$

in which the response function, g_y, transforms and selects those state variables that are experimentally measured, and where β is subject to lower and upper bounds acting as inequality constraints, and estimated by minimizing an objective function $\Phi(\beta)$, penalizing deviations between the observed, \hat{y}, and the predicted system response, y. The weighted sum of squared residuals is used to quantify the estimation, and is defined as:

$$\Phi(\beta) = \int_{t_0}^{t_f} [\hat{y}(t) - y(t, x, u, \beta, w)]^T W [\hat{y}(t) - y(t, x, u, \beta, w)] dt \tag{27}$$

where the diagonal weight matrix, W, is introduced to normalize the experimental response, $\hat{y}(t)$, and penalize a deviation with its associated variance, $\sigma_{\hat{y}}^2(t)$.

5.2. Optimal Reparameterization of the Arrhenius Equation

The mathematical structure of the non-linear Arrhenius equation (see Eq. (20)) introduces a high correlation between the frequency factor, A_i, and the activation energy, E_i (Schwaab and Pinto, 2007). This may cause significant numerical problems when estimating the model parameters and may lead to the statistical significance of the final parameter estimates being misinterpreted (Watts, 1994). Schwaab et al. (2008) showed that the explicit introduction of a reference temperature into the standard Arrhenius equation and proper selection of the set of reference temperatures, $T_{\text{ref}} \in \mathbb{R}^{N_i}$, in problems involving multiple Arrhenius equations can minimize the correlations between parameter...
estimates, and minimize at the same time the relative standard errors of the parameter estimates. The two-step parameter estimation procedure proposed by Schwaab et al. (2008) was for this reason used in this study. This procedure comprises:

i) Solution of the DOP (see Eq. (27)) using the initial guesses for \(T_{\text{ref}} \) as the average temperature values in the analyzed experimental range (Vegliò et al., 2001).

ii) Minimization of the \(L_2 \)-norm of the correlation matrix, \(C(\hat{\beta}, T_{\text{ref}}) \), of parameter estimates, \(\hat{\beta} \):

\[
\min_{T_{\text{ref}} \in R^N} \|C(\hat{\beta}, T_{\text{ref}})\|_2 \tag{28}
\]

subj. to \(T_{\text{ref}, \text{min}} \leq T_{\text{ref}} \leq T_{\text{ref}, \text{max}} \)

iii) Re-optimization of the DOP with the optimized set of reference temperatures from Eq. (28).

The correlation matrix in Eq. (28) is determined from the covariance matrix of the parameter estimates, \(\Sigma(\hat{\beta}, T_{\text{ref}}) = s^2[J(\hat{\beta}, T_{\text{ref}})^T W J(\hat{\beta}, T_{\text{ref}})]^{-1} \) (Bates and Watts, 1988; Draper and Smith, 1998):

\[
C_{\text{ef}}(\hat{\beta}, T_{\text{ref}}) = \frac{\Sigma_{\text{ef}}(\hat{\beta}, T_{\text{ref}})}{[\Sigma_{\text{ef}}(\hat{\beta}, T_{\text{ref}}) \Sigma_{\text{ef}}(\hat{\beta}, T_{\text{ref}})]^{1/2}}, \quad \forall t, \ell \in \{1, 2, \ldots, N_\beta\} \tag{29}
\]

Additionally, it is convenient to update the covariance matrix, \(\Sigma(\hat{\beta}, T_{\text{ref}}) \), at each set \(T_{\text{ref}} \) using the explicit method presented by Rimensberger and Rippin (1986).

6. Modeling and Optimization Environment

6.1. Discretization Procedure for Limit-cycle System Dynamics

The collocation algorithm in the open-source platform JModelica.org (Åkesson et al., 2010) was used to compute the stable limit-cycle dynamic solution to the process model (see Eq. (25)). The system dynamics (see Eq. (25a)) were described using the Modelica language (The Modelica Association, 2012), which
is a high-level language for complex physical models, while the limit-cycle cri-
terion (see Eq. (25c)) was implemented in the Modelica extension Optimica
(Åkesson, 2008). The user interacts with the various components of JModel-
ica.org through the Python scripting language. JModelica.org contains imple-
mentations of Legendre–Gauss and Legendre–Gauss–Radau collocation schemes
on finite elements. In this study, state and algebraic variables were parameter-
ized by Lagrange polynomials of order three and two, respectively, based on
Radau collocation points. This gave a non-linear program (NLP) with struc-
ture, which was exploited by the solver IPOPT (Wächter and Biegler, 2006).
IPOPT uses a sparse primal-dual interior point method to find local optima of
large-scale NLPs.

The first and second-order derivatives of the constraints functions with re-
spect to the NLP variables were computed using the computer algebra system
with automatic differentiation (CasADi) (Andersson et al., 2012a) in order to
enhance the performance of IPOPT, especially the speed at which the algorithm
converged (see e.g. Magnusson and Åkesson (2012)). CasADi is a minimalistic
computer algebra system that implements automatic differentiation (AD) in the
forward and adjoint modes using a hybrid symbolic/numeric approach. Once
a symbolic representation has been created using CasADi, the derivatives that
are required are efficiently and conveniently obtained, and sparsity patterns are
preserved.

6.2. Sequential Parameter Estimation Methodology

Parameter estimation methods can be classified into two classes: direct
search methods and gradient methods (Edgar and Himmelblau, 1988). The
model-based methodology described here solved the DOP (see Eq. 26) as fol-
lowing: First, the parameter space, \mathbb{R}^{N_β}, was sampled by Latin hypercube sam-
ping (LHS) (McKay et al., 1979) to obtain suitable input for the heuristic
optimization method. Subsequently, the evolution strategy Differential Evolu-
tion (DE) $DE/rand-to-best/2/bin$ (Price, 1999; Storn and Price, 1997) was used
to find the optimal least-squares estimates. Gradient methods generally outper-
Initialization of the DAE system (see Eq. (25a)) subject to the set of process operating parameters $u = [\dot{Q}_\beta, T, \dot{V}_{VP}]^T$ and $\Pi_\alpha(t_0) := 0, \forall \alpha \in \{A, B\}$. Steady flow conditions with no precursor feed imply that no gas–surface reactions occur and the baseline reactor pressure and carrier gas linear velocity (which depend on the spatial coordinate, $z \in [z_0, z_{\text{end}}]$) are determined through prescribing $\partial \rho(\partial t)^{-1} = \partial v_z(\partial t)^{-1} := 0$ at $t = t_0$. Eq. (25b) is solved by invoking the DAE initialization algorithm in JModelica.org, based on the KINSOL solver from the SUNDIALS suite (Hindmarsh et al., 2005).

Integration of the model of the DAE system (see Eq. (25a)) using the CVODES solver to provide initial guesses for all variables at the collocation points (see Eqs. (24 and 25)). A functional mock-up unit (FMU) was used to convert the model into a system of ordinary differential equations (ODEs), and thereby enabling simulation of the Modelica model in JModelica.org.

Solution of the NLP using direct collocation and the CasADi interface to IPOPT with the MA27 linear solver to determine the dynamic limit-cycle solution over the time period $[t_0, t_f]$.

Integration of the DAE system (see Eq. (25a)) and forward sensitivity equations (see Eq. 32), subject to the initial conditions $\theta_\kappa(t_0)$ and $\forall \kappa \in \{A^*, \cdots, E^*\} \in \mathbb{R}^{N_\kappa-1}$ (see Eq. (24)) determined with the collocation method, using the CVODES solver to obtain an accurate approximation of the parameter Jacobian matrix, J.

Figure 3: The discretization procedure for limit-cycle system dynamics and the sequential parameter estimation method. The final step is invoked only when verifying the solution from the collocation method that precedes it, and when executing the Levenberg–Marquardt algorithm (see Eq. (31)).

form direct search methods both in terms of reliability and speed of convergence (Bard, 1974). Therefore, in order to ensure reliability and to promote convergence of the optimal calibration parameter vector, β^*, from DE with respect to the feasible region (the region in which the parameters are linearly independent):

$$\{ \beta^* \in \mathbb{R}^{N_\beta} : \text{rank}(J(\beta^*)) = N_\beta \land \exists \beta \in \mathbb{R}^{N_\beta}, \Phi(\beta) \leq \Phi(\beta^*) \}$$ \hspace{1cm} (30)

the Levenberg–Marquardt algorithm (LMA) was used to give the final least-squares estimates, $\hat{\beta}$. The LMA developed for this modeling framework (Andersson et al., 2012b) uses a search direction that is the solution of the set of linear equations:

$$[J^T W J + \lambda \text{diag}(J^T W J)] \delta_{\beta} = J^T W [\hat{y} - y]$$ \hspace{1cm} (31)

in which $J = \partial y(\partial \beta)^{-1}$ is the parameter Jacobian matrix, δ_{β} denotes an increment to the parameter vector, β, and the damping factor, λ, controls both
the magnitude and direction of β. The solution sensitivity with respect to the model parameters was used to obtain an accurate approximation of the parameter Jacobian matrix by means of the following forward sensitivity equations:

$$\frac{d}{dt} \left(\frac{\partial x}{\partial \beta} \right) = \frac{\partial F}{\partial x} \left(\frac{\partial x}{\partial \beta} \right) + \frac{\partial F}{\partial \beta} \left(\frac{\partial x(t_0)}{\partial \beta} \right)$$

obtained by applying the chain rule of differentiation to the original DAEs (see Eq. (25)). Eq. (32) introduces $(N_x \times N_\beta)$ new differential equations. Fig. 3 describes the collocation procedure used to solve forced periodic systems and the sequential parameter estimation method.

7. Results and Discussion

7.1. Accuracy and Reliability of the Parameter Estimates

The kinetic parameters (see Eq. (23)) involved in the ALD gas–surface reactions were estimated using the hybrid numerical procedure described in Section 6.2. The associated set of reference temperatures was subsequently optimized by means of the procedure described in Section 5.2, in order to minimize the parameter correlations. Table 3 lists the optimal set of parameter estimates, $\hat{\beta}$, and reference temperatures, \hat{T}_{ref}, along with corresponding approximate margin of error, $\varepsilon_{\beta_\hat{i}} = \Sigma_{\beta} \left(\hat{\beta}, \hat{T}_{\text{ref}} \right)^{1/2} \left(\phi^{-1/2} - \alpha/2 \right)$, with a significance level of $\alpha = 5.0 \cdot 10^{-2}$ and $\forall i \in \{1, 2, \ldots, N_\beta\}$.

Fig. 4 shows representative results for these quantities for the kinetic parameters β_i and $i \in \{1, 2, 7, 8\}$ associated with Reactions (R2a and R2c) as functions of the reference temperatures $T_{\text{ref},1}^{\text{eq}}$ and $T_{\text{ref},3}^{\text{fwd}}$. These results show the behavior of the relative errors and the correlations between the parameter estimates. Figs. 4a and 4b show that the correlation between the parameters ΔE_1^{eq} and E_3^{fwd}, and the relative errors of these, were independent of the reference temperature, as Schwaab and Pinto (2007) have shown previously. Further, the relative error of parameter $K_{\text{ref},1}^{\text{eq}}$ depended only on $T_{\text{ref},1}^{\text{eq}}$, while the relative error of parameter $k_{\text{ref},3}^{\text{fwd}}$ depended only on $T_{\text{ref},3}^{\text{fwd}}$. This is evident from Fig. 4b, from which it is also clear that the relative errors attained minimum values.
Table 3: Regression analysis of the least-squares estimates, \(\hat{\beta} \), of the parameters of Reactions (R2 and R3). The normalized margin of error, \(\bar{\varepsilon}_\beta \), was determined at a significance level of \(\alpha = 5.0 \cdot 10^{-2} \). The specific reaction rate coefficients \(k_{T_{eq}}^{\text{fwd},i} \), \(k_{T_{eq}}^{\text{rev},i} \), and \(k_{T_{eq}}^{\text{fwd},i} \) are defined at the associated optimal reference temperature \(T_{ref,i}^{\text{fwd}} \), \(T_{ref,i}^{\text{rev}} \), and \(T_{ref,i}^{\text{eq}} \), respectively.

<table>
<thead>
<tr>
<th>Elementary reaction, (i)</th>
<th>Parameter, (\beta)</th>
<th>Parameter units</th>
<th>Parameter estimates, (\hat{\beta})</th>
<th>Margin of error, (\bar{\varepsilon}_\beta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction (R2a) 1 (\longrightarrow) (A + A) (\rightleftharpoons) (B)</td>
<td>(K_{T_{eq}}^{\text{ref},1})</td>
<td>Pa (^{-1})</td>
<td>4.97 (\cdot) 10(^{-2})</td>
<td>6.96</td>
</tr>
<tr>
<td>Reaction (R2b) 3 (\rightleftharpoons) (B) (\rightarrow) (C)</td>
<td>(k_{T_{eq}}^{\text{fwd},2}) (\cdot) 10(^{-2})</td>
<td>s (^{-1})</td>
<td>1.61 (\cdot) 10(^{-2})</td>
<td>1.82</td>
</tr>
<tr>
<td>Reaction (R2c) 7 (\rightleftharpoons) (C) (\rightarrow) (D)</td>
<td>(E_{T_{eq}}^{\text{fwd},3})</td>
<td>J mol (^{-1})</td>
<td>4.22 (\cdot) 10(^{4})</td>
<td>1.75</td>
</tr>
<tr>
<td>Reaction (R3a) 9 (\rightleftharpoons) (D) (\rightarrow) (E)</td>
<td>(K_{T_{eq}}^{\text{ref},4})</td>
<td>Pa (^{-1})</td>
<td>7.45 (\cdot) 10(^{-2})</td>
<td>1.60</td>
</tr>
<tr>
<td>Reaction (R3b) 11 (\rightleftharpoons) (E) (\rightarrow) (F)</td>
<td>(k_{T_{eq}}^{\text{fwd},5}) (\cdot) 10(^{-2})</td>
<td>s (^{-1})</td>
<td>1.42 (\cdot) 10(^{-2})</td>
<td>2.29</td>
</tr>
<tr>
<td>Reaction (R3c) 15 (\rightleftharpoons) (F) (\rightarrow) (A)</td>
<td>(E_{T_{eq}}^{\text{fwd},6})</td>
<td>J mol (^{-1})</td>
<td>4.53 (\cdot) 10(^{1})</td>
<td>1.56</td>
</tr>
</tbody>
</table>
Figure 4: Representative results of the two-step procedure by which parameters were estimated, to be used for optimal reparameterization of the Arrhenius equation (Schwaab et al., 2008). a) $C_{iℓ}(\hat{β}, T_{\text{ref}})$ and $i \neq ℓ$ as functions of $T_{\text{ref},i}$ and $i \in \{1,3\}$. b) Relative errors, $\bar{ε}_{β_i}$, as functions of $T_{\text{ref},i}$. c) Correlation between $K_{T_{\text{ref},1}}$ and $k_{T_{\text{ref},3}}^{\text{fwd}}$, C_{17}, as a function of $T_{\text{ref},i}$. d) $\|C(\hat{β}, T_{\text{ref}})\|_2$ as a function of $T_{\text{ref},i}$. (+) Optimal set of reference temperatures $\hat{T}_{\text{ref},i}$ and $i \in \{1,3\}$.

around certain values of $T_{\text{ref},i}$ and $i \in \{1,3\}$. Fig. 4a shows also that the correlation coefficients associated with $K_{T_{\text{ref},1}}$, i.e. C_{12} and C_{18}, depended only on $T_{\text{ref},1}^{\text{eq}}$, whereas the correlation coefficients associated with $k_{T_{\text{ref},3}}^{\text{fwd}}$, i.e. C_{27} and C_{78}, depend only on $T_{\text{ref},3}^{\text{fwd}}$. It is evident that these correlations can be made
equal to zero: C_{12} and C_{27}, in particular, are approximately zero for the optimal values of $T_{\text{ref},i}$ and $i \in \{1, 3\}$. Unfortunately, the optimal reference values do not lead to zero values of the correlations for the remaining coefficients C_{18} and C_{27} in Fig. 4a. Finally, the correlation between $K_{\text{eq}}^{\text{ref},1}$ and $k_{\text{fwd}}^{\text{ref},3}$, C_{17} depended in a complex manner on both $T_{\text{eq}}^{\text{ref},1}$ and $T_{\text{fwd}}^{\text{ref},3}$ (Fig. 4c). In addition C_{17} became very high at the optimal reference temperatures that minimize the L_2-norm of $C(\hat{\beta}, T_{\text{ref}})$ (see Eq. (28)) as depicted in Fig. 4d, and this allows other parameter correlations to be eliminated. Thus, it is clear that it is not possible to eliminate all correlations simultaneously.

Analysis of the confidence intervals and regions provides a more rigorous statistical evaluation of the parameter estimates. A statement with a high confidence suggests either that a parameter estimate cannot be discriminated from another using the experimental design being considered, or that there is a high uncertainty in the precision associated with this parameter (in other words: the model cannot distinguish between phenomenon in the system (Bard, 1974; Bates and Watts, 1988)). For this purpose, the likelihood $100(1 - \alpha)\%$ joint confidence region is defined for all values of β such that:

$$\{ \beta : \Phi(\beta) - \Phi(\hat{\beta}) \leq s^2 N_\beta F(N_\beta, \varphi; \alpha) \}$$

in which $F(N_\beta, \varphi; \alpha)$ is the upper α quantile of Fisher’s F-distribution. Fig. 5 shows the likelihood $100(1 - \alpha)\%$ joint confidence regions, with a significance level of $\alpha = 5 \cdot 10^{-2}$. The results are shown for pairs of parameters β_i and $\forall i \in \{1, 2, 7, 8\}$ described by sampling the parameter space, $\beta \in \mathbb{R}^{N_\beta}$, with LHS. It is evident that the significant reduction in parameter correlation observed in 4a also improved the elliptical representation of the confidence regions, as discussed by Bates and Watts (1988). Moreover, it is noteworthy that the relative errors of the parameters ΔE_1^{eq} and E_3^{fwd} were independent of the reference temperatures adopted, Fig. 4b, and that the apparent reduction in the relative errors of these parameters were governed instead by the reduction in $\Phi(\hat{\beta})$ (see Eq. (27)). This reduction occurred due to enhanced convergence of the LMA when the DOP (see Eq. (26)) was re-optimized with the optimal set of reference temperatures.
Figure 5: Nominal 95% likelihood confidence region (see Eq. (33)) for pairs of normalized and centered parameters β_i and $\forall i \in \{1, 2, 7, 8\}$. The (−) symbol shows the approximate joint 95% confidence region, while (+) shows the normalized and centered least-squares estimates, $\hat{\beta}_i$. (−−) shows the principal axes given by the eigenvectors of $\Sigma(\hat{\beta}, \hat{T}_{\text{ref}})$.

7.2. Accuracy and Reliability of the Predicted Model Response

The QCM trajectory for all $N_{\Delta t}$ cycles was fractionated with assigned t_0 at the start of the Zn(C$_2$H$_5$)$_2$ precursor pulse in Fig. 2, which is the most convenient representation when determining $\hat{\rho}$ from Eq. (3). When solving the DOP
(see Eq. (26)), however, \(t_0 \) was assigned to the center of the carrier gas purge that followed the \(\text{H}_2\text{O} \) precursor pulse, such that it was possible to simulate a smooth rectangular function, \(\Pi_{\alpha}(t, \Delta t_\alpha) \), that was composed of superposed logistic functions. This procedure redistributed the standard deviations of each temporal sample, while the extracted quantities \(\hat{\nu} \) and \(d\Delta \hat{m}_q|_{\Delta t}(dN_{\Delta t})^{-1} \) listed in Table 1 remained constant. Additionally, the collocation method (see Section 6.1) used to compute the limit-cycle solution was solved for 50 finite elements in the experimental time horizon \([0, \Delta t_j]\) and \(\forall j \in \{1, 2, \cdots, N_j\} \), with three Radau collocation points in each element. Section 7.3 presents a comparison between the limit-cycle solutions determined with the collocation method and those determined by the verification simulation (see Fig. 3).

Fig. 6 presents the accumulated mass per unit QCM sensor area, \(\langle m_q \rangle \), (see Eq. (18)) for the least-squares estimates listed in Table 3 and the associated 100(1-\(\alpha \))% confidence bands, for a representative set of calibration experiments. The figure verifies the precision of the simulated model response. The graphic representation for the experimental calibration datasets \(j \in \{3, 8, 9, 14, 10\} \) (corresponding to one set for each temperature studied in the range \(T \in [100, 200] \) \(^\circ\text{C}\) (see Table 1)) shows that the model output agrees well with the experimental data. The confidence bandwidth is moderately narrow and replicates the temporal dependency of the model response. Thus, the accuracy and predictability of the transient mass gain, \(\langle m_q \rangle \), can be determined by analyzing the bandwidth and shape of the approximate confidence bands. The effect of the uncertainty on the precision of the parameter estimates can also be evaluated in this way. However, the poorest fit of \(\langle m_q \rangle \) in the experimental time horizon occurred for the initial increase in mass at the leading edge of the \(\text{Zn(C}_{2}\text{H}_5\text{)}_2 \) precursor pulse. It is noteworthy that this temporal region was associated with the highest experimental uncertainty, and – since the variance \(\sigma_{\Delta \hat{m}_q}^2 \) of each temporal sampling point is balanced in the time-variant weight matrix, \(\mathbf{W} \) – the error that this set of sampling points contributed to the weighted sum of squared residuals (see Eq. (27)) was considerably reduced. Finally, it is also noteworthy that the increase in \(\langle m_q \rangle \) shortly before the 0th precursor pulse on-
Figure 6: Transient mass gain per unit area of exposed surface of QCM sensor for a single-pulse sequence horizon \([0, \Delta t_j]\) and the calibration set \(j \in \{3, 8, 9, 14, 10\}\) listed in Table 1. The \((-\) symbol shows the integral mean value of the QCM mass gain, \(\langle m_q \rangle\), (see Eq. 18), while \((-\) shows the associated uncertainty bands for the expected response determined by the parameter bounds that were specified according to the 95\% joint confidence region governed by Eq. (33). (o) shows the in situ QCM mean mass gain, \(\langle \Delta \hat{m}_q \rangle\), while the error bars show the associated confidence intervals, \(\sigma(\Delta \hat{m}_q)\). The shaded rectangles indicate the precursor pulse interval endpoints.
set arises from the tailing of the smooth rectangular function, \(\Pi_\alpha(t, \Delta t_\alpha) \), used to model the non-overlapping precursor injections.

The transient mass gain trajectory determined from Eq. (18) can be mechanistically interpreted by means of the chemical composition of the growth surface, i.e. the fractions of the surface that are covered by precursor adduct species, by adduct species in their transition state, and the chemisorbed species that are left by the ligand elimination reactions (see Reactions (R2 and R3)). Thus, the trajectory of the transient mass gain during the \(\text{Zn(C}_2\text{H}_5)_2 \) precursor exposure arises from the complex interdependence between the gas–surface precursor adsorption equilibrium (Reaction (R2a)), the adsorbed precursor adduct and transition state equilibrium (Reaction (R2b)), and the irreversible ligand elimination surface reaction (Reaction (R2c)). Specifically, the net contribution from Reaction (R2a) to Eq. (18) is the degree of saturation of the fractional surface coverage of hydroxyl groups, while the accumulated mass is unchanged as Reaction (R2b) proceeds. The contribution from Reaction (R2c), in contrast, arises from the production of \(\langle \hat{\nu} \rangle \text{C}_2\text{H}_6 \) molecules, which subsequently desorb to the gas-phase.

Reversible chemisorbed surface species \(\theta_\kappa \) and \(\kappa \in \{B^*, C^*\} \) are desorbed in particular at the trailing edge of the \(\text{Zn(C}_2\text{H}_5)_2 \) precursor exposure, as \(p_A \to 0 \) in Eq. (21e), which can be seen most clearly for \(j = \{9, 14\} \) in Fig. 6. Desorption is more pronounced at elevated temperatures, since the reaction rate coefficient \(k_{2}^{\text{rev}} \) in Eq. (22a) is higher. The \(\langle m_q \rangle \) trajectory is approximately constant during the subsequent carrier gas purge, which implies that negligible desorption takes place, and thus reversible chemisorbed species are desorbed almost instantaneously as \(p_A \to 0 \) at the trailing edge of the precursor exposure. However, it is noteworthy that the DAE system (see Eq. (21)) that governs the fractional surface coverage species dynamics for Reactions (R2 and R3) can reproduce desorption phenomena during the entire carrier gas purge period, as long as the surface species \(\kappa \in \{B^*, C^*\} \) are present at the growth surface.

Furthermore, the physicochemical phenomena that govern the appearance of the \(\langle m_q \rangle \) trajectory during the subsequent \(\text{H}_2\text{O} \) precursor exposure are anal-
Figure 7: Transient mass gain per unit exposed surface QCM sensor area for a single-pulse sequence horizon \([0, \Delta t_j]\) and the validation set \(j \in \{4, 7, 13\}\) listed in Table 1. The (−) symbol shows the integral mean value of the QCM mass gain, \(\langle m_q \rangle\), (see Eq. 18), while (−−) shows the associated uncertainty bands for the expected response determined by the parameter bounds that were specified according to the 95% joint confidence region governed by Eq. (33). (○) shows the in situ QCM mean mass gain, \(\langle \Delta \hat{m}_q \rangle\), while the error bars show the associated confidence intervals, \(\sigma_{\langle \Delta \hat{m}_q \rangle}\). The shaded rectangles indicate the precursor pulse interval endpoints.
mass is most pronounced at low temperatures (as for $j = 3$ in Fig. 6) and which arises from the aforementioned temperature dependence of the elementary surface reaction kinetics. However, the difference in molecular mass between the initial and terminal surface species in Reaction (R3), denoted ΔM_B in Eq. (3), means that the net contribution to Eq. (18) from this half-reaction is less than zero for values of $\nu < 2 - M_{\text{H}_2\text{O}}(\text{M}_{\text{C}_2\text{H}_6})^{-1} \approx 1.40$. Obviously, this is the case for the $\langle \tilde{\nu} \rangle$ determined in Section 2.4.

The ultimate test of the model is to compare it with the validation set. The region of validity is the union between the calibration region and the region covered by the validation experiments (Brereton, 2003). Fig. 7 shows the model response for the experimental validation dataset with $j \in \{4, 7, 13\}$ (see Table 1). The trajectory of the transient mass gain, $\langle m_q \rangle$, shows that the performance of the model is satisfactory, with narrow confidence bands and conformal growth per limit cycle, $d\langle m_q \rangle|_{\Delta t}(dN_{\Delta t})^{-1}$. The predictions of the model are assessed in more detail below to determine the impact of the precursor pulse duration and deposition temperature on film growth per limit cycle, and to distinguish between ALD in saturating and in non-saturating film growth conditions.

7.2.1. Effect of Deposition Temperature on Film Growth per Limit Cycle

Fig. 8 shows the model predicted and experimentally observed effects of deposition temperature, T, on the film growth rate per limit cycle. Non-saturating growth is obtained for the precursor exposure period $\Delta t_a = 0.40$ (s) in the entire temperature range $[75, 275]$ ($^\circ$C). Additionally, the rate of film growth per limit cycle does not show a self-limiting growth region under these conditions, as $d\langle m_q \rangle|_{\Delta t}(dN_{\Delta t})^{-1}$ falls significantly for $T < 175$ ($^\circ$C) and for $T > 175$ ($^\circ$C). The initially low MGPC values in the low-temperature region ($T < 175$ ($^\circ$C)) arises from the activation barrier of the forward elementary reactions $i \in \{2, 3, 5, 6\}$ (see Reactions (R2 and R3)) which make it thermodynamically more favorable for adsorbed precursors to desorb than to proceed through the surface ligand-elimination reactions. The activation energies of these reactions are more easily overcome as the temperature increases, which promotes the equi-
Figure 8: The effect of deposition temperature in the range $T \in [75, 275]$ ($^\circ$C) on the mass gain per limit cycle, $d(m_q)_{\Delta t}(dN_{\Delta t})^{-1}$, at three levels of precursor exposure in the range $\Delta t_\alpha \in [0.4, 2.0]$ (s) with $\alpha \in \{A, B\}$. The symbols ($\circ, \square, \triangledown$) show the estimated MGPC, $d\Delta m_q|_{\Delta t}(dN_{\Delta t})^{-1}$, scaled with the ex situ XRR reference thickness, while the error bars show the associated confidence intervals, $\sigma_{d\Delta m_q|_{\Delta t}}$, for the dataset $j \notin \{2, 6, 10, 14, 18\}$ in Table 1. (\ldots) shows the maximum MGPC, max $d\Delta m_q|_{\Delta t}(dN_{\Delta t})^{-1}$.

...
surface equilibrium reactions $i \in \{1, 4\}$ also proceed faster in both directions (see Eqs. (21e and 21f)).

Fig. 8 shows that MGPC approaches the maximum growth per limit cycle for the precursor exposure period $\Delta t_\alpha = 1.0$ (s). This corresponds to surface saturation and is associated with the maximum surface concentrations, Λ, (see Section 2.4). The observed flat profile that encloses the maximum deposition rate indicates that a self-limiting growth region appears progressively under these conditions. As expected, this ideal self-limiting growth region widens for longer periods of precursor exposure, while it remains limited by the aforementioned thermodynamics of the precursor half-cycle reactions at low and high temperatures.

7.2.2. Effect of Precursor Exposure Duration on Film Growth per Limit Cycle

Fig. 9 shows the effect of precursor pulse duration, Δt_α and $\alpha \in \{A, B\}$, on the film growth rate per limit cycle, $d\langle m_\eta\rangle|_{\Delta t}(dN_{\Delta t})^{-1}$. The exposure periods of the two precursors were set to be equal and to vary in parallel in the range $\Delta t_\alpha \in (0, 5]$ (s), while the carrier gas purge period was maintained at $\Delta t_\beta := 2\Delta t_\alpha$ (s). It is evident that $d\langle m_\eta\rangle|_{\Delta t}(dN_{\Delta t})^{-1}$ approaches the limiting value corresponding to surface saturation asymptotically, as expected for the self-terminating ALD reaction kinetics. This behavior is independent of the deposition temperature. Figs. 8 and 9 make it also clear that the model predictions agree well with the experimental data, and successfully distinguish growth per limit cycle between saturating and non-saturating conditions. The predictive power of the model is crucial in this context, especially since it is necessary to keep the individual precursor doses to a minimum while maintaining sufficiently high exposure, at the lower bound defined by non-saturating conditions (Travis and Adomaitis, 2013b), in order to optimize commercial reactor systems. This is even more critical in the high-throughput spatial ALD systems that are under development for use in roll-to-roll and other large-substrate applications.

Finally, it is important to note that $d\langle m_\eta\rangle|_{\Delta t}(dN_{\Delta t})^{-1}$ is ultimately governed by the half-cycle average exposure dose, $\langle \delta_\alpha \rangle$, for the αth precursor. The
exposure of the growth surface is characterized by the time-dependent, local, precursor partial pressure during the exposure period and during a portion of each purge period:

\[
\langle \delta_\alpha \rangle = \frac{1}{(\zeta_{\text{end}} - \zeta_0)} \int_{\zeta_0}^{\zeta_{\text{end}}} p_\alpha d\zeta dt
\]

(34)
in which \(t_f = \Delta t_\alpha + \Delta t_\beta \). Thus, it is expected that an increase in the precursor mass flow, \(\bar{Q}_\alpha \), will yield a higher partial pressure, \(p_\alpha \), and consequently enhance the deposition rate, \(d\langle m_q\rangle|_{\Delta t}(dN_{\Delta t})^{-1} \). This will achieve saturation growth conditions at exposure times, \(\Delta t_\alpha \), that are lower than those presented Fig. 9.
Figure 10: Model-generated transient mass gain per unit of exposed QCM sensor area, $\langle m_q \rangle$, and the spatial integral mean value of p_C in $z \in [z_0, z_{\text{end}}]$ (m), resolved at a single pulse sequence $[\Delta t_\alpha, \Delta t_\beta] = [0.4, 0.8] \text{ (s)}$ in the temperature range $T \in [100, 200] \text{ (°C)}$. (o, □, ▽) show the collocation based trajectories at the Radau collocation point locations, while (−) shows the simulated trajectories. The shaded rectangles indicate the precursor pulse interval endpoints.

An extensive investigation of the precursor exposure dose is beyond the scope of the present study, and the reader is referred to Holmqvist et al. (2013a,b), for example, for more details.

7.3. Time Evolution of the Stable Limit-Cycle Solutions

This section describes several aspects of the dynamic ALD limit-cycle solution. The limit-cycle solutions shown in Figs. 10–13 present the same case study with an assigned pulse sequence $[\Delta t_\alpha, \Delta t_\beta] = [0.4, 0.8] \text{ (s)}$ and temperature range $T \in [100, 200] \text{ (°C)}$. This corresponds to the operating conditions of the experimental datasets $j \in \{1, 5, 9, 13, 17\}$ listed in Table 1. Figs. 10–
13 present also the results from the collocation method, and the figures thus compare these results with those obtained from the model integration of the DAE system with the CVODES solver (see Fig. 3). The results are practically identical. The collocation method used corresponds to a Radau solver with a fixed step size, while the solver used in the verification simulation uses a variable step size formula with backward differentiation and error control. Thus, the solution found by the CVODES solver fulfils the model equations, at least to the specified tolerances.

Fig. 10a confirms the mechanistic interpretation presented in Section 7.2, in that the slope of the trajectory of mass gain, $\langle m_q \rangle$, generated by the model at the leading edges of both precursor exposure periods becomes steeper as the temperature increases. Moreover, the elementary precursor adduct desorption reactions, $i \in \{2, 5\}$, and the precursor gas–surface equilibrium reactions, $i \in \{1, 4\}$, proceed faster in the high-temperature region, and these reactions thus demonstrate more pronounced desorption effects. They ultimately govern the overall decrease in mass gain per limit cycle. It is noteworthy that the terminal value of the mass gain trajectory, $\langle m_q \rangle(t_f)$, for $T = 200 \, ^\circ\text{C}$ falls below that of $T = 175 \, ^\circ\text{C}$ (which can be compared with the temperature dependence of $d\langle m_q \rangle|_{\Delta t}(dN_{\Delta t})^{-1}$ in Fig. 8).

Fig. 10b shows a complementary method for analyzing the dynamics of Reactions (R2 and R3). This method considers the trajectory of the integral mean value of the gas-phase composition of C_2H_6 on the spatial domain, $z \in [z_0, z_{\text{end}}]$. This is the most convenient method for elucidating the ligand-elimination reactions, $i \in \{3, 6\}$, since the production of C_2H_6 is governed exclusively by the continuation of these irreversible reactions. This method enables the number of hydroxyl groups that react with each Zn(C_2H_5)$_2$ precursor molecule, ν, to be estimated by temporal and spatial integration of the reaction byproduct that is released during the Zn(C_2H_5)$_2$ precursor half-reaction $[t_0, t_1]$ and the entire
time horizon, \([t_0, t_f]\). The number of hydroxyl groups is thus given by:

\[
\nu = \nu_L \int_{t_0}^{t_1} \int_{z_0}^{z_{\text{end}}} p_C dz dt \left(\int_{t_0}^{t_f} \int_{z_0}^{z_{\text{end}}} p_C dz dt \right)^{-1}
\]

(35)

in which \(\nu_L\) is the total number of ligands of the adsorptive organometallic precursor, and \(t_1 = \Delta t_A + \Delta t_P\) is the upper limit for the nominator temporal integral. Finally, it is noteworthy that the values determined from Eq. (35) and the \(\langle p_C \rangle\) trajectories depicted in Fig. 10b, correspond to the value of \(\langle \nu \rangle\) estimated from Eq. (3) and the \(\text{in situ}\) QCM mean mass gain, \(\langle \Delta \hat{m}_q \rangle\) (see Section 2.4).

Computing the limit-cycle solution over the time horizon \([t_0, t_f]\) requires that the terminal composition of the fractional surface coverage species, \(\theta_\kappa(t_f)\) and \(\forall \kappa \in \{A^*, \ldots, F^*\}\), returns to its initial composition, \(\theta_\kappa(t_0)\), (see Eq. (24a)).

The forced-period system dynamics are described by the DAE system in Eq. (25), which is subject to the surface state initial conditions (see Eq. (25b)) and terminal constraints (see Eq. (25c)). This implies that an unambiguous method to numerically compute limit-cycle ALD dynamic solutions is essential for the accuracy, reliability and reproducibility of the solution of such DAE systems.

Fig. 11 presents a representative limit-cycle solution computed using the collocation method (see Section 6.1), where the fractional surface state composition is depicted as a function of time over the entire horizon \([t_0, t_f]\). Under these conditions, the growth surface approaches a fully saturated state during both of the precursor exposures. The surface state limit-cycle dynamic model (see Eq. (21)) states that saturating ALD conditions per limit-cycle are obtained if the fractional surface coverage \(\theta_{A^*}(t_0) = \theta_{A^*}(t_f) := 1.0\), and consequently \(\theta_\kappa(t_0) = \theta_\kappa(t_f) := 0.0\) and \(\forall \kappa \notin A^*\), according to Eq. (24b). Thus, an important consequence of the limit-cycle solutions depicted in Fig. 11 is that they enable to mechanistically quantify the difference between the saturating ALD and non-saturating film growth conditions previously observed in Figs. 8 and 9 by means of the underlying surface-state limit-cycle dynamics.

Fig. 11 shows that \(\theta_{A^*} \to 0\) during the Zn(C\(_2\)H\(_5\))\(_2\) exposure as the growth
Figure 11: Projection of the fractional surface coverage limit-cycle dynamics sampled in the temperature range $T \in [100, 200]$ ($^\circ$C) with the pulse sequence $[\tilde{\Delta}t_\alpha, \tilde{\Delta}t_\beta] = [0.4, 0.8]$ (s). The symbol (−) shows the simulated integral mean value of $\langle \theta_\kappa \rangle$ and $\kappa \in \{A^*, B^*, C^*, D^*\}$ in $\zeta \in [\zeta_0, \zeta_{end}]$ (m), while the corresponding solutions from the collocation method at the Radau collocation point locations are shown by (○) for $T = 100$ ($^\circ$C), (□) for $T = 150$ ($^\circ$C), and (▽) for $T = 200$ ($^\circ$C). The shaded rectangles indicate the precursor pulse interval endpoints.
surface saturates with the precursor adduct, B^*, through Reaction (R2a), and the precursor adduct in its transition state, C^*, through Reaction (R2b). The adduct in the transition state is also subject to the ligand-elimination reaction (Reaction (R2c)), which governs the formation of D^* onto which the H_2O precursor can adsorb. The H_2O half-reaction (see Reaction (R3)) can subsequently proceed in an analogous manner, ultimately resulting in the reformation of A^* through Reaction (R3c). Fig. 11 also shows that the fractional surface coverages of adduct species, $\kappa \in \{B^*, E^*\}$, and the corresponding adducts in their transition states, $\kappa \in \{C^*, F^*\}$, are approximately five to ten times smaller than the coverages of the permanently bound species, $\kappa \in \{A^*, D^*\}$. It is important to determine the intermediate surface state coverage of these species since they are very difficult to detect experimentally, as surface state measurements correspond to permanently bound species (Travis and Adomaitis, 2013b).

Figs. 12 and 13 present alternative views of the fractional surface coverage limit-cycle dynamics associated with the $\text{Zn(C}_2\text{H}_5)_2$ half-reaction (Reaction (R2)) and the H_2O half-reaction (see Reaction (R3)), respectively. The limit-cycle solutions can be easily identified in the phase plane portraits, and it is evident that the projected surface state trajectories depicted in Fig. 11 are closed curves, which means that all states conform to periodic boundary conditions over the time horizon $[t_0, t_f]$. The closed trajectories show the evolution of the fractional surface coverage with time, with a counter-clockwise direction of motion (i.e. the direction of increasing time) from the initial composition in Fig. 11. It is noteworthy, that the closed curves for $\langle \theta_\kappa \rangle$ shown in Figs. 11–13 are spatial averages over the domain $\zeta \in [\zeta_0, \zeta_{\text{end}}]$ (see Figure 1b), in order to make the figures clear. However, it must be remembered that Eq. (16) is a PDE, spatially discretized with FVM elements (see Section 4.5), which implies that $N_{\text{FVM}} \times N_\kappa$ limit-cycles appear throughout the entire spatial domain $z \in [z_0, z_{\text{end}}]$. Consequently, $N_{\text{FVM}} \times (N_\kappa - 1)$ terminal constraints (see Eq. (24)) must also be fulfilled. Finally, Figs. 10–13 reveal rigorous limit-cycle dynamics for both the gas-phase and surface state species, and for the ALD film growth. These dynamics are essential for process analysis, design and optimization.
Figure 12: Phase plane portrait of the fractional surface coverage limit-cycle dynamics relevant to the Zn(C₂H₅)₂ precursor ALD half-reaction (Reaction (R2)) in the temperature range $T \in [100, 200]$ (°C). (−) shows the simulated integral mean value of $\langle \theta_\kappa \rangle$ and $\kappa \in \{A*, B*, C*, D*\}$ in $\zeta \in [\zeta_0, \zeta_{end}]$ (m), while the corresponding solutions from the collocation method at the Radau collocation point locations are shown by (○) for $T = 100$ (°C), (□) for $T = 150$ (°C), and (▽) for $T = 200$ (°C).

8. Concluding Remarks

In this paper, a novel physically based model of a viscous continuous cross-flow ALD reactor with temporally separated precursor pulsing was developed and applied to ZnO ALD with Zn(C₂H₅)₂ and H₂O precursors. Model components that describe reactor-scale gas-phase dynamics and surface state dynamics...
Figure 13: Phase plane portrait of the fractional surface coverage limit-cycle dynamics relevant to the H$_2$O precursor ALD half-reaction (Reaction (R3)) in the temperature range $T \in [100, 200]$ ($^{\circ}$C). $\langle \theta_{\kappa} \rangle$ shows the simulated integral mean value of $\langle \theta_{\kappa} \rangle$ and $\kappa \in \{A^*, D^*, E^*, F^*\}$ in $\zeta \in [\zeta_0, \zeta_{\text{end}}]$ (m), while the corresponding solutions from the collocation method at the Radau collocation point locations are shown by (o) for $T = 100$ ($^{\circ}$C), (□) for $T = 150$ ($^{\circ}$C), and (▽) for $T = 200$ ($^{\circ}$C).

have been integrated to accurately characterize the continuous, cyclic ALD reactor operation that is described by limit-cycle dynamic solutions. The steady cyclic operation was discretized using a Radau collocation scheme in time and solved using the CasADi interface to IPOPT. The surface-reaction model, which accounts for the temporal evolution of the growth surface composition, is gov-
erned by the reaction rate expressions of the trapping-mediated mechanism, in
which it is assumed that both precursors follow structurally similar reaction
sequences. These sequences are initiated by the formation of adsorption and
precursor adducts, which is followed by an adduct/transition-state equilibrium
reaction that is terminated with an irreversible reaction in which ligands are
eliminated.

The work described in this paper was motivated by the predictive capabili-
ties of physically based ALD process models, as such models can be used in
the design of novel reactors and in the optimization of deposition conditions.
For this reason, a comprehensive study of in situ growth kinetics with QCM di-
agnostics was carried out. This provided quantitative submonolayer resolution
of the mass gain that occurs during a single ALD pulse sequence, from which
the Arrhenius kinetic parameters involved in the ALD reaction intrinsic kinetic
mechanism were estimated using a general dynamic optimization problem.

The assessment of the accuracy and reliability of the parameter estimates
reported here, showed that the parameters are highly correlated, as expected.
These correlations arise from the complex interdependence between elementary
surface reactions involved in ALD and the intrinsic mathematical structure of
the Arrhenius equation, and could be reduced through optimal reparameter-
ization of the Arrhenius equation by means of the anti-correlation procedure
described by Schwaab et al. (2008). This improved the precision of the param-
eter estimates. Predictions from the model of the transient mass gain per unit
area of exposed surface QCM sensor (resolved for a single pulse sequence) agree
well with both calibration data and validation data, under a wide range of oper-
ating conditions. The predictions are associated with narrow confidence bands.
The model also predicts accurately the impacts of the precursor pulse duration
and of the deposition temperature on the film growth per limit cycle, and can
in this way distinguish between ALD in saturating and in non-saturating film
growth conditions.

The principal contribution of this paper is the rigorous transport/reaction
model that is based on PDAEs and the continuous reactor operation described
by limit-cycle solutions that are unambiguous for several applications. Another important contribution is the dynamic procedure used to estimate parameters from in situ experimental data in order to identify accurately kinetic data and to develop novel ALD reaction intrinsic kinetic mechanisms. The fundamental understanding of the ALD process that was obtained by analyzing the limit-cycle dynamics for both the gas-phase and surface state species, and by analyzing the ALD film growth, is of practical interest when scaling ALD processes to large-surface-area substrates and high-throughput production.

Acknowledgement

The authors acknowledge the supported by the Swedish Research Council under Grant no. 2006-3738. Fredrik Magnusson is a member of the LCCC Linnaeus Center and the eLLIIT Excellence Center at Lund University.
Nomenclature

Roman letters

- A': cross section area of the reaction chamber \(\text{m}^2 \)
- A_i: frequency factor in the Arrhenius equation \((\text{mol m}^{-2})^{1-n_i} \text{ Pa}^{-1} \text{s}^{-1}\)
- C: \((N_\beta \times N_\beta)\) parameter correlation matrix
- $D_{\alpha\beta}$: binary diffusivity \(\text{m}^2 \text{s}^{-1} \)
- E_i: activation energy \(\text{J mole}^{-1} \)
- F: system of differential algebraic equations
- $F(N_\beta; \psi_{\alpha})$: Fisher’s F-distribution
- g: response function
- J: parameter Jacobian matrix
- k_i: reaction rate constant \((\text{mol m}^{-2})^{1-n_i} \text{ Pa}^{-1} \text{s}^{-1}\)
- M_α: molar mass \(\text{kg mole}^{-1} \)
- m_a: film mass increment \(\text{kg m}^{-2} \)
- n_i: surface reaction order
- p: pressure \(\text{Pa} \)
- Q_α: volumetric flow rate at STP \(\text{Nm}^3 \text{s}^{-1} \)
- R: universal gas constant \(\text{J mole}^{-1} \text{K}^{-1} \)
- r_i: surface reaction rate \(\text{mol m}^{-2} \text{s}^{-1} \)
- S_{α}: source term in the general transport equation \(\text{kg m}^{-3} \text{s}^{-1} \)
- s^2: variance estimate of σ^2
- T: temperature \(\text{K} \)
- t: time \(\text{s} \)
- $t_{(\psi, \alpha/2)}$: Student’s t-distribution
- u: design variables
- v_z: linear velocity \(\text{m s}^{-1} \)
- W: weight matrix
- w: algebraic variables
- x: state variables
- y: measured state variables
- z: spatial coordinate \(\text{m} \)
Greek letters

- \(\alpha \) significance level
- \(\beta \) calibration parameter vector
- \(\Delta t_\alpha \) pulse duration s
- \(\delta_\alpha \) half-cycle average precursor dose Langmuir
- \(\varepsilon_{\beta_i} \) normalized margin of error
- \(\zeta \) QCM local coordinate variable m
- \(\theta_\kappa \) fractional surface coverage of surface species
- \(\Lambda \) maximum molar concentration of surface sites mol m\(^{-2}\)
- \(\mu \) dynamic viscosity of the gas mixture kg m\(^{-1}\) s\(^{-1}\)
- \(\nu \) numbers of surface OH groups reacting
- \(\xi_i \) surface reaction stoichiometric coefficient
- \(\rho \) density of the gas mixture kg m\(^{-3}\)
- \(\Sigma \) parameter covariance matrix
- \(\phi \) weighted sum of squared residuals ng cm\(^{-2}\)
- \(\Pi_\alpha \) characteristic function of \(t \) and \(\Delta t_\alpha \)
- \(\varphi \) degrees of freedom
- \(\omega_\alpha \) mass fraction of gaseous species

Subscripts and superscripts

- 0 initial value
- \(\alpha, \beta \) gaseous species indices
- \(i \) surface reaction index
- \(j \) calibration parameter index
- \(k \) calibration and validation set index
- \(\kappa \) surface species index
- \(q \) quartz crystal
- \(\text{STP} \) state variable at STP
- \(s \) solid
- \(\text{ref} \) state at the reference temperature
References

temperature and gas velocity on growth per cycle during Al$_2$O$_3$ and ZnO
atomic layer deposition at atmospheric pressure. Journal of Vacuum Science
& Technology A 30 (1), 01A155.

Knez, M. (Eds.), Atomic Layer Deposition of Nanostructured Materials, 1st

of film growth rate during atomic layer epitaxy. Applied Surface Science 158,
81–91.

Poodt, P., Cameron, D. C., Dickey, E., George, S. M., Kuznetsov, V., Parsons,
G. N., et al., 2012. Spatial atomic layer deposition: A route towards further
industrialization of atomic layer deposition. Journal of Vacuum Science &
Technology A 30 (1), 010802.

Dorigo, M., Glover, F. (Eds.), New Ideas in Optimization. McGraw-Hill, Lon-
don, pp. 79–108.

Puurunen, R. L., 2003. Growth per cycle in atomic layer deposition: A theoret-
ical model. Chemical Vapor Deposition 9 (5), 249–257.

Puurunen, R. L., 2004. Analysis of hydroxyl group controlled atomic layer de-
position of hafnium dioxide from hafnium tetrachloride and water. Journal of
Applied Physics 95 (9), 4777–4786.

Puurunen, R. L., 2005a. Correlation between the growth-per-cycle and the sur-
face hydroxyl group concentration in the atomic layer deposition of aluminum
oxide from trimethylaluminum and water. Applied Surface Science 245 (1–4),
6–10.

