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Abstract

To understand the growth of continental crust, the 
balance between juvenile mantle derived extraction,  
infracrustal reworking and crustal recycling, needs to be 
estimated. Since the beginning of the century, the use of 
coupled in situ zircon U�Pb, Lu�Hf and O isotope anal-
yses as a tool to address these questions have increased 
exponentially. Numerous compilations of ever growing 
datasets have been presented, leading to new, and some-
times contrasting models of continental growth. Many 
of theses models, however, su�er from a number of  
assumptions, including a mantle reservoir that has been 
homogeneously and linearly depleted since the Hadean. 
Further, the use of (mainly) detrital zircon, taken out 
of their geological context, and the application of their 
depleted model-ages clearly hamper the validity of these 
models. 

To accurately address the question regarding continental 
crustal growth using combined zircon U�Pb-Lu�Hf(-O) 
isotope data, one needs to have contextual control and 
minimise the uncertainties of the applied models. 

In papers included in this thesis such an approach has 
been used on three di�erent Palaeo- to Meso-Proterozo-
ic orogenic belts; in Fennoscandia, in North American 
Grenville and in the Birimian terrane of the West African 
craton. 

�e eastern part of the Sveconorwegian Province, located 
in the southwestern part of the Fennoscandian Shield, is 
made up of granitiod rocks that were emplaced through 
sequential tapping of a reservoir that formed through 
mixing between a 2.1�1.9 Ga juvenile component and 
Archaean crust. Between 1.7 and 1.4 Ga the continental 
crust of the Eastern Segment was reworked with little or 
no generation of new crust. 

Further to the west, in the Ide�orden terrane of the 
Sveconorwegian Province, 1.65 to 1.33 Ga rocks have  
isotopic signatures that indicate reworking of older  
continental crust, including sediments. However, overall 
the isotopic signatures in the Ide�orden terrane indicate 
an increase in juvenile material with time, consistent with 
development of an extensional back-arc rift geotectonic 
setting, accommodating deposition of the local metased-
imentary basin, Stora Le-Marstrand. 

Isotope data from rocks within the Grenville orogen in 
subsurface Ohio suggest a common c. 1.65 Ga juvenile 
source to a majority of the sampled bedrock. Emplace-
ment of this juvenile crustal contribution was followed 
by sequential reworking of that reservoir with little or no 
additional contribution to the source.

 

�e c. 2.31�2.06 Ga Birimian terrane in Ghana, West 
African craton, is a commonly cited example of plume 
initiated crustal growth, that is known to have largely  
juvenile signatures. However, we can show that reworked 
Archaean crust contribute in a much larger extent than 
previously known, once again highlighting the impor-
tance of infracrustal reworking during emplacement of 
continental crust. Further, the emplacement of felsic 
rocks during the Eoeburnean pre-dates suggested plume 
related rocks, contradicting a suggested plume initiated 
crustal growth. 

Collectively, these studies highlight the importance of 
infracrustal reworking in Palaeo- to Meso-Proterozoic 
accretionary orogens. �ese studies also provide good 
examples of combined zircon U�Pb-Lu�Hf-(O) isotope 
analyses on rocks and rock suites with known a�nity 
where the validity of chosen models can be justi�ed.
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for the Proterozoic range from positive (net growth) to 
steady state (neither net growth or loss) to negative (net 
loss).

Radiometric ages of igneous rocks (or minerals such 
as zircon) show an uneven distribution with peaks and 
troughs through time (Fig. 1). �is pattern can be inter-
preted in di�erent ways. Either, the peaks represent pe-
riods of high rates of crustal growth (i.e. mantle derived 
melts) and troughs periods of crustal growth quiescence 
(e.g. Condie, 1998). �is implies a non-uniformitarian 
Earth with respect to rates or processes. Alternatively, 
the age peaks and troughs are an e�ect of preservation 
or sampling bias. Interestingly, the age peaks correlate 
with supercontinent assembly (Fig. 1; e.g. Condie, 1998; 
Campbell and Allen, 2008; Parman, 2015). Either su-
percontinent assembly is associated with greater growth 
rates (e.g. Condie, 1998) or higher preservation potential 
(Hawkesworth et al., 2009). 

If the age peaks re�ect higher rates of juvenile crust for-
mation, then this should be associated with mantle-like 
isotope signatures, while preservation bias might be asso-
ciated with both juvenile and ancient isotope signatures. 
�ese questions can be addressed on both global (e.g. 
Reymer and Schubert, 1984; Campbell, 2003; Dhuime 
et al., 2012; Belousova et al., 2010) and regional scale 
(e.g. this thesis).

Since at least the Archaean, convergent plate margins 
play a central role in the growth of continental crust (e.g. 
Kamber et al., 2003; Martin et al., 2005). Understanding 
the balance between juvenile mantle derived magmatism, 
reworked and recycled crust and loss of continental crust 
into the mantle (c.f. Mi�kovi� and Schaltegger, 2009; Bel-
ousova et al., 2010; Hawkesworth et al., 2010; Dhuime 
et al., 2012) is important to evaluate and understand the 
rate of crust generation in volcanic arc settings (Arm-
strong, 1971; Plank and Langmuir, 1993; Mi�kovi� and 
Schaltegger, 2009, Fig. 2). 

13

1. Introduction

�is thesis is based on three published papers and one 
manuscript, which are re/pre-printed in appendices I-IV. 
Included papers and manuscript are case-studies of Pro-
terozoic terranes from di�erent parts of the globe where 
the lowest common denominator is growth of the conti-
nental crust as revealed by combined zircon U�Pb and 
Lu�Hf or U�Pb, Lu�Hf, O isotopes systematics in the 
mineral zircon. To test whether these Proterozoic granites 
and gneisses formed at the time of crystallisation or if 
they where generated through reworking of older crust, is 
one of the main aims of this study.

�e research was funded through grants from Fysiografen 
and Per Westlings Minnesfond to Andreas Petersson, and 
grants from the Swedish Research Council to Anders 
ScherstØn, which are all gratefully acknowledged. 

2.  Evolution of continental 
crust

2.1 On the growth of continents

It is irrefutable that the continents have grown from 
non-existence to its current mass, but how and when this 
happened is a matter of debate and fundamentally im-
portant for our understanding of planet Earth. A central 
theme in this research is to what extent the uniformit-
arian paradigm can be applied back in time, i.e. have cur-
rent processes been operating through Earth�s history in 
the same way and at the same rates as today?

For example, the existence of modern style plate tectonics 
during the �rst half of the Earth�s evolution (Hadean�Ar-
chaean) is still a matter of debate, (for review see Furnes et 
al. 2013; Kusky et al. 2013). Wilson-cycle plate tectonics 
have been suggested for the generation of Archaean crust, 
as far back as 3.2 Ga (e.g. Heubeck and Lowe, 1994 and 
Van Kranendonk et al., 2010) or perhaps even further. 

Early attempts to estimate the cumulative growth of the 
continental crust through time are based on a number 
of di�erent approaches. �ese include e.g. isotope geo-
chemistry (primarily U�Pb, Rb�Sr, Sm�Nd and K�Ar); 
radiometric age datings; isotopic and chemical signatures 
of sediments and shales and crustal addition and subtrac-
tion rates (e.g. Hurley and Rand 1969; Veizer 1976; Fyfe 
1978; Brown 1979; DePaolo 1980; Armstrong and Har-
mon 1981; AllØgre and Rousseau 1984). �eir estimates 

Figure 1. Density plot of U�Pb ages of mainly concordant detrital 
zircon (Black line). Time of supercontinent assemblies are superim-
posed as grey �elds. Redrawn from Campbel and Allen, (2008). 
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IV. In this thesis the growth evolution of these three dif-
ferent Proterozoic shield areas will be discussed individu-
ally based upon their combined zircon U�Pb-Lu�Hf or 
U�Pb-Lu�Hf-O isotope record in granitoids. Collective-
ly these papers shed new light into questions regarding 
growth of the continental crust in these regions, showing 
the importance of both infracrustal reworking and juve-
nile mantle derived contribution during the Palaeo- to  
Meso-Proterozoic.

2.3  Crust formation in a Palaeo- to  
Meso-Proterozoic accretionary 
orogeny

Papers, I and II focus on the southwestern parts of the 
Fennoscandian Shield, where paper I is aimed at the  
Eastern Segment and paper II at the Ide�orden terrane 
(Fig. 1 in Paper I and II). �e two crustal segments are 
separated by a several km wide shear zone interpreted 
as a mid-crustal ramp that accommodated relative east-
ward-directed transport of the Ide�orden terrane onto 
the Eastern Segment (e.g. Viola et al., 2011). 

�e current view of crustal growth in southwestern Fen-
noscandia involves c. 330 million years of semi-contin-
uous, juvenile subduction-related magmatism, includ-
ing episodic continental crust formation in nine pulses 
between 1.85 Ga and 1.55 Ga, all tied to a persevering 
convergent margin system (Brewer et al., 1998; ¯häll and 
Connelly, 2008). �e testing of this model using coupled 
zircon U�Pb-Lu�Hf-O isotopes led to paper I and II. 

2.4  Crustal growth in a Mid- 
Proterozoic continent- 
continent collisional orogeny

�e Grenville Province in North America is one of the 
most studied Precambrian orogens on Earth. It is, how-
ever, poorly known in its entirety since it only surfaces in 
limited areas south of Canada. Current knowledge about 
the orogen is largely based on data from the Canadian 
portion, and our understanding of the vast unexposed 
subsurface Grenville Province is based on geophysical  
surveys and a few basement penetrating deep drill cores 
(c.f. Rivers, 2012). Recent work on the evolution of 
Grenville aged rocks of the mid-continent have focused 
on zircon U�Pb and Sm�Nd analyses on the few available 
exposed outcrops (i.e. Daly and McLelland, 1991; McLel-
land et al., 1993; Van Schmus et al., 1996; Rohs and Van 
Schmus, 2007; Fisher at al, 2010). In order to improve 
our understanding of the evolution of this region, paper 
III present U�Pb, O and Hf isotope data from zircon in 
drill-core samples from the subsurface basement of Ohio.

2.2  Proterozoic � growth and reworking 
in orogenic systems

How did we get from 0% continental crust to the 100% 
we have today? Numerous models have been published 
the last decades proposing vastly varying results (Fig. 5). 
However, relatively fast continental growth during the 
Archaean is advocated by an increasing number of publi-
cations (e.g. Fyfe, 1978; Armstrong and Harmon, 1981; 
Reymer and Schubert, 1984; Campbell, 2003; Dhuime 
et al., 2012). �ese models normally have an in�ection 
point between 4.0 Ga and 2.5 Ga where growth rate de-
creases during the Proterozoic Eon (Fig. 5). �is decrease 
in crustal growth might in part re�ect an increase in infra-
crustal reworking as a result of an onset of modern style 
plate tectonics. How well do these results correlate to re-
gional studies of Proterozoic orogenic systems? �is ques-
tion permeates this thesis and the studies within. Shead-
ing some new light to whether infracrustal reworking or 
juvenile contribution is the dominant process during the 
Proterozoic is the main aim of this thesis. 

In this thesis three di�erent orogenic systems are stud-
ied; an accretionary arc system in the Fennoscandian 
Shield (Paper I and II); a continent-continent collisional 
orogeny in subsurface North American Grenville (Paper 
III); and the Birimian terrane of the West African craton, 
sometimes considered to be an example of plume initiat-
ed crustal growth (Paper IV). 

A large number of post Archaean terranes have been in-
terpreted as juvenile, including e.g. southwestern Fennos-
candia and the Birimian terrane of the West African craton 
(e.g. Abouchami et al., 1990; Boher et al., 1992; Brew-
er et al. 1998; ¯häll and Connelly, 2008; Tapsoba et al., 
2013), which contradicts reworking dominated systems. 
�is apparent contradiction is discussed in paper I, II and 

Figure 5. Growth curves for the continental crust as proposed by 
several di�erent models, with 100% representing the present-day 
cumulative volume of crust. Key: 1. Fyfe (1978), 2. Armstrong & 
Harmon (1981), 3. Reymer and Schubert (1984), 4. Campbell 
(2003), 5. Dhuime et al. (2012), 6. Belousova et al. (2010), 7. Line-
ar growth, 8. AllØgre and Rousseau (1984).




































