Radioactivity exploration from the Arctic to the Antarctic. Part 4: The Arctic Ocean-91 expedition

Persson, Bertil R; Holm, Elis; Josefsson, Dan; Roos, Per; Carlsson, Kjell-Åke Carlsson

Published in:
Acta Scientiarum Lundensia

DOI:
10.13140/RG.2.1.4066.5042

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Citation: (Acta Scientiarum Lundensia)

Corresponding author:
Bertil R.R. Persson, PhD. MDhc, professor emeritus
Lund University, Dept. of medical radiation physics,
Barngatan 2, S-22185 Lund Sweden
E-mail: bertil_r.persson@med.lu.se
Radioactivity exploration from the Arctic to the Antarctic.
Part 4: The Arctic Ocean-91 expedition

Bertil R.R. Persson, Elis Holm, Dan Josefsson, Per Roos, and Kjell-Åke Carlsson

Lund University, Dept. of medical radiation physics, Barngatan 2, S-22185 Lund Sweden

1) Present address: Department of Radiation Physics, Sahlgren Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden.
2) Present address: Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
3) Present address: Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark

Abstract
The Arctic Ocean expedition in 1991 with the Swedish icebreaker M/S Oden was focused on oceanography and geology. The aim of our project was exploring the activity concentrations in surface air of 7Be, 210Pb, and 210Po in the surface air, radioactive isotopes of Caesium (134Cs, 137Cs) and plutonium ($^{239+240}$Pu) in seawater.

During the cruise in the Arctic Ocean during 1991-07-28 to 1991-10-04 the average activity concentrations in surface air of 7Be was 0.6 ± 0.4 mBq.m$^{-3}$, 210Pb 46 ± 34 μBq.m$^{-3}$ and 210Po 37 ± 23 μBq.m$^{-3}$.

The activity concentration of 137Cs in the surface of the Arctic Ocean was in the range of 8-12 Bq.m$^{-3}$. When crossing the Nansen basin the activity concentration of 137Cs increased to about 18 Bq.m$^{-3}$ at 88°N 80°E, and there was an accumulation of 137Cs in an area around at 88°N and 80-100°E and locally increased activity at 83°N 10°E.

The 134Cs/137Cs activity ratios was about 0.02 due to the contribution mainly from Sellafield and a few percent contribution from Chernobyl. The 134Cs/137Cs activity ratio decreased to about 0.002-0.005 in areas of high 137Cs activity concentration which exclude contribution of 134Cs of nuclear reactor fuel.

The activity concentration of $^{239+240}$Pu in the surface of the Arctic Ocean was in the range of 6 - 8 mBq.m$^{-3}$. But locally the activity concentration of $^{239+240}$Pu was found to be increased to 11 mBq.m$^{-3}$ at 86°N 48-53°E, and to 16 mBq.m$^{-3}$ at 83°N 10°E.

A. Introduction
The Arctic Ocean expedition in 1991 with the Swedish icebreaker M/S Oden (Figure 4-2) was focused on oceanography and geology in the western parts of the Eurasian Basin, the north west Markov Basin and parts of the Barents sea (Josefsson, 1998, Roos et al., 1998).
The route of the expedition is displayed in Figure 4-3.
In Table 4-1 is given the present and potential sources of anthropogenic radioactivity of the Arctic Ocean (Aarkrog, 1994). These sources are global fallout from nuclear weapons testing in the atmosphere, inflow of discharges from nuclear reprocessing in Western Europe, and fallout from the Chernobyl accident. Local fallout from the Novaya Zemlya test site, and discharges from nuclear facilities into the Siberian Rivers, and dumping of nuclear waste into the Barents and Kara Seas are regional sources for contamination of the Arctic Ocean. Because conclusive information is missing, the data given in Table 4-1 are rough estimates for ^{90}Sr and ^{137}Cs activity discharges to Russian rivers such as Ob, Yenisey, and Lena.

Table 4-1
Summary of the inventories of ^{90}Sr and ^{137}Cs from present and potential sources of anthropogenic radioactivity in the Arctic Ocean (Aarkrog, 1994).

<table>
<thead>
<tr>
<th>Source</th>
<th>^{90}Sr (PBq = 10^{15} Bq)</th>
<th>^{137}Cs (PBq = 10^{15} Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global fallout</td>
<td>2.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Sellafield discharges</td>
<td>1-2</td>
<td>10-15</td>
</tr>
<tr>
<td>USSR river discharges</td>
<td>1-5</td>
<td>1-5</td>
</tr>
<tr>
<td>Regional & local fallout</td>
<td>1-5</td>
<td>0.5</td>
</tr>
<tr>
<td>Run-off of global fallout</td>
<td>1-5</td>
<td>1.5</td>
</tr>
<tr>
<td>Chernobyl</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6-11</td>
<td>17-30</td>
</tr>
<tr>
<td>Komsomolet submarine, Barents Sea 1989 (Petrov, 1991)</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Sr-90 powered Lighthouses, Siberian coast (Aarkrog et al., 1994)</td>
<td>10 - 15 per unit</td>
<td></td>
</tr>
<tr>
<td>Dumped submarines at Novaya Zemlya (Yablokov, 1993)</td>
<td>~ 40</td>
<td>~ 45</td>
</tr>
</tbody>
</table>
B. 7Be, 210Pb, and 210Po in surface air

During the Arctic Ocean-91 expedition to the Antarctica, surface air samples of 210Pb, 210Po as well as 7Be were collected with a so-called “Andersen” air sampling device installed on board the ship M/S Stena Arctica. Air volumes of about 1 500 m3 were collected at each occasion on membrane filters (size 0.25x0.25 m) at a flow rate of 100 m3h$^{-1}$. The Andersen sampler was compared with a FOA transportable reference high volume air sampler (Microsorban filter, 0.56x0.56 m2, 1 100 m3h$^{-1}$). The samplers were placed close together on deck of the cruise vessel as show in Figure 4-4. The 7Be results for the Anderson sampler were normalized to that of the FOA sampler.

The activity concentrations of 7Be (mBq.m$^{-3}$), 210Pb, and 210Po (μBq.m$^{-3}$) measured during 1991 from July 28 to October 4 in the surface air over the Arctic Ocean during 1991 are displayed in Figure 4-5a-c.

![Figure 4-4](image)

The Andersen air- sampler and the FOA transportable reference high volume air sampler placed close together.

![Figure 4-5a](image)

Longitudinal distribution of 210Po activity concentration in air over the Arctic Ocean during 1991.
Figure 4-5b
Longitudinal distribution of 210Pb activity concentration in air, 7Be, and over the Arctic Ocean during 1991.

Figure 4-5c
Longitudinal distribution of 7Be activity concentration in air and the route of Arctic Ocean expedition during 1991.

Equations of the PLS model:

7Be [mBq.m$^{-3}$] = 6.657 - 0.0733×(Latitude °N) - 4.66E-05×(Longitude °E)
Goodness of fit statistics $R^2 = 0.395$

210Pb [µBq.m$^{-3}$] = 480.919 - 5.215×(Latitude °N) – 0.033×(Longitude °E)
Goodness of fit statistics $R^2 = 0.354$

210Po [µBq.m$^{-3}$] = 284.944 – 2.968×(Latitude °N) – 0.033×(Longitude °E)
Goodness of fit statistics $R^2 = 0.285$
During the cruise in the Arctic Ocean during 1991-07-28 to 1991-10-04 the air concentrations of 7Be was 0.6 ± 0.4 mBq.m$^{-3}$, 210Pb 46 ± 34 μBq.m$^{-3}$ and 210Po 37 ± 23 μBq.m$^{-3}$.

Table AO91-3
Ratios of air concentrations of 7Be 210Pb and 210Po in Arctic 1991-07-28 to 1991-10-04

<table>
<thead>
<tr>
<th>Isotope ratio</th>
<th>Date</th>
<th>Average</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be-7/A / Pb-210 A</td>
<td>910728-0906</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Be-7 A / Po-210 A</td>
<td>910728-0906</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Be-7 B / Pb-210 B</td>
<td>910907-1004</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Be-7 B / Po-210 B</td>
<td>910907-1004</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

C. Water Sampling and radioactivity measurements

By using pumps of the ship, samples of surface-water were taken and collected in 200 l vessels in our laboratory accommodated in a container on board. Caesium-134 was added as chemical yield determinant for Caesium. During several hours under continuous stirring with microcrystals of Ammonium Molybdo-Phosphate (AMP- ion exchange crystals, Bio-Rad Laboratories, Canada, Ltd) which had been added to adsorb the dissolved Caesium from the water in the vessels. After the stirring stopped, the AMP crystals were let to be settled over night in the funnel shaped bottom of the vessel. The bottom sediment was tapped into 10 l bottles for transport to Lund where the APM precipitate was separated and measured by high resolution gamma spectrometry (HPGE or Ge-Li) for 1-2 days.

Large volume samples (1000-2000 l) of surface water collected by our own pump by a tube hanging from the rail of the ship. Particulate matter was removed in a 1 μm pre-filter and dissolved Caesium was adsorbed in a cartridge cotton filter impregnated with Copper ferrocyanide (Cu$_2$[Fe(CN)$_6$]). The filters were dried and transported to Lund, where they were ashed in an oven at 450 °C. The ash was then measured by high-resolution gamma spectrometry.
(HPGE or Ge-Li) for 1-2 days in order to determine the 134Cs/137Cs activity ratio in the ocean water.

After adding 242Pu and 243Am as radiochemical yield determinants, Plutonium and americium isotopes were precipitated by adding sodium hydroxide to 200 l seawater collected in another 200 litre vessel as above. The hydroxide precipitate of was settled over night and the bottom sediment was tapped in 10 l bottles for transport to Lund. Pu and Am isotopes was radio-chemically separated, and electro-deposited on stainless steel disks to be measured by alpha spectroscopy for 3-4 weeks (Holm, 1984).

D. Results

D1. 137Cs isotopes in surface water
The Longitudinal distribution of 137Cs activity concentration in surface water and the route of Arctic Ocean expedition are displayed in Figure 4-7 (Roos et al., 1998).
Figure 4-7
Activity concentration of ^{137}Cs in sea-water along the route (Roos et al., 1998). The red curve represent the estimated values of PLS modelling.

Equation of PLS modelling of ^{137}Cs- activity concentration in sea-water along the route of Arctic Ocean-91 expedition:

$$^{137}\text{Cs}\ [\text{Bq.m}^{-3}] = -30.097 + 0.486 \times (\text{Latitude}^\circ \text{N}) + 0.015 \times (\text{Longitude}^\circ \text{E})$$

Goodness of fit statistics for $^{239+240}\text{Pu}$ resulted in a R^2 value of 0.240.

D2. $^{134+137}\text{Cs}$ isotopes in surface water
The Longitudinal distribution of $^{134}\text{Cs}/^{137}\text{Cs}$ activity ratios in surface water and the route of Arctic Ocean expedition are displayed in Figure 4-8 (Roos et al., 1998).

The activity concentration of ^{137}Cs in the Norwegian Coastal Current (NCC) was in the range of 7-8 Bq.m$^{-3}$ with high $^{134}\text{Cs}/^{137}\text{Cs}$ activity ratios of 0.02 due to the contribution mainly from Sellafield origin with a few percent contribution from Chernobyl. When the Ship entered the West Spitsbergen Current (WSC) to Frams Strait the ^{137}Cs activity-concentration dropped to about 4.5-5.5 Bq.m$^{-3}$ with a much lower $^{134}\text{Cs}/^{137}\text{Cs}$ activity ratio of about 0.002-0.005. Entering the Polar mixed Layer (PML) at 81 $^\circ$N the temperature drops from 5 to -2 $^\circ$C, and the ^{137}Cs activity concentration increased to about 9 Bq.m$^{-3}$ with a $^{134}\text{Cs}/^{137}\text{Cs}$ activity ratio of about 0.02.

At the boundary between Nansen and Amundsen basin about 85 $^\circ$N, a there was an increase of the activity concentration of ^{137}Cs up to about 15 Bq.m$^{-3}$. The passing over the Lomonosov ridge at about 86 $^\circ$N into the Markov basin, the activity concentration of ^{137}Cs dropped to about 8 Bq.m$^{-3}$. When crossing the Nansen basis the activity concentration of ^{137}Cs decreased to about 6 Bq.m$^{-3}$ at 88 $^\circ$N 80 $^\circ$E. Further east towards the North pole it decreased again to about 12 Bq.m$^{-3}$. Nevertheless, locally high activity about 16 mBq.m$^{-3}$ was found at 83 $^\circ$N 10 $^\circ$E. On the route, southwards close to zero longitude the activity concentration of ^{137}Cs steadily decreased to about 4 Bq.m$^{-3}$.

4-9
Equation of PLS modelling of $^{134}\text{Cs}/^{137}\text{Cs}$-activity ratio in seawater along the route of Arctic Ocean-91 expedition:

$$^{134}\text{Cs}/^{137}\text{Cs}-\text{activity ratio} = 0.111 - 0.00124 \times (\text{Latitude}^\circ\text{N}) + 3.83 \cdot 10^{-5} \times (\text{Longitude}^\circ\text{E})$$

Goodness of fit statistics for $^{239+240}\text{Pu}$ resulted in a R^2 value of 0.219.

D3. Depth profiles of ^{137}Cs activity concentration

The depth profiles of ^{137}Cs are displayed in Figure 4-9. The activity concentration (Bq.m$^{-3}$) values are fitted to a first order exponential decrease with depth (d, m).

Nansen station 83.6°N, 30.29°E profile:

$$A_{\text{Cs-137}} \text{[Bq.m}^{-3}] = 0.07 + 8.7 \cdot \exp(-0.0012\cdot d);$$
$$R^2=0.99; \text{d}_{1/2}= 562 \text{ m}$$

Amundsen station 87.5°N, 106.44°E profile:

$$A_{\text{Cs-137}} \text{[Bq.m}^{-3}] = 0.37 + 14.9 \cdot \exp(-0.0015\cdot d);$$
$$R^2=0.97; \text{d}_{1/2}= 464 \text{ m}$$

The ^{137}Cs activity concentration at the surface of the Amundsen 87.5°N, 106.44°E profile is, however, slightly elevated compared to the Nansen station 83.6°N, 30.29°E profile. This is likely due to Atlantic water of high ^{137}Cs activity concentration flow into the Arctic interior. Concentrations in the Atlantic layer (at temperature maximum) are almost the same at both stations and very close to those reported for Atlantic water by others (Cochran et al., 1995). In samples taken in 1979, and 1983, however, values below 1 mBq/l has been reported (Livingston et al., 1984, Smith et al., 1998).
The presently high values reported during later years in the Atlantic layer is thus likely an effect of Sellafield releases. In the bottom water at both stations the 137Cs concentrations are about 0.3 Bq.m$^{-3}$. This is similar values as previously has been reported for the Norwegian Sea deep water (Wedekind et al., 1997).

![Figure 4-9](image)

Figure 4-9
Depth profiles of 137Cs activity concentration

![Figure 4-10](image)

Figure 4-10
Kjell-Åke Carlsson with M/S Oden at the North pole.
D.4 $^{239+240}$Pu isotopes in surface water

The Longitudinal distribution of $^{239+240}$Pu activity concentration in surface water and the route of Arctic Ocean expedition are displayed in Figure 4-11 (Roos et al., 1998). The activity concentration of $^{239+240}$Pu in the Norwegian Coastal Current (NCC) West Spitsbergen Current (WSC) to Frams Strait was in the range of 6 -7 mBq.m$^{-3}$. Entering the Polar mixed Layer (PML) at 81 °N the temperature drops from 5 to -2 °C, and the $^{239+240}$Pu activity concentration increased to about 10 Bq.m$^{-3}$. At the boundary between Nansen and Amundsen basin about 85 °N, there is a decrease of the activity concentration of $^{239+240}$Pu to about 7 -8 mBq.m$^{-3}$. The passing over the Lomonosov ridge at about 86 °N into the Markov basin, the activity concentration of $^{239+240}$Pu was about 8 mBq.m$^{-3}$. When crossing the Nansen basin the activity concentration of $^{239+240}$Pu was about 8 mBq.m$^{-3}$ at 88 °N 80 °E. Further east towards the North pole the activity concentration of $^{239+240}$Pu was still about 6 m Bq.m$^{-3}$. But locally high activity of $^{239+240}$Pu up to 16 Bq.m$^{-3}$ was found at 83 °N 10 °E. On the route southwards close to zero longitude the activity concentration of $^{239+240}$Pu rapidly decreased to about 6 mBq.m$^{-3}$.

The high plutonium concentrations found when moving south across the Nansen Basin could be an effect of the convection when moving closer to Svalbard across the Nansen Basin (Rudels et al., 1996). The convection brings up water with higher Pu-concentrations originating from the Atlantic layer mixing with surface water.

Equation of PLS modelling of $^{239+240}$Pu activity concentration in sea water along the route of Arctic Ocean-91 expedition:

$$^{239+240}{\text{Pu}} \text{ [mBq.m}^{-3}\text{]} = 71.366 - 0.745 \times \text{(Latitude}^{\circ}\text{N}) + 0.012 \times \text{(Longitude}^{\circ}\text{E})$$

Goodness of fit statistics for $^{239+240}$Pu resulted in a R^2 value of 0.279.
D. Conclusions

During the cruise in the Arctic Ocean during 1991-07-28 to 1991-10-04 the air concentrations of 7Be was 0.6 ± 0.4 mBq.m$^{-3}$, 210Pb 46 ± 34 μBq.m$^{-3}$ and 210Po 37 ± 23 μBq.m$^{-3}$.

The activity concentration of 137Cs in the Arctic Ocean water was in the range of 8-12 Bq.m$^{-3}$. The activity concentration of 137Cs increased to about 18 Bq.m$^{-3}$ when crossing the Nansen basin at 88 °N 80 °E. There was an accumulation of 137Cs in an area around at 88 °N and 80-100 °E and locally high activity at 83 °N 10 °E.

The 134Cs/137Cs activity ratios was about 0.02 due to the contribution mainly from Sellafield and a few percent contribution from Chernobyl. The 134Cs/137Cs activity ratio decreased to about 0.002-0.005 in areas of high 137Cs activity concentration that exclude an origin of nuclear reactor fuel.

The activity concentration of $^{239+240}$Pu in the Arctic Ocean was in the range of 6-8 mBq.m$^{-3}$ with locally high $^{239+240}$Pu activity concentration of 11 mBq.m$^{-3}$ at 86 °N 48-53 °E, and 16 mBq.m$^{-3}$ at 83 °N 10 °E.

References

