Complex-Coefficient Systems in Control

Olof Troeng, Bo Bernhardsson, Claudio Rivetta

Abstract—Complex-valued dynamics can be used for modeling rotationally invariant two-input two-output systems and bandpass systems when they are considered in the baseband. In a few instances, control design has been done in the complex domain, which facilitated analysis and synthesis. While previous work has been application specific, we will discuss more generally how complex valued dynamics arise, basic properties of these systems, revisit some classic control theoretic results in the complex setting, and in the final two sections we discuss two novel applications of complex-coefficient systems for control analysis: cavity field control and Cartesian feedback linearization of RF amplifiers. In the Appendix we mention some pitfalls when analyzing complex systems with MATLAB.

II. ORIGIN OF COMPLEX-VALUED DYNAMICS

A. Rotationally Invariant TITO Systems

A two-input two-output (TITO) system

$$G(s) = \begin{bmatrix} G_1(s) & -G_2(s) \\ G_2(s) & G_1(s) \end{bmatrix}$$

acting on signals $[x_1 \ x_2]^T$ can be compactly represented by the complex SISO system

$$G(s) = G_1(s) + iG_2(s)$$

acting on signals $x_1 + ix_2$.

For example, the dynamics of the Foucault pendulum in the xy-plane, can, subject to small angle approximation, be represented by the complex differential equation

$$\ddot{z} + 2\Omega \dot{z} \sin \phi + \omega_z^2 z = 0$$

where $z = x + iy$, ω is the natural frequency of the pendulum, Ω the rotational frequency of the Earth and ϕ is the latitude where the pendulum is located. See [6] for similar examples.

Two other examples are the dynamics of balanced three-phase electric machines, which take the form (1) after application of an $a\beta$-transformation [1]–[3], and vibrations in rotating machines [4], where the states x_1 and x_2 correspond to the x- and y-positions of the rotating shaft.

B. Bandpass Systems

In applications such as telecommunications, where the signals of interest are narrowband around some frequency ω_c, it is convenient to consider the complex envelopes of the signals [7], [19], [20].

If the physical signal is given by

$$x_c(t) = A(t) \cos (\omega_c t + \phi(t))$$

$$= \text{Re} \left\{ A(t)e^{i\phi(t)}e^{i\omega_c t} \right\}$$

where the modulation, i.e. $A(t)$ and $\phi(t)$, varies slowly, then the complex envelope, or the equivalent baseband signal, is given by

$$x_{BB}(t) := A(t)e^{i\phi(t)}$$

$$= x_{Re}(t) + ix_{Im}(t),$$

where $x_{Re}(t)$ and $x_{Im}(t)$ are real-valued.
An input-output-relation
\[Y_c(s) = G_c(s)U_c(s) \]
in the Laplace domain, is conveniently transformed to the
base-band via the transformation \(s \rightarrow s + i\omega_c \), which gives
\[Y_c(s + i\omega_c) = G_c(s + i\omega_c)U_c(s + i\omega_c). \]
\(Y_c(s + i\omega_c) \) and \(U_c(s + i\omega_c) \) are equivalent baseband signals
and thus the equivalent baseband model of \(G_c(s) \) can be
identified as
\[G_{BB}(s) = G_c(s + i\omega_c). \] (5)
If the signals of interest are have narrow support around \(\omega_{RF} \),
high frequency dynamics of \(G_{BB}(i\omega) \) can be neglected.
Typically the resulting \(G_{BB}(s) \) has complex coefficients [7].

Example, Baseband model of complex pole pair: The
second order resonant system
\[\frac{2\zeta\omega_0 s}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \]
has a baseband model given by
\[\frac{2\zeta\omega_0(s + i\omega_c)}{(s + \zeta\omega_0 + i\omega_c)(s + \zeta\omega_0 - i\omega_c)}. \]
If \(\omega_0 \approx \omega_c \) and the damping factor \(\zeta \) is small, then for small \(s \)
the first term in the denominator is \(\approx 2i\omega_c \) and the following
first-order approximation holds,
\[G_{BB}(s) \approx \frac{\zeta\omega_0}{s + \zeta\omega_0 + i(\omega_c - \omega_0)}. \]

Example, Baseband model of time-delay: The baseband
model of a time delay \(e^{-sT} \) is \(e^{-(s+i\omega_c)T} = e^{-sT}e^{-i\omega_c T} \).
If \(\omega_c \) is large, the phase of baseband model is sensitive to
variations in \(T \).

C. Quantum Systems

Linear stochastic quantum systems are naturally described
by complex, quantum stochastic differential equations — see
[8]–[10] for control design for these systems.

III. COMPLEX SIGNALS AND SYSTEMS

In the previous section we motivated the study of systems
of the form
\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\] (6)
where the signals and matrices are complex. The complex
setting gives rise to some peculiarities not seen for real
systems. In Fig. 1 it is seen that a first-order complex system
may exhibit an oscillatory step response and in Fig. 2 it is
seen that the frequency response is not necessarily conjugate
symmetric with respect to positive and negative frequencies.

To better understand the structure of the system (6) we
split its impulse response into its real and imaginary parts
\[g(t) = g_{Re}(t) + ig_{Im}(t). \]

Denoting the Laplace transform of \(g_{Re} \) and \(g_{Im} \) by \(G_{Re}(s) \)
and \(G_{Im}(s) \) respectively, it is seen that the transfer function
for (6) is given by
\[G(s) = G_{Re}(s) + iG_{Im}(s). \] (7)
Note that \(G_{Re}(s) \) and \(G_{Im}(s) \) are not the real and imaginary
parts of \(G(s) \), but that the subscripts are motivated by their
relative contribution to the impulse response. Since \(g_{Re}(t) \)
and \(g_{Im}(t) \) are real it follows that \(g^*(t) = g_{Re}(t) - ig_{Im}(t) \)
and
\[G^*(\bar{s}) = G_{Re}(\bar{s}) - iG_{Im}(\bar{s}), \]
due to conjugate symmetry of \(G_{Re}(s) \) and \(G_{Im}(s) \). Thus the
decomposition (7) can be recovered from \(G(s) \) via
\[G_{Re}(s) = \frac{G(s) + G^*(\bar{s})}{2}, \quad G_{Im}(s) = \frac{G(s) - G^*(\bar{s})}{2i}. \] (8)

The action of the complex coefficient transfer function (7)
ons a signal \(x(t) = x_{Re}(t) + ix_{Im}(t) \) is illustrated in Fig. 3.

A. Correspondence to Real-Valued Representation

In some applications, [14], [21], the complex transfer
function (7) is represented as a real, two-input two-output
(TITO) system of the form
\[G(s) = \begin{bmatrix} G_{Re}(s) & -G_{Im}(s) \\ G_{Im}(s) & G_{Re}(s) \end{bmatrix}, \] (9)
acting on real-valued vector signals \(\begin{bmatrix} x_{Re} \\ x_{Im} \end{bmatrix} \).
To better understand the relationship between the real system representation (9) and the complex representation (7), we consider the eigenvalue factorization of (9),

$$G(iω) = S^∗ \begin{bmatrix} G(iω) & 0 \\ 0 & G(-iω) \end{bmatrix} S, \quad S = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix},$$

from which we see that the eigenvectors are independent of frequency, and that the eigenvector $[1 \ -i]^T$ $\leftrightarrow e^{iωt}$, and similarly for $[1 \ i]^T$.

While the real-coefficient representation (9) is necessary for physical implementation of complex transfer functions, it contains redundant information, and from (10) we see that the frequency responses of $G(iω)$ for positive and negative frequencies are intertwined, complicating analysis.

The eigenvectors of $G(iω)$ are orthogonal, so the singular values of $G(iω)$ are the modulus of the eigenvalues, thus

$$\|G\|_\infty = \|G\|_\infty \quad \|G\|_2 = \sqrt{2\|G\|_2}.$$

$$\|G\|_\infty = \|G\|_\infty \quad \|G\|_2 = \sqrt{2\|G\|_2}.$$

$$\|G\|_\infty = \|G\|_\infty \quad \|G\|_2 = \sqrt{2\|G\|_2}.$$

B. Response to Signal with Specific Direction

Even if the dynamics of a system is rotationally invariant, and hence can be represented as a complex SISO system, disturbances may have a specific direction. Consider for example phase noise in radio-frequency applications.

To illustrate the general behavior, consider without loss of generality, the output of (6) when subjected to a purely real signal $u(t) = \cos(ωt)$,

$$y(t) = |G_{Re}(iω)| \cos(ωt + ∠G_{Re}(iω)) + i |G_{Im}(iω)| \cos(ωt + ∠G_{Im}(iω)).$$

The signal (13) corresponds to Lissajous ovals in the complex plane, see Fig. 4.

IV. Frequency Domain Analysis

When analyzing complex systems in the frequency domain it is necessary to consider both positive and negative frequencies, as illustrated in Fig. 2. For example a factor $e^{iωτ}$ gives the impression of an improved phase margin if only positive frequencies are considered.

A. Nyquist’s Stability Criterion

The assumptions and standard proof of the Nyquist stability criterion require no change as the argument principle is valid for any meromorphic function [18].

B. Bode’s Sensitivity Integral

Bode’s sensitivity integral is typically considered over only positive frequencies [22], however double-sided integration is necessary for complex coefficient transfer functions,

$$\int_{-∞}^{∞} \log |S(iω)| dω = 2π \sum_{k=1}^{N_p} \text{Re} p_k,$$

where $\{p_k\}$ are the RHP poles of G. Also, unlike the real case, it is crucial to take the real part of the poles in (14). The proof is the same [22].

That the single-sided version of (14) fails to hold in the complex case, is seen from that $G(s + iδ)$ would correspond to different lower limits of integration for different $δ$.

C. Bode’s Complementary Sensitivity Integral

The relationship for the complementary sensitivity function [23] needs the same modifications as in (14) to cover complex coefficient transfer functions,

$$\int_{-∞}^{∞} \log |T(iω)| dω^2 = -πK_v^{-1} + πτ + 2π \sum_{k=1}^{N_z} \text{Re} \frac{1}{z_k},$$

where $τ$ is the system time-delay, $\{z_k\}$ are the RHP zeros of $G(s)$ and $K_v = \lim_{s→0} sL(s)$. The result follows, with minor modifications, from the proof in [23].

D. Bode’s Gain-Phase Relationship

Bode’s gain-phase relationship which relates the phase of a real, minimum phase system $G(s)$, to the slope of its gain curve in logarithmic scale, does not hold for complex $G(s)$. The less intuitive relationship given by the double-sided version of the Kramers-Kronig relations [24],

$$∠G(iω_0) = \frac{1}{π} \mathcal{P} \int_{-∞}^{∞} \frac{\log |G(iω)|}{ω - ω_0} dω,$$

where \mathcal{P} denotes the Cauchy principle value, still holds for complex, minimum phase systems.

V. State-Space Analysis

Notions such as controllability, stability, etc. are analogous to the real case [15]. Below, some special results are discussed in more detail.
A. \mathcal{H}_2 and \mathcal{H}_∞ Norms

The \mathcal{H}_2-norm can be calculated using the same formulas as in the real case, i.e. $\|C(sI-A)^{-1}B\|_2^2 = \text{trace}(B^*Y^*B) = \text{trace}(CXC^*)$, where $X = X^*$ and $Y = Y^*$ are solutions to the complex Lyapunov equations $XA + A^*X + B^*B = 0$ and $AY + YA^* + CC^* = 0$ respectively.

The linear matrix inequalities for calculating the \mathcal{H}_∞-norm also carry over, given that Hermitian transposition is used.

Remark: MATLAB’s functions for \mathcal{H}_∞-synthesis does not handle complex systems correctly.

B. LQR

In [15] the optimal feedback for a complex linear system with respect to a cost functional

$$J = \int_0^\infty [x(t)^*u(t)]^* \begin{bmatrix} Q & N \\ N^* & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$$

is derived. The optimal feedback is given by $u = -Kx$ with

$$K = R^{-1}(N^* + B^*X),$$

where the Hermitian matrix $X \geq 0$ satisfies the complex Riccati equation

$$A^*X + X^*A - (N + XB)R^{-1}(N^* + B^*X) + Q = 0.$$

For a first order system it seen that when $N = 0$, BK is real and positive, and the linear optimal regulator moves the closed loop pole, $A - BK$, parallel to the real axis, further into the LHP.

The amazing robustness properties of LQR (for $N = 0$), that hold in the real case (infinite gain margin and $\geq 60^\circ$ phase margin), hold also in the complex case, even if the Nyquist curve is not symmetric with respect to the real axis.

C. Kalman Filter for Complex-Valued Normally Distributed Noise

It is natural to allow the state and measurement noise to be complex-valued. A complex-valued normally distributed variable Z with zero mean is determined by the matrices $E(ZZ^*)$ and $E(ZZ^T)$. If the latter is zero, one says that Z is circular-symmetric, which means that the distribution function is rotationally invariant in the complex plane. The paper [25] discusses the general problem and introduces the concept of “widely linear state space models” to describe the optimal estimator in an aesthetic form.

VI. EXAMPLE I: AMPLIFIER LINEARIZATION

Cartesian feedback linearization of power amplifiers was actively studied 10–20 years ago as a means to reduce power consumption and adjacent channel interference in telecommunications [26–28]. To avoid instability and performance degradation, the phase shift ϕ between up- and down-conversion needs to be properly compensated by an adjustment phase $\hat{\phi}$, see Fig. 5.

If the amplifier is operating in an almost linear region, the open loop system is well approximated by

$$G(s) = H(s)P(s)e^{-\tau}\beta,$$

(16)

where $H(s)$ is the loop filter, $P(s)$ is a baseband model of the mixer and amplifier dynamics, τ is the lump delay and $\delta := (\hat{\phi} - \phi)$ is the phase adjustment error.

Although [29] simulated (16) as a complex systems, the stability properties were analyzed using the equivalent TITO form (1). After algebraic computations and a clever observation it was shown that an adjustment error δ translates directly to a corresponding reduction in phase margin.

In the complex setting the same conclusion follows directly from the Nyquist criterion (Sec. IV-A), by noting that the factor $e^{j\delta}$ corresponds to a rotation of the Nyquist curve $H(i\omega)P(i\omega)e^{-i\tau\omega}$. For δ radians, see Fig. 6 for an illustration.

VII. EXAMPLE II: CAVITY FIELD CONTROL

In radio-frequency accelerators, particle bunches are accelerated by electromagnetic fields confined in RF cavities. The amplitude of the fields, and their phase relative the particle bunches, need to be precisely controlled [30].

To see how complex transfer functions play a role in this, we first derive the baseband equations for the cavity and the RF system (Fig. 7), and then design a complex \mathcal{H}_∞-controller.

A. Model of Cavity Dynamics

From Maxwell’s equations it follows that the electric field in the cavity can be expressed as a linear combination of

![Fig. 5: Amplifier linearization by Cartesian feedback [28], loop filters, up- and down-conversion mixers are shown.](image)

![Fig. 6: Nyquist curves for Cartesian feedback loop with different phase adjustment errors. The nominal curve is from [26, Sec. 4.2].](image)
where $\Delta \omega_k = \omega_{RF} - \omega_k$.

A baseband model of the RF system in Fig. 7, including the accelerating π-mode and one parasitic mode, now takes the form

$$P(s) = P_{amp}(s)e^{-i\omega_{RF}\tau}e^{-\tau s} \times \left[\frac{c_k \kappa_{\pi}}{s + \gamma_{\pi} + i\Delta \omega_{\pi}} + \frac{c_k \kappa_1/2}{s + \gamma_1 + i\Delta \omega_1} \right], \quad (19)$$

where $P_{amp}(s)$ is the dynamics of the power amplifier, τ is the system time delay, c_k quantify the coupling of mode k to the measurement probe, and $e^{-i\omega_{RF}\tau}$ is an additional factor resulting from the baseband transformation of the loop delay (cf. II-B). Complex quantities in (19) have been highlighted.

B. H_{∞}-synthesis Example

As we demonstrate in the Appendix, the MATLAB functions for H_{∞}-synthesis does not work for complex coefficient systems, instead we used the TITO representation (1), which resulted in a controller that also had structure (1), from which we recovered a complex controller.

1) **Specifications:** The main requirements for cavity field control is to suppress load disturbances while maintaining good robustness and avoiding excessive control signal activity. These requirements correspond to the following weights for mixed sensitivity synthesis,

$$W_S(s) = 1,$$

$$W_{PS}(s) = k_1 \cdot \frac{1}{s + \epsilon},$$

$$W_{KS}(s) = k_2 \cdot \frac{s + \omega_{bw}}{s + N \omega_{bw}}.$$

By tuning how the parameters of the weighting functions, we arrived at a reasonable controller design.

2) **Results:** The frequency response of the controller is shown in Fig. 9, note the asymmetry with respect to positive and negative frequencies, which imply that the controller has complex-coefficients. It can also be seen that a notch has been arranged at the fundamental passband frequency ω_{bw}, and one parasitic mode, now takes the form

$$\mathcal{E}(r,t) = \sum_{k=0}^{\infty} v_k(t) \mathbf{E}_k(r),$$

where the mode amplitudes v_k satisfy [30, Ch 5, 10]

$$\frac{d^2}{dt^2} v_k + 2 \gamma_k \frac{d}{dt} v_k + \omega_k^2 v_k = 2 \kappa_k \frac{d}{dt} i_g + 2 \alpha_k \frac{d}{dt} i_b, \quad (17)$$

where ω_k is the resonance frequency and γ_k, the half bandwidth of mode k. κ_k and α_k quantify how the output of the power amplifier, modeled as a current i_g, and the accelerated particle current i_b, couple to the cavity field. The amplifier output i_g, can considered as the control signal. Variations in i_b enter as load disturbances.

The distribution of modes in the fundamental passband for an elliptical cavity is shown in Fig. 8. The mode that is used for particle acceleration is typically the π-mode, and the purpose of the RF system is to excite the π-mode and control its phase and amplitude.

After both Laplace and baseband transformations of (17), we get

$$V_k(s) := \frac{1}{s + \gamma_k + i \Delta \omega_k} (\kappa_k I_g(s) + \alpha_k I_b(s)), \quad (18)$$
different frequency response for positive and negative frequencies.

We believe that there are many applications where a complex approach could bring increased insight and that there are related control theoretical questions worthy of further investigation.

REFERENCES

APPENDIX

MATLAB handles complex-coefficient systems incorrectly. We detected the following issues with version R2016a (Linux).

In the nyquist plot, the frequency response for negative frequencies equals that at positive frequencies, which is incorrect for complex coefficients system. hinfnorm only considers positive frequencies, while minreal does not support complex data at all.

The first example of H_∞-synthesis in the MATLAB documentation,

\[
G = (s-1)/(s+1)^2; \\
W1 = 0.1*(s+100)/(100*s+1); \\
W2 = 0.1; \\
[~,~,GAM] = mixsyn(G,W1,W2,[]) \\
gives \text{GAM}=0.23.\text{ Multiplying the plant } G \text{ by a complex factor } \exp(0.4i) \text{ should not affect the resulting value, as the factor could be canceled by the controller. However the result in this case is } \text{GAM}=0.40, \text{ thus demonstrating incorrectness.}