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Abstract while longer-running analysis tasks run in the background.

Reference Attribute Grammars (RAGS) is a declarative exe-Concurrent evaluation also enables parallelization, which
cutable formalism used for constructing compilers and re- could speed up regular compilation tasks.
lated tools. Existing implementations support concurrent A challenge in supporting concurrent attribute evalua-
evaluation only with global evaluation locks. This may lead tionis to safely handle circular attributes, i.e., attributes that
to long latencies in interactive tools, where interactive and  are in a dependency cycle, and evaluated by xed-point it-
background threads query attributes concurrently. eration [7, 11, 1§. Circular attributes are useful for many
We present lock-free algorithms for concurrent attribute ~ COmplex problems in compilers, like de nite assignment (a
evaluation, enabling low latency in interactive tools. Our al- data ow problem) and type inference. However, concurrent

gorithms support important extensions to RAGs like circular ~ €valuation in the presence of circular attributes is nontrivial
( xed-point) attributes and higher-order attributes. because approximations for each attribute value in a depen-

We have implemented our algorithms in Java, for the Jast- dency cycle need to be stored and updated safely between
Add metacompiler. We evaluate the implementation on a multiple threads. An implementation based on locking in-
JastAdd-speci ed compiler for the Java language, demon- dividual attributes would cause deadlocks whenever two or

strating very low latencies for interactive attribute queries,
on the order of milliseconds. Furthermore, initial experi-
ments show a speedup of about a factor 2 when using four
parallel compilation threads.

CCS Concepts ~ Theory of computation Concur-
rency; Parallel algorithms ;" Software and its engineer-
ing  Compilers ; Translator writing systems and com-
piler generators ; Concurrent programming structures

Keywords Reference Attribute Grammars, Concurrency,
Parallelization, Memoization, Circular Attributes

1 Introduction

Reference Attribute Grammars (RAGS] have proven use-
ful for generating extensible compilers for languages like
Java p, 2§ and Modelica [l]. They are supported in sev-
eral attribute grammar systems, for example, JastAél [
Silver [27], Kiama [22], JavaRAG [8], and RACR][3].
Typically, attributes are evaluated sequentially, in a single
thread. To extend such evaluation to several threads requires
a global evaluation lock, leading to attribute value queries
in one thread being blocked by ongoing attribute evaluation
in other threads. This blocking can cause long latencies in
interactive tools, like Integrated Development Environments
(IDESs). In IDEs, it is typically desired to keep the response
time below 0.1 seconds, to ensure that users perceive the tool
as reacting instantaneously2[]. By using concurrency, an
interactive task can be performed within this time limit even

This is an extended version of a paper to appear at SLE 2017.

more threads attempt to evaluate (and lock) attributes on the
same dependency cycle.

We solve the latency problem by developing concurrent
algorithms for RAG attribute evaluation. The algorithms are
lock-free and safe to use with circular attributes without
risk of deadlock. Our algorithms support other common
extensions to RAGs like higher-order attributes, collection
attributes, and attribute-controlled rewrites. The supported
attribute kinds are described in Section 2.

Our contributions are:

Lock-free concurrent evaluation algorithms for ex-
tended RAGs (Section 4), including circular attributes
(Section 5).

Correctness proofs for the concurrent attribute eval-
uation algorithms for extended RAGs (Section 4) and
for the circular attribute evaluation (Appendix A).
Relaxed requirements on circular attributes to make
their speci cation simpler (Section 6).

Implementation of the concurrent algorithms in the
JastAdd metacompiler. For a correctly speci ed Jast-
Add project, our implementation can be used without
further modi cation. We validate this by using our
implementation on a full Java compiler speci ed with
JastAdd attributes (Section 7.1). We also validate the
implementation by using it in an interactive tool for
exploring Java programs.

Empirical evaluation of attribute evaluation latency in
interactive tasks, comparing our concurrentimplemen-
tation to a sequential one. The results show signi cant



latency improvements using concurrent evaluation Circular attributes, useful for data- ow problems, may de-
(Section 7.2). pend upon themselves, and are evaluated using a xed-point
Empirical evaluation of speedup using parallel at- iteration algorithm [7]. For RAGs, the xed-point algorithm
tribute evaluation, with results of about a factor 2 in  is recursive [18].

speedup when compiling large Java programs (Sec- A higher-ordemttribute is an attribute whose value is a

tion 7.3). fresh AST subtree, and which can itself have attribut@€][
Example uses are computation of transformed structures
2 Circular Reference Attribute Grammars and macro-like expansions. In RAGs, it is important that

even if a higher-order attribute is evaluated more than once,
each time creating a fresh subtree, only one result reference
should become visible to the rest of the program.
Collectiorattributes allow compound values to be de ned
by a combination of contributions in an ASTP[17]. A typical
use is to collect all error messages in the program.
Attribute-controlledrewritesallow AST nodes to be condi-
tionally rewritten [5]. They have recently been shown to be
equivalent to circular higher-order attribute?[§. Typical
uses include specialization of nodes depending on context,
for example, replacing a eld access node by a static or in-
stance eld access, depending on its declaration.
For attribute evaluation to work correctly, certain well-
rmedness conditions must be met. The following are of
particular importance for concurrent evaluation:

In a RAG BJ, an abstract grammar is viewed as a set of
node classes representing the nonterminals of the grammar.
Attributes are speci ed for node classes, and an Abstract
Syntax Tree (AST) de ned by the grammar has attribute
instances attached to its nodes. We refer to attribute instances
as simply attributes, unless otherwise noted.

An attribute is de ned by asemantic functioof an AST
node. For example, an attributewith semantic functionf
can be written ax = f (n), wheren is an AST node. The
attribute x belongs to eithen or one of its children. I is
an attribute ofn, we say thaix is synthesizedand if it is an
attribute of one ofn's children, we say thax is inherited"
Synthesized attributes are typically used for propagating
information upwards in the AST, such as propagating the fo
type of an expression to its surrounding statement. Inherited
attributes are typically used for propagating information
downwards in the AST, such as propagating the set of visible
declarations from a block to its inner statements.

Unlike the original de nition of attribute grammars by
Knuth [15], RAGs allow attributes to beeferencet nodes
in the AST. For example, a variable access may have a refer-
ence to the declaration of the variable. In RAGs, the semantic
functions can access information in remote nodes via refer-
ence attributes. For example, the declared type of a variable
can be accessed via a reference to the declaration.

RAGs also supponbarameterizedttributes, where the
semantic function depends not only on the node, but also
on arguments supplied when using the attribute. A typical
example is comparing two types by a parameterized attribute
on one of the types, where the type to compare againstis 3 Correctness

the argument. _ _ We will prove correctness properties for the concurrent at-
The typical way to evaluate a Knuth AG is to statically  tripute evaluation algorithms presented in this report. The
analyze attribute dependenme& and use a static schedulemgain correctness properties we wish to prove are soundness
to evaluate all attributes in dependency order, for example 5nd lock-freedom.
using Ordered AGs14. For RAGs, this does notwork, since  soundness means that the algorithms compute the correct
attribute dependencies are not statically known due to the  4ttripute values. Lock-freedom is important to ensure that
use of reference attributes and parameterized attributes. In- the algorithms do not cause deadlocks when used in circular
stead, RAGs use recursive dynamic attribute evaluation that attripute evaluation.
memoize§ attributes to make subs.equent accesses fast [.12]. To show lock-freedom we prove a stronger progress guar-
Extensions to RAGs supported in the JastAdd system in- antee: that the algorithms terminate in a nite number of
clude circular attributes, higher-order attributes, collection steps. This means that most of our algorithms are actually
attributes and attribute-controlled rewrites. wait-free. However, some of the data structures used in our
implementation are not wait-free, only lock-free. If wait-free
1it can be noted that the attribute grammar conceptioheritedis indepen- implementations of those data structures were used, our

dent of the object-oriented concept with the same name. algorithms would be wait free.

WF1: Pure semantic functions. Each semantic func-
tion must beobservationally purgl9, meaning that it
always computes the same value, does not modify the
AST, and does not rely on external mutable data.

WF2: Terminating semantic functions. Each seman-
tic function must terminate, given that access to other
attributes terminates.

WEF3: Circular attributes are computable. To guar-
antee a computable least xed point, we require the
semantic function of circular attributes to be mono-
tonic and yield values in a lattice of nite height. This
is the condition used by Jones [11].



For higher-order attributes we must prove an additional
correctness property: that the attribute can only compute a
single reference. A higher-order attribute creates a new AST
node object each time it is computed, but only one result
node must be attached to the AST and become visible to the
rest of the program. By proving that the evaluation algorithm
for higher-order attributes only allows a single reference to
be computed, we ensure that only a single node object is
shared between multiple threads.

4 Non-Circular Attribute Implementation

A recursive attribute evaluator computes an attribute by call-
ing its semantic function, and memoizing the result for fast
future accesses. Calling the semantic function leads to other
attributes being evaluated recursively. For non-circular at-
tributes, implementation of lock-free concurrent evaluation
is fairly straightforward. The main problem is to make sure
that memoization is done in a thread-safe way. For higher-
order attributes, it must be ensured that all threads will share
the same resulting reference to the new subtree.

A template attribute evaluator algorithntval, is shown
in Algorithm 1. TheEval procedure takes as parameter an
attribute instance to be evaluated. Computation and mem-
oization have been abstracted out Bfal as four separate
procedures:

Compute Compute the value of an attribute.

Memoized Test if an attribute has been memoized.

Store  Memoize a value for an attribute.

Load Retrieve a previously memoized value of an at-
tribute.

Algorithm 1 Template attribute evaluation algorithm for
memoized non-circular attributes.
procedure Eval (x)
if MemoizedXx) then
return Load(x)
else
u  Compute(x) . Compute attribute value.
return Store (X;u) . Memoize and return result.
end if
end procedure

. Evaluate attributex.
. Test if already memoized.
. Return memoized value.

The Eval procedure can be trivially translated to Java as
a method of an AST node class that the attribute it evaluates
was declared onq]. In the following sections we present
Java methods implementing the procedures useéval for
non-circular attributes.

The attribute instance is not explicitly passed to the meth-

By proving that the procedures used Iiyval ful Il certain
requirements we can show that the resultiftigyal implemen-
tation is sound and lock-free. For soundness, the procedures
must ful Il the following soundness requirements:

Memoization Requirement
In one thread, ifMemoizedx) returns true before
Load(x), then Load(x) returns a valuev stored by
some thread executin§tore (x;v).

Store Requirement
ExecutingStore (x;_) returns some valug stored by
some thread executingtore (x;v).

We will later show that our implementations of the mem-
oization procedures ful Il these requirements. Given that
these requirements are ful lledEval computes the right
value for any non-circular attribute:

Theorem 4.1 (Eval Sound) If Memoized Store andLoad

ful Il the Memoization Requirement and Store Requirement,
then, for an attributex, Eval (x) (Algorithm 1) computes the
value ofx.

Proof.Consider a thread that executdsval (x). The if -
statement inEval has two branches:

If Memoizedx) returnedtrue , then by the Memoiza-
tion Requirement the returned valug, was stored by
some callStore (x;v). Because all calls tStore (x;_)
store a computed value of, and becausg is well-
formed (WF1), the returned value is the valuexof
Otherwise, Memoizedx) returned false. The re-
turned value is the result otore (x;u). According
to the Store Requirement, the resuwitwas stored by
some callStore (x;v). Because all calls tBtore (x;_)
store a computed value of, the returned value is the
value ofx.

For a non-higher-order attribute the semantic function
always computes an identical value. However, for a higher-
order attribute this is not the case, as the attribute computes
a freshly created AST node reference. It is important that
only one reference becomes visible to the rest of the program.
For higher-order attributes we add the following soundness
requirement:

Higher-Order Memoization Requirement
For a higher-order attribute instance, each call to
Store (x;_) returns a single reference, and any call to
Load(x) that happens after some call t8tore (x;_)
returns the same value &Store (x;_).

The requirement ensures th&ival only returns a single
result reference.

Theorem 4.2. Consider a higher-order attribute instarce

ods, as itis not a concrete Java object. Instead, the implicit |f Memoized Store andLoad ful Il the Higher-Order Mem-
this parameter of the Java methods separates the evaluation gjization Requirement, thé&val (x) (Algorithm 1) returns a

of di erent attribute instances.

single reference.



Proof.Consider a thread that executesval (x). The if -
statement inEval has two branches that return either the
result of Store (x;_) or Load(x). The rst case is trivially
true, sinceStore (x;_) is required to return a single reference.
In the second cas®lemoizedx) returnedtrue , so accord-
ing to the Higher-Order Memoization Requiremeirhtoad
returns a single reference. Additionally, the Higher-Order
Memoization Requirement speci es thabad(x) returns
the same reference &tore (x;_), so only one reference can
be returned fromEval (x).

To ensure thaEval is lock-free, we require tha€ompute,
Memoized Store, andValue are lock-free:

Theorem 4.3 (Eval Lock-Free)Consider a non-circular at-
tribute instance. If Compute Memoized Store andLoad
are lock-free, theBval (x) (Algorithm 1) is lock-free.

Proof.Eval itself uses no iteration and no self-recursion
(because is not circular). ThusEgval is lock-free because
all called procedures are lock-free by assumption.

4.1 Synthesized and Inherited Attributes

For synthesized attributes, tHeomputeprocedure is a direct
translation of the semantic function into an executable form,
where other attribute uses are replaced by callsBwal .

Because JastAdd attributes are speci ed with Java code, the

translation of theCompute procedure is just a Java method
containing the code of the semantic function.

For inherited attributes, th€ompute procedure that com-
putes an inherited attribute on a node must nd the se-
mantic function for the inherited attribute. This is done by
accessing the parent af, and determining which semantic
function should be computed for the child noae

The equation used for an inherited attributeon a node
n depends on the child position af in its parent node. The
original de nition of inherited attributes by Knuth requires
the equation for an inherited attribute to be de ned on the
direct parent of the node that the attribute belongs to. An
example of this is thdv attribute in Figure 1: it belongs to
Z, and the equation for it is de ned bX. RAGs allow the
equation to be de ned further up in the AST, as in Figure
2, where the equation fdb on X is propagated down t&@.
Conceptually, inherited attributes in RAGs work by using
implicit copy attributes on all intermediate nodes between
the node de ning the equation for the attribute, and the node
that owns the attribute, as illustrated in Figure 3.

Concurrent memoization for synthesized and inherited

Figure 1. An AST, rooted at the nodX. Nodesy andZ are
children ofX. The attributea is synthesized: it belongs t¢
and its equation is de ned orY. The attributeb is inherited:
it belongs toZ, but its equation is de ned orX.

>

W)
@
Figure 2. An example of elided inherited attribute equations:

X de nes the value ob for Z, despiteX not being the direct
parent ofZ.

X

b
b(z)="b
o8
Figure 3. An implicit copy attribute is used oW to copy
the value of the attributé from X to Z.

cache ag must be after the write to the value eld to ensure

attributes can be implemented using a simple cache eld that the value is safely published to other threads.

and volatile ag in Java, as shown in Listing 1. It is not
necessary to exclude concurrestiore calls, because well-

4.1.1 Correctness

formed synthesized and inherited attributes always compute For synthesized attributes, th@ompute procedure is lock-

the same value, so concurrestore calls will only store the

free, due to well-formedness condition WF2. For inherited

same value. Note, however, that the order of assignments attributes, locating the semantic function is implemented by

inside thestore procedure is critical: the write to the volatile
4

a loop that iterates over parent references in the AST. Since



Listing 1. Simple attribute memoiza-
tion.

T value;
volatile boolean

memoization.

ConcurrentMap map
cached = false ;

boolean memoized() {
return cached;

}

return

}

map.conta

new ConcurrentHashMap();

boolean memoized(Object args) {

Listing 2. Parameterized attribute Listing 3. Non-parameterized higher-

order attribute memoization.

AtomicReference value
new AtomicReference (nil);

boolean memoized() {
return value.get() != nil;

}

insKey(args);

T store( T v) { T store(Object args, T v).{ T store( T v) { ' |
value = v map.putlfAbsent(args, v); value.compareAndSet(nil, v);
cached = true; ) return  map.get(args); } return value.get();
return v;

} T load(Object args) { T load() {

T load() { return value: } return  (T) map.get(args); return  (T) value.get();

the AST has a nite height, this loop terminates in a nite
number of steps. The number of children for any node in an
AST is nite, so each iteration of the loop performs a nite
amount of work and is thus lock-free. The procedure for
nding the equation for an inherited attribute is thread-safe
because the AST is not modi ed after construction, making
it e ectively immutable during attribute evaluation.

Theorem 4.4. The methods in Listing 1 ful Il the Memoiza-
tion Requirement.

Proof.The Memoization Requirement entails that if
memoizedeturns true beforeload, thenload returns a
valuev stored by some execution atore(v) .

Thecached ag starts out asfalse . Hencememoizede-
turns true only after some write has setachedto true .
Thecached ag is declared awolatile . According to the
Java Memory Model, a previous write t@lue must there-
fore be visible to the thread that observedchedhaving
the valuetrue , so a following call tdoad will return this
value or some other value of stored bystore .

Theorem 4.5. The methods in Listing 1 ful Il the Store Re-
guirement.

Proof.The Store Requirement entails thatore(u) returns
avaluev stored by some execution store(v) . The require-
ment is ful lled becausestore(u) always returnsu.

Theorem 4.6. The methods in Listing 1 are lock-free.

Proof.All of the operations used are lock-free according to
the Java speci cation. There exists no iteration or recursion,
hence the methods are lock-free.

4.2 Parameterized Attributes

Synthesized and inherited attributes can be optionally param-
eterized. To compute a parameterized attribute, additional
arguments are sent to th€Eompute procedure.

Parameterized attributes are memoized by mapping argu-
ment values to result values. To this end we use a concurrent
map. For unary attributes, the single argument value is used
as map key, and for 2+ arity attributes a list of the argument
values is used as map key. Map keys of primitive type are
converted to object types lik@va.lang.Integer

Our parameterized attribute implementation, in Listing 2,
uses the clas€oncurrentHashMafrom the Java standard
library as map structure. The methgoutifAbsent is used
in store to atomically associate an argument list with an
attribute value. UsingutlfAbsent allows only one thread
to succeed in updating the map for any given argument list.

The ConcurrentHashMapmpelementation is lock-free
but the rest of our implementation is wait-free. If full wait-
freedom is required, a Java implementation of a wait-free
map could be used.

4.2.1 Correctness

For parameterized attributes, the memoization methods in
Listing 2 are used.

Theorem 4.7. The methods in Listing 2 ful Il the Memoiza-
tion Requirement.

Proof. The Memoization Requirement entails that if
memoized(p)returnstrue beforeload(p) , thenload(p)
returns a valuev stored by some execution store(p,v) .

The magpis initially empty, with no key associated to a
value. A call tomap.containsKey(p) then only returnstrue
if some call toputlfAbsent(p,_) inserted a value for the
given key previously. Keys are never disassociated in the map,
somap.get(p) is guaranteed to return an inserted valuge
which was inserted bystore(p,v) .

Theorem 4.8. The methods in Listing 2 ful Il the Store Re-
quirement.



Proof.The Store Requirement entails thatore(p,u) re-
turns a valuev stored by some execution atore(p,v) .

Theorem 4.10. The methods in Listing 3 ful Il the Higher-
Order Memoization Requirement.

Keys are never disassociated in the map, and because

store(p,_) either inserts a value for some kgy, or does

Proof.Thevalue eld is only updated by the CAS irstore ,

and because the call tmap.get(p) occurs after that in pro-
gram ordermap.get(p) returns an inserted valug, which
was inserted bystore(p,v) .

Theorem 4.9. The methods in Listing 2 are lock-free if the
ConcurrentMapmplementation is lock-free.

Proof.The methods do not use iteration or recursion, so if
the methods implemented by theoncurrentMapobject are
lock-free €ontainsKey, putlfAbsent , andget), then the
methods in Listing 2 are lock-free.

4.3 Higher-Order Attributes

A higher-order attribute can be either synthesized or inher-
ited, and optionally parameterized. In either case, the only
di erence in computing the attribute is that, at the end of
the Compute procedure, the result node is attached to the
AST by setting its parent reference.

For non-parameterized higher-order attributes we can-
not reuse the memoization method in Listing 1 because two
threads can race to write a value withtore , making it
possible for two separate AST nodes to be shared with the
rest of the program. This is a consensus problem: concur-
rent threads callingstore must agree on a single value. A
standard solution fon-thread consensus is to useompare-
And-Sef(CAS) [L(. CAS is a lock-free and atomic operation
that atomically tests the value of a variable and conditionally
updates it to a new value if it had the expected value. In
our implementation, in Listing 3, we use the Java standard
library classAtomicReference that implements CAS by the
compareAndSetnethod. The rst argument is the expected
value, and the second is the new value.

We usenil to represent an illegal attribute value (not
equal tonull ). This value is used to indicate that the attribute
has not yet been computed and thus replaces¢hehed ag
from the synthesized memoization methods (Listing 1).

For parameterized higher-order attributes, we reuse the
parameterized memoization methods in Listing 2.

4.3.1 Correctness

For non-parameterized higher-order attributes, the imple-
mentation in Listing 3 is used. As mentioned, t@@mpute
method for a higher-order attribute sets the parent reference
of the result node. Updating the parent reference does not
a ect the lock-freedom ofCompute: it still terminates in

a nite number of steps. However, we must show the that
the implementation ful lls the Higher-Order Memoization
Requirement:

because the attribute value is never equaliib . Because
store returns the single successful CAS value, it always
returns the same value for a single attribute instance.

Note thatmemoizedeturnstrue only if a previous CAS
has succeeded, and théwad must return the stored value
of the single successful CAS.

Theorem 4.11. The methods in Listing 3 are lock-free.

Proof.All methods of AtomicReference are lock-free. No
other method calls are used, and no iteration or recursion is
used, so the methods in Listing 3 are lock-free.

For parameterized higher-order attributes, the parameter-
ized memoization implementation in Listing 2 is used. The
following theorem proves that it is sound for higher-order
attribute memoization.

Theorem 4.12. The methods in Listing 2 ful Il the Higher-
Order Memoization Requirement.

Proof.The associated value for some kpys only updated
by putlfAbsent(p, ) in store(p,_) . Because keys are
never disassociated, only oqitifAbsent(p,_) is able to
succeed. Becaustore(p, ) returns the single successful
putlfAbsent(p, ) value, it always returns the same refer-
ence, for a single attribute instance.

Note thatmemoized(p)returnstrue only if a previous
putlfAbsent(p,v) call has succeeded, and thévad(p)
must return the valuev stored by the single successful
putlfAbsent(p,v) call.

4.4 Collection Attributes

Collection attributes L7 collect values from multiple nodes
in a subtree of the AST. Each node that potentially con-
tributes a value to a collection attribute is callectantributor
A contributor has a semantic function to compute the con-
tributed value, and it may additionally have a contribution
condition, i.e., a boolean expression that restricts the node
to contribute a value to the collection only if some condition
holds.

Collection attribute computation is divided into two
phases [17]:

Survey phase A subtree of the AST is traversed, starting
from some predeterminedollection rootAll nodes that
are potential contributors to the collection attribute
are added to a worklist for the next phase.

Collection phase For each node in the worklist from
the previous phase, the contribution condition is



checked to determine if the node actually should con- semantic functions. Furthermore, it is possible to apply the
tribute a value. If the node is contributing to the col- individual semantic functions one at a time, in any order,
lection then its semantic function is computed and its  and reach the same simultaneous least xed-point. This is
value is added to the result. true because the values of each attribute can be arranged
in a lattice, and a combination of attribute approximations,
for example a vector of approximations, is also a value in a
lattice. Since each semantic function is monotonic, according
to well-formedness condition WF3 in Section 2, updating one
approximation is a monotonic operation on the combined
approximation vector.

We will now illustrate how a circular attribute can be eval-

A simple method of computing collection attributes is to
perform a depth- rst traversal for the survey phase, and then
use a loop to iterate over the resulting list of contributors in
the collection phase.

Collection attributes are only computed using the base
AST, excluding higher-order attributes. Computing a non-

parallelized collection attribute is lock-free because each : , X . ,
contribution is computed by a semantic function that must uated in practice. Lex be some circular attribute (instance),

terminate in a nite number of steps, and there are a nite  With D(x) being the set of attribute (instances) thatransi- -
number of contributions because the base AST has a bounded Vely dépends on. For now, we assume that all attributes in
height and each AST node has a nite number of children, D() are circular and mutually transitively dependent. We
A sequentially evaluated collection attribute is safe for dISCUsS how to relax these requirements later, in Section 6.
concurrent use if it does not memoize the result. If memo- Let S be a vector of attribute approximations for the at-

ization is needed the memoization scheme for concurrent iPutesD(x). TheSvector forms the state of a xed-point
synthesized attributes can be used computation of the attribute® (x). A successor state’is

found by updating one approximatioﬁj’ = fy (S), wherey

45 Rewrites is an attribute inD(x). If the new approximation o is not
equal to the previous approximation, i.éij’ , §, then since
fy is monotonic,SCis greater thars.

Consider a starting stat&’ , where each approximation is
equal to the bottom value of the corresponding attribute. By
repeatedly updating approximations of attributes i(x) as
above, in any order, starting in stat®’ , the approximations
will eventually reach a simultaneous xed point in which
all approximations are equal to the xed-point value of the
corresponding attribute.

A stateSP is a simultaneous xed point of the attributes

in D(x) if, for ally 2 D(x), Sjp =fy (SP).

JastAdd provides automatic AST rewriting controlled by
attributes. This is a powerful tool for transforming the AST,
but the original implementation in JastAdd was not safe for
concurrent evaluation, as it modi ed the AST whenever a
rewrite was evaluatedq]. JastAdd provides an alternative
rewrite mechanism that implements rewrites using higher-
order attributes, based on the work of S6derberg and Hedin
[23].

For concurrent evaluation, we use the higher-order at-
tribute implementation of rewrites in order to avoid modi-
cation of the base AST by rewrite evaluation. This makes
rewrites safe for concurrent evaluation by keeping the
AST immutable after construction, and using concurrent 5.1 Concurrent Circular Attribute Algorithm

attributes to implement the rewrites. Our algorithm for concurrent evaluation of circular attributes
_ _ ] is shown in Algorithm 2(see Appendix C for example Java
5 Circular Attribute Implementation code generated by our implementation). The algorithm

Circular attributes in RAGs are evaluated recursively, by Works by using a xed-point loop (inCase} to iteratively
xed-point iteration. The current approximations of at-  re ne attribute approximations for all attributes in a depen-
tributes need to be stored in order for the attribute values dency cycle. The algorithm terminates when all approxima-
to be successively re ned. This could be done by using only tions have reached a simultaneous xed point.
thread-local storage, or by using a global evaluation lock  Each iteration of the xed-point loop starts by computing
to prevent concurrency problems in sharing attribute ap- Some attributex in the dependency cycle (by callin@ase3,
proximations, but neither of these solutions is attractive. We —and recursively computing the attributes used kyand so on.
instead investigate an algorithm that allows multiple threads ~ Recursion stops when an attribute that was previously visited
to safely cooperate in computing attribute approximations  in the current iteration is encountered3ase3. The previous
in a recursive Xed-point iteration. apprOXimation is then reused. To track if an attribute has
A circular attribute can be seen as a Xed-point functidn been visited in the current iteration of the Xed-pOint |00p,
Usually, a xed-point function is evaluated by repeated ap- attributes are tagged with an index identifying the current
plication, starting from some bottom value. However, there iteration. These iteration tags are stored in the thread-local
may be multiple mutually dependent attributes. Therefore, maptis.iter
f does not necessarily correspond to a single semantic func- A change agtls.changegis used to track if any attribute
tion, rather it represents multiple simultaneously applied approximation changes in the xed-point loop. When the
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change agremaingalse afteraniteration, the loop is exited
and the attribute is memoized.

If a single thread is used, our algorithm executes similarly
to the sequential algorithm of Magnusson and Hedir8]. If
multiple threads are working in the same dependency cycle,
they will exchange attribute approximations through global
atomic variables. An invariant in both cases is that a thread
can only update attribute approximations to monotonically
increasing values (WF3).

The main procedure of our algorithnCEval, uses three
Casesubroutines similarly to the formulation of the sequen-
tial algorithm of S6derberg and Hed|23]. Each thread starts
in Casel which starts a new xed-point loop. During the
loop, CaseZ2is used to update approximations of attributes
on the dependency cycle. When an attribute is recursively
revisited during a particular iteration of the loo;ase3is
used to fetch the most recent approximation.

To illustrate, assume there are two threads and
T, computing mutually dependent attributex and y
respectively. The control ow then looks like this:

(— call,--> loop)

Ty: CEval(x) — Césél( — Casez — Case? — Case3

LR

N
T,: CEval(y) — Case} — Cased — Casez — Case3

If T, memoizey, thenT; will not call Case2or Case3for
y upon the next use of. Instead, the memoized value pf
is used directly byt;.

The next sections describe the state variables used in the
algorithm, and how the individual procedures of the algo-
rithm work in more detail.

5.1.1 Shared State

All threads share a global approximation for each attribute
stored in the atomic variabl@v, . This atomic variable is
updated using Compare-And-SeZAS. All reads and CAS
of gv, are lock-free and atomic.

The value ofgv, is a tuple of an attribute value and@one
ag, indicating if the attribute is memoized. The attribute is
only memoized when it has reached its xed-point value. If
thedone ag is false , the value is either uninitializedr(l ),
or an approximation of the attributex.

The notation used for updatingyv, is CASgv,;p;n),
wherep is the expected previous value amds the value to
update to. When theCASis performed, if the value ofjv,
is indeedp then it is atomically updated tam. In Java, the
gv, eld can be implemented byAtomicReferenceas in the
higher-order attribute memoization from Section 4.3.

5.1.2 Thread-Local State

Each thread stores thread-local state (TLS), that is not visible
to other threads, in thels object. The purpose of eadls
eld is described below:

tls.change A ag indicating if the current thread ob-
served any attribute approximation change during the
current iteration of the xed-point loop.

tls.iter A map from attributes to iteration indices. Unas-
sociated keys are mapped to an unused non-zero iter-
ation index.

In each thread, the iterations of the xed-point loop in
Caselare assigned unique indices. Each time a thread com-
putes an approximation of some attribute, it updates
tls:iter (x) to the current iteration index. Thug]s:iter(x) is
used to tag which iteration an attribute was last computed
in. This works like a visit ag, except that the iteration tags
do not need to be reset on each iteration. Instead, the current
iteration index is updated for each iteration. The iteration
index is always updated to a unique value, to ensure that
iteration indices are unique across &hselinvocations, not
only across iterations of a singl€aselinvocation.

5.1.3 The CEval Procedure

The CEval procedure takes two arguments: an attribute to
be evaluatedy, and an iteration index,. The iteration index
identi es separate iterations of the xed-point loop in the
current thread.

CEval is called withi = 0 when there is no ongoing
xed-point computation. In this caseCEval will return the
xed-point value ofx. Ifi , 0, thenCEval returns an ap-
proximation ofx.

The execution ofCEval starts by testing ifx has already
been memoized, in which case the memoized value is re-
turned. Otherwise, if the global approximation was not ini-
tialized (equal tanil ), the global approximation is updated
to the bottom value ok. Next, execution continues to either
Casel, 2, or 3:

Ifi = 0, Caselx) is called to start a new xed-point
loop.

Otherwise, if the current thread has not computed a
value forx during the current iterationi, CaseZx;i)

is called to compute a new approximation »f
Otherwise,Case3x) is called to reuse the current ap-
proximation ofx.

5.1.4 Casel (Fixed-point Loop)

In Casel a new xed-point computation for an attribute
is started. The computation is performed by a loop, and an
iteration indexi is used to identify each iteration of the loop.
An iteration of the loop starts by updating to a new
unigue, non-zero value, and clearing tkls.changeag. Next,
CaseZx;i) is called to compute a new approximation »f
The loop is exited at the end of an iteratidnf tls.changee-
mains unset. Théls.changeag remains unset only if, during
an iteration of theCaselloop, no attribute approximation
was updated to a new value vi@daseZXx;i).



Algorithm 2 Concurrent evaluation algorithm for circular attributes.

. Shared global value of attribute:
gv, : Value Boolean (nil ;false)

. Thread-local state:
tls.change Boolean
tls.iter: (Attribute! Integer)
. Main procedure for computing an attribute.
. Current iteration index is passed as thearameter.
procedure CEval(x;i)
(valug dong  readgvy)
if donethen
return value
else if value= nil then
. Initialize gv, by Compare-And-Set:
CAqgv,; (nil ; false); (?y; false))
end if
if i = 0then
return CaseXXx)
else if tls:iter(x) , i then
return CaseZx;i)
else
return CaseJ)
end if
end procedure

. Run a xed-point computation of attributex.
procedure Caselx)
repeat
i uniqueld)
tls:change false
CaseZx; i)
until : tls:change
. Memoizex by markinggv, as done:
(result ) readgv,)
CAqgv,; (result false ); (result true ))
return result
end procedure

. Compute a new approximation of attribute.
procedure CaseZx; i)
(prev, ) readgvy)
tisiiter(x) i
next Compute(x;i)
if next, prevthen
tls:change true
CAqgv,; (prey, false ); (next false))
end if
return next
end procedure

. Read most recent approximation »f
procedure Case3x)

(prev, ) readgv,)

return prev
end procedure

After the loop is exited, the stored global value »fis
equal to the xed-point value ofx, so the current thread
attempts to memoize the attribute by updating tliene ag
for x.

5.1.5 Case2 (Compute Approximation)

Case2computes a new approximation of an attribukeby
calling Compute(x;i). The Compute procedure is an exe-
cutable translation of the semantic function of attribute
where each access to some other attribytis translated as
a call toCEval (y;i).

Case2starts by reading the current approximation at
The current approximation is stored in a temporary variable
to be able to detect if the newly computed value di ers from
the previous approximation.

Before computing a new approximation, the current
thread tags the attributex with the current iteration in-
dexi. This causes recursiv@Eval (x;i) calls in the current
thread to enterCase3rather thanCaseZ2 thereby avoiding
unbounded recursion.

A new approximation ok is computed byCompute(x). If
the new value is di erent from the previous approximation,
thentls.changes set totrue and the shared approximation
of x is updated usingCAS

5.1.6 Case3 (Recursion Termination)

Case3returns the most recent approximation computed
for the attributex. This case is necessary to terminate the
recursion when called vi€ase2

5.2 Correctness

We will here show informal outlines for proofs of soundness
and lock-freedom ofCEval. The full proofs are in Appen-
dix A.

Soundness.CEval is sound if, for a well-formed circular
attribute x, CEval (x;0) computes the xed-point value oX.
Well-formedness is de ned in Section 2. Speci cally, the
semantic function ok must be monotonic (WF3).

Consider a single thread executinGEval. It will al-
ways enterCaselinitially, then perform iterations until
the tls.changeag remains unset. For this to workCase2



should be called for each attribute thatdepends on, that
can change value, in each iteration 6fasel It can be shown
that in each iteration ofCasel either all attributes thaix
transitively depends on have reached their xed-point value,
or CaseZ2is executed for all attributes that transitively
depends on(Lemma A.11).

Itisimportantthat a single thread only advances the global
state of an attribute to a monotonically increasing value. This
is both ensured by the monotonicity of semantic functions,
and by the fact that the current approximation is read before
computing a new approximation, and used as the expected
value before updating to a new approximation(Lemma A.13).

Lock-freedom. CEval is lock-free if it terminatesin a -
nite number of steps. Proving this is mostly straight-forward.
The only challenging parts are to show that the loop@asel
performs a nite number of iterations, and that each one per-
forms a nite amount of work. This relies on the fact that the
attributes are well-formed and thus have terminating seman-
tic functions (WF2), and a nite greatest possible value (WF3)
which is eventually reached by successive approximation in
Casel Since all attribute approximation states form a lattice
of nite height, and approximation updates are monotonic,
the algorithm will always terminate in a nite number of
iterations of theCaselloop if at least one approximation is
updated on each iteration. If not at least one approximation
update happens, the@aselwould terminate anyway.

5.3 Parameterized Circular Attributes

Like most other kinds of attributes, circular attributes can be
parameterized. To support parameterized circular attributes,
we need a few modi cations to Algorithm 2. A new parame-
ter p is added to theCEval procedure. The parameteris
a list of the attribute argument values, and it is passed to
Casel Case2 Case3 andCompute.

The global value of a non-parameterized circular attribute
is stored in an atomic variable with a CAS operation and

atomic read. To store global values for a parameterized cir-

cular attribute we instead use a concurrent map that maps
attributes to atomic variables. The global value map is in-
dexed byp, i.e.gv, (p) gives the atomic variable for the global
value ofx with argumentsp.

A parameterized circular attributg is initialized by using
putlfAbsent to insert a new atomic variable containing the
bottom value ofx in the global value map. The other uses
of gv, from the non-parameterized algorithm are replaced
by map lookupsyv, (p). Because we usautifAbsent , we
ensure that an attribute is only initialized once. The rest of
the uses ofyv, will all act as before, but on di erent atomic
variables for di erent argument combinations.

The local iteration mayils.iterneeds to be indexed by both
attribute and argument values. We implement this by using
tuple objects containing the attribute and argument value
list as map key.
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Figure 4. An attribute dependency graph. Each circle is an
attribute instance. Attributes with underlined names are
circularly evaluated (with bottom value). Attributes inside
the dashed rectangles are strongly connected and e ectively
circular. The attributess andw are e ectively non-circular.

6 Relaxed Requirements on Circular RAGs

Up until now we have used some simplifying assumptions
about the structure of circular attributes in RAGs. In this
section we review these assumptions, and we show why
some of them are not necessary for correctness, and how
others can be relaxed by simple additions to our algorithms.

By relaxing assumption 1 below, we allow more general
combinations of circular and non-circular attributes than
were previously allowed in Circular RAGs according to Mag-
nusson and Hedifi18]. This relaxed requirement is useful in
practice since it is common that attributes are on a cycle only
for a small fraction of typical ASTs. Requiring these attributes
to be declared as circular would cause expensive xed-point
computations during runtime even for many ASTs where
there actually is no cycle.

To concisely discuss these assumptions we will rst need
two auxiliary de nitions:

Circularly evaluated attribute  An attribute instance
x is circularly evaluatedf it has a bottom value, and
CEval is used to compute its value.

E ectively circular attribute  An attribute instance is
e ectively circularif it depends transitively on itself.
Otherwise it is said to be ectively non-circular

An attribute declaration can have both e ectively circular
and e ectively non-circular instances.
These are the assumptions we have used so far:

1. A circularly evaluated attribute instance depends only
on circularly evaluated attribute instances.

. All circularly evaluated attribute instances are e ec-
tively circular.

. All e ectively circular attribute instances are circularly
evaluated.

. If an e ectively circular attribute instancex transi-
tively depends on an attribute instange theny tran-
sitively depends orx.

Assumption (1) can be relaxed. Figure 4 shows two at-
tribute instances breaking this assumptiogmandu are both

2

2Magnusson and HedifiL8] refer to circularly evaluated attributes gso-
tentially circularand to e ectively circular attributes asctually circular



circularly evaluated, but depend on attributes that are not,
namelyu andz. Evaluatingu with Algorithm 1 works as

it should, becausa is not e ectively circular and always
computes the same value. Forhowever, Algorithm 1 does
not work correctly, because is e ectively circular and can
compute di erent values based on an approximationxaf

A problem arises because Algorithm 1 memoizes attributes
on the rst computation, but during a xed-point compu-
tation, e ectively circular attributes return approximations,
which are not safe to memoize. To avoid premature memo-
ization, an attribute depending (transitively) on a circularly
evaluated attribute should not memoize its result during a
xed-point computation.

Assumption (1) can be relaxed by replacing Algorithm 1 by
Algorithm 3 for non-circular attributes. This changes mem-
oization of attributes to be conditional, so th&val only
memoizes an attribute when it is called outside any ongoing
xed-point computation. An additional eld,tls.i, is added
to the thread-local state to track the current xed-point iter-
ation index. At the start of each iteration of th€aselloop,
tls.iis updated to the current iteration index, and at the end of
Caseltls.iis set to0. A memoized attribute must ensure that
tlsii = 0 before memoizing a result. The updated algorithm
works even for higher-order attributes, because the result
node is not memoized by any other attribute that depends
on the higher-order attribute before the circular evaluation
has reached the xed point, thereby di erent AST nodes do
not become visible to the rest of the program.

Algorithm 3 can be further improved by memoizing at-
tribute values and tagging the memoized value with the
current iteration index. This allows the attribute value to be
reused in a singl€Caseliteration. This improved algorithm
is the one that we implemented in JastAdd.

Algorithm 3 Evaluation algorithm for memoized non-
circular attributes with circular dependees.

procedure Eval (x)
if Memoizedx) then
return Load(x)
else
u Compute(x)
. Test if called in circular evaluation.
if tls:i, Othen
. In circular evaluation: not safe to memoize.
return u
else
. Memoize the computed value as usual.
return Store (X;u)
end if
end if
end procedure
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Assumption (2) is not necessary for correctness. In Fig-
ure 4,w is circularly evaluated, but it is not e ectively circu-
lar. In general, if some attributa is not e ectively circular,
but circularly evaluated withCEval, then there are two cases:
atransitively depends on some circularly evaluated attribute
instance, or it does not.

If a depends on some circularly evaluated attribute in-
stance, then, as long as that attribute changes approximation,
the Caselloop fora will not terminate, thereby the circular
attribute reaches its xed-point.

If a does not depend on a circular attribute, then in the
rst Caseliteration, there is no approximation ad so the
change ag is set inCase2 Sincea is not circular it does not
compute a new approximation in the seco@hseliteration,
so the xed-point loop completes after the second iteration,
and the value of is memoized.

Assumption (3) is not necessary for correctness of Algo-
rithm 2. Itis su cient that at least one distinguished attribute
in each dependency cycle is circularly evaluated. The non-
distinguished attributes can then be seen as non-memoized
circular attributes with bottom values computed using the
bottom values of the distinguished circular attributes. Recur-
sive computation terminates i€ase3at the distinguished
attributes, preventing unbounded recursion.

Assumption (4) is not necessary for correctness. It im-
plies that the dependency graph of each circular attribute is
strongly connected. If it is not strongly connected, our algo-
rithm works without modi cation. However, the algorithm
could potentially be modi ed to improve performance by
separately evaluating the connected components in topologi-
cal order and memoizing each component separately, similar
to the method used by Magnusson and Hedlir8]. Future
work could investigate extending our concurrent circular
evaluation algorithms to improve runtime performance for
separate components.

7 Empirical Evaluation

The research questions we want to answer in the evaluation
are:

RQ1 Does our implementation of the concurrent algo-
rithms work on existing well-formed JastAdd projects?

RQ2 Can the implementation be used for interactive
tools with both interactive and long-running tasks?

RQ3 Does our concurrent implementation give su -
ciently low latency for interactive tasks?

Section 7.1 addresses the applicability of the approach
(RQ1 and RQ2). Latency (RQ3) is addressed in Section 7.2.
Speedup is discussed in Section 7.3. Threats to validity are
discussed in Section 7.4.



7.1 Concurrent ExtendJ and Interactive
Applications

We applied our concurrent implementatiorio ExtendJ, a
full-featured Java compilerd]. The ExtendJ speci cation
is complex, with more than 3000 attributes, including all
attribute kinds discussed in this paper.

Initially, running ExtendJ concurrently did not work be-
cause its speci cation was not completely well-formed, with
some semantic functions being non-pure (WF1). Most of

Table 1. The thread-task mapping for each benchmark.

Thread
Benchmark 1 5 3 4
1| Task P| Task VD
2 | Task P| Task MT
3| Task P
4 | Task P| Task P | Task P| Task P

these problems happened to be masked in sequential evalua-

tion, but resulted in errors when running concurrently. In
one case there was also an error when running sequentially
caused by purity issues.

Substantial work was required to nd and x attribute pu-
rity problems, but the result bene ts the sequential compiler
by removing cases where it could compute incorrect results
when attributes were evaluated in a certain ordér.

After xing the identi ed well-formedness problems, we
successfully ran both the sequential and the concurrent im-
plementations on all regression tests for ExtendJ using the
same JastAdd speci cation. Based on this, we can answer
RQ1 a rmatively.

To address RQ2 we implemented an extension of an inter-
active AST debugging tool named DrAST{. DrAST has
a Graphical User Interface in which the user can explore a
JastAdd AST for a program and interactively inspect/com-
pute attribute values of nodes in the AST. In our extension to
DrAST, we integrated ExtendJ and added a few features: We
added a source editor for the program, and changes to the
program are re ected in the AST view. A screenshot of our
version of the tool is shown in Figure 6 in Appendix B. We
also added a computation of Extendfi®blems attribute
containing compile-time error and warning messages so that

these messages are displayed by DrAST. The user can in-

teractively inspect/compute attribute values while the long-
running problems attribute is computed. Any interactive
attribute queries are run concurrently with error-checking
tasks using our concurrent attribute evaluator. The tool thus
works similarly to a typical Integrated Development Envi-
ronment, and we can thereby answer RQ2 a rmatively.

7.2 Latency

The independent variable in studying latency is the attribute
evaluator implementation. We measure two di erent at-
tribute evaluators: the sequential implementation from Jast-
Add, and our concurrent implementation presented in this
paper (Algorithms 2 and 3). Attribute evaluation time is the
measured dependent variable. Confounding variables are the

30ur concurrent attribute implementation is available in JastAdd ver-
sion 2.3.0. Selep://jastadd.org.

4The xes are available in ExtendJ version 8.0.1-183-g812e434, from the
public Git repositories. Sele p://extendj.org.
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compiler (ExtendJ) on which we measure, and the attributes
measured.

7.2.1 Setup

We designed benchmarks to measure attribute evaluation
latency and overall overhead and speedup of concurrent at-
tribute evaluation. For evaluation latency we measure two
relatively short-running attributes that are evaluated con-
currently with a long-running attribute. For overhead and
speedup we measure the evaluation time of the long-running
attribute when evaluated sequentially and in parallel.

We use four benchmark con gurations, as shown in Ta-
ble 1. Each benchmark runs some combination of three tasks
executed in separate concurrent threads:

Task P Evaluates the long-running attributproblems
on all CompilationUnit nodes.

Task VD Evaluates the short-running attribut@ecl
(variable declaration) on 500 stochastically selected
VarAccessnodes.

Task MT Evaluates the short-running attribute
type (method type) on 500 stochastically selected
MethodDeclnodes from classes and interfaces.

The rst two benchmarks are used to measure attribute
evaluation latency in an interactive setting. They run many
short-running attributes in one thread, and a long-running
attribute in a separate concurrent thread. Benchmark 3 is
used to measure sequential performance by running a long-
running attribute in a single thread. Benchmark 4 is used
to measure parallelization performance by running long-
running attributes in parallel in four threads.

All benchmarks are run both with the sequential and
concurrent implementation. In the concurrent mode, task
threads are allowed to evaluate attributes concurrently, but
in the sequential mode, we use a lock to ensure that only
one thread at a time is evaluating any attribute.

Each benchmark con guration is executed 15 times in a
single Java process. The results of the rst three iterations
are discarded to reduce the impact of warm-up e ects in the
Java environment.

Before Benchmark 1 and 2 are executed we rst search
the AST of the subject program to nd al/arAccessor
MethodAccessodes, then the list of nodes is shu ed and
the rst 500 nodes are used in the benchmark.


http://jastadd.org
http://extendj.org

Figure 5. Latency results from Benchmark 1 and 2. Red show the latency for interactive tasks when using the concurrent
implementation. Each shows the average time for computing a variable declaration (left) or a method type (right) attribute,
when running concurrently with the long-runningoroblems attribute. Blue :s show the time it took to complete the long-
running task of computing thgroblems attribute when using the sequential algorithms with locking. This is the minimum
latency for interactive tasks that would occur when the interactive task is started right after starting the long-running task.

Subject programs we used for the benchmarks are taken
from the Qualitas Corpus, Version 20130925 [ We mea-
sured the rst 10, in alphabetical order, of the subject pro-
grams in the Qualitas Corpus that were written for Java 5 or
higher.

The benchmark suite was run on an Intel Core i7-3820
CPU at 3.60GHz, running 64-bit Linux Mint, with Java ver-

If the sequential implementation with locks is used in-
stead, the lower bound for the latency of an interactive task
that starts right after the start of a long-running task will
be the time it takes to complete the long-running task. This
could in principle be a very long time. In our experiments,
we used the computation of thproblems attribute as a typ-
ical representative of a long-running task. Our experiments

sion 1.8.0_112 (Oracle JDK). A relatively large Java heap sizeshow that the average time for this computation is between

of 32Gb was used, more than 1¢he minimum requirement
to compile each subject program in sequential mode, in order
to limit runtime garbage collection.

7.2.2 Results

RQ3 asks whether our concurrent implementation gives suf-
ciently low latency for interactive tasks. Benchmark 1 and
2 address this question by measuring the time it took to
evaluate 500 instances of two kinds of attributes: a variable
declaration attribute (Benchmark 1) and a method type at-
tribute (Benchmark 2). In both benchmarks, the attributes
are evaluated while concurrently computing compile-time
errors and warnings for the whole subject program via a
long-running attribute.

Our results show that when running the concurrentimple-
mentation, for any of the 10 programs, the highest average
latency for nding a variable declaration is below 0.5 ms, and
the highest average latency for computing a method type is
below 5 ms. This is far below the acceptable threshold of 100
ms, so this answers RQ3 a rmatively.
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500 ms and 11 seconds for the 10 di erent programs. The
latency in the sequential case is thus clearly too high for
interactive tasks. Figure 5 shows the average latency of the
short-running attributes in Benchmark 1 and 2 compared to
the long-running attribute.

7.3 Speedup

Although it is not one of our research questions, we were
interested to investigate the overhead and speedup of con-
current evaluation. We make some observations here based
on the results of Benchmark 3 and 4 (Section 7.2.1).

For overhead, we use the time for evaluating a long-
running attribute in a single thread by using both the concur-
rent and sequential implementation. The overhead is com-
puted as the concurrent evaluation time divided by the se-
guential time. Speedup of parallelization is measured by
taking the time to nd all compile-time errors in a program
using four parallel threads, divided by the running time of the
same computation in a single thread, using the concurrent
implementation. We measured the overhead and speedup
for the 10 subject programs, see Table 2. On average, the



overhead was less than 20%, and the speedup was around Zor circularly dependent attributes. We have not found any

for most programs.

Table 2. Overhead of one thread running the concurrent
algorithms, compared to the sequential algorithms. Speedup
on a 4-core processor when running four threads in paral-
lel, compared to running only one thread, all running the
concurrent algorithms. Note that overhead is independent
of code size (NCLOC, non-comment lines of code).

Program NCLOC | Overhead | Speedup
ant-1.8.4 105,007 1.10 1.95
antlr-4.0 21,919 1.16 2.04
aoi-2.8.1 111,725 1.22 2.07
argouml-0.34 192,410 1.33 2.24
aspectj-1.6.9 412,394 1.17 2.43
azureus-4.8.1.2 | 484,739 1.22 2.32
castor-1.3.1 115,543 1.18 2.03
cayenne-3.0.1 127,529 1.16 1.98
checkstyle-5.1 23,316 1.07 2.27
cobertura-1.9.4.1 51,860 1.19 1.52
average 1.18 2.15

7.4 Threats to Validity

The general applicability of our results is limited by the
fact that we have measured only three attributes in a single
JastAdd-speci ed compiler, ExtendJ. However, in our opin-
ion, ExtendJ is representative of a typical JastAdd compiler.
Also, ExtendJ is one of the largest JastAdd projects freely
available, and it uses all di erent attribute kinds discussed
in this paper.

An alternative compiler we considered is JModelica: a
compiler for the Modelica language. However, JModelica
currently uses several di cult to remove side-e ects in the
speci cation that would need to be xed in order to run it
concurrently.

Our results of course depend on the subject programs

that were used. We selected these programs in a systematic

manner from a well-known corpus in order to avoid bias.

8 Related Work

previous attempts to parallelize the demand-driven evalu-
ation algorithms used in RAGs, neither for circular nor for
non-circular attributes.

In dynamic programming, results to subproblems are mem-
oized, typically in a hash table, so that they only need to be
computed once. In top-down dynamic programming, sub-
problems are computed and memoized recursively, similar to
demand-driven evaluation of RAGs. Stivala et[@4] have
developed lock-free parallel algorithms for top-down dy-
namic programming. The basic idea is to let several threads
solve the complete problem in parallel, and let them store
and share the memoized subproblems through a global lock-
free hash table. Randomization is used to encourage di erent
threads to work on di erent subproblems. This approach is
not su cient for concurrent evaluation of RAGs, with their
di erent kinds of attributes and xed point computations.
However, the idea of using randomization is interesting to
investigate in future work for RAGs in order to gain better
speed-up when running threads in parallel.

Ditter et al. [4] develop a method for evaluating xed-
points in parallel, with the goal of speeding up software
veri cation using boolean equation systems. They observe
that in a xed point iteration, the order of evaluating the
di erent equations does not matter, and the equations can
therefore be evaluated in parallel. We also make use of this
observation in order to let several threads cooperatively
evaluate a circular attribute. Our demand-driven xed point
algorithm is, however, substantially di erent from the tradi-
tional xed-point algorithm used by Ditter. In the traditional
algorithm, it is assumed that both the equations and the
variables to be solved are known a-priori, and it is therefore
straight-forward to view this as a homogeneous data-parallel
problem. For RAGs, neither the equations nor the variables
are known a-priori, but are discovered during the recursive
evaluation algorithm, and the xed-point problem is hetero-
geneous, involving attributes associated with many di erent
node types and which are de ned by many di erent equa-
tions.

9 Conclusions
The goal of this work was to develop safe concurrent algo-

uation of Knuth attribute grammars, see, e.g., the surveys by {0 reduce latency in interactive tools. To this end, we de-
Jourdan[13] and Paakki21]. However, that work is based ~ Signed new lock-free attribute evaluation algorithms that can
on tree-walking evaluators which are not applicable to RAGs. e run concurrently by several threads. Our algorithms sup-

First, tree-walking evaluators take only local dependencies POrt synthesized, inherited, parameterized, higher-order, col-
into account, and can therefore not deal with the non-local lection, and circular attributes, as well as attribute-controlled

dependencies arising from the use of reference attributes. réwrites. Furthermore, we have generalized the algorithms
Second, the tree-walking algorithms evaluait attributes to work with relaxed requirements on circular attributes.

in an AST, whereas in RAGs, the only attributes that are e implemented our algorithms in the JastAdd metacom-
evaluated are those needed for the computation of some goal Piler, and the implementation can be used directly for any
attribute. Third, the tree-walking algorithms do not work ~ Well-formed JastAdd project. With our implementation, it
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is straightforward to evaluate attributes concurrently in an
interactive tool, for example to perform attribute computa-
tions in a background thread at the same time as computing
attribute query results in an interactive thread.

Through empirical evaluation, we demonstrated that our
algorithms signi cantly reduce the attribute evaluation la-
tency, from seconds to milliseconds for an interactive thread.
Our results are well below the threshold of 0.1 seconds
strived for in interactive systems, and we conclude that con-
current RAGs is a very attractive implementation technology
for interactive tooling.

We also did initial experiments on using the concurrent
algorithms for improving performance using parallelization.
We found that the overhead of the concurrent algorithm over
the sequential algorithm is under 20% on average and that
it is outweighed when running in parallel: We measured a
speedup of about 2 on average when running four parallel
threads.

Our results are very encouraging, and exploring how
to improve and take advantage of parallel evaluation is a
very interesting direction of future work. Possibilities for
performance improvement include tuning which attributes
are memoized, and improving work distribution between
threads, for example using randomization and work stealing.
Refactoring attributes to be more long/short-running could
also a ect parallel performance: Short-running attributes
reduce the risk of duplicate work when running in parallel,
while long-running attributes reduce the relative concurrent
memoization overhead.
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A Circular Attribute Correctness Proofs

This section gives the proofs of soundness and termina-
tion for CEval, i.e., the concurrent algorithm for circular
attributes (Algorithm 2). We start by giving several technical
lemmas with proofs. The main theorems and proofs appear
at the end of this section.

The lemmas below state properties about iterations of
Caselas executed in one single thread. There may be con-
currently executing threads, running their owRaselitera-
tions, but threads never shait@aselexecutions. The only
interaction between threads happens through reading and
writing shared attribute approximationsgy, , gv,, etc.). Iter-
ation indices can, without loss of generality, be thought of
as being globally unique between all threads.

We will often talk about properties such as ttdone ag
being set before some point in execution. This means that
given some linearization of several threads executing the
algorithm concurrently, the linearization point of a write
to gv,, settingdoneto true , was linearized as happening
before the given point in the current thread being discussed.

Also note that the lemmas only deal with attribute in-
stances, though we sometimes refer to them as just attributes.

First, we need a few de nitions:

De nition A.1 (Attribute Set) A is the set of attribute
instances in some attributed AST.

De nition A.2 (Direct Dependencies)For an attributex 2
A ,d(x) is the set of attributes thax directly depends on.

De nition A.3 (Transitive Dependencies)or an attribute
x 2 A, D(x) is the set of attributes thak transitively de-
pends on, including.

We assume here thdd(x) is strongly connected, in other
words, for ally 2 D(x), D(y) = D(x).

The following observation restates a consequence of how
semantic functions are translated in@ompute procedures:

Observation 1. For an attributex 2 A and an iteration of
the loop inCase1x), executingCcase®x;i) leads to executing
CEval(y;i) for ally 2 d(x).

We will need to reason about what happens during an
iterationi of the loop inCasel The following de nitions
introduce boolean functions to succinctly reason about this.

De nition A.4 (Execution of Case2)Letx 2 A be an at-
tribute, andi an iteration of the loop inCaseXx). Then,
case;i) istrue i Casedx;i) was executed during itera-
tioni.

De nition A.5 (Fixed-Point Value)Letx 2 A be an at-
tribute andi an iteration of the loop inCaseXx). Then,
€x(x;i) is true i, before the end of iteration, the shared
approximation forx is equal to the xed-point value ok.

De nition A.6 (Memoized Value)Letx 2 A be an at-
tribute andi an iteration of the loop inCaseXx). Then,
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dondx;i) is true i the done ag in the tuple gv, is true
before the end of iteration.

In other words,donéx;i) implies thatx was memoized
before or during iteration.

Note that€x(x;i) is not equivalent todondx;i), though if
the algorithm is correctdonéx;i) implies€x(x;i). We prove
this in Lemma A.10.

Lemma A.7 (Case2 on Direct Dependencyletx 2 A be

an attribute, and an iteration of the loop i€ase1x), and let

y 2 d(x) be a direct dependencyxoff CaseZ?x;i) is executed
during iteration, andy is not marked as done before the end of
the iteration, therCase?y;i) is executed at some point during
the iteration.

Proof.According to Observation 1CEval(y;i) is executed
as a direct consequence of executiGgsedx;i).
When CEval (y;i) is executed, there are three cases:

y is already marked as done, contradicting the premise
of the lemma, or,

no previous approximation has been stored fodur-
ing iterationi, so thenCasedy;i) is executed, or,

a local approximation of has been previously stored
during iterationi. Note that local approximations are
only stored inCaseZ2 so thenCaseZy;i) was executed
at some point during.

We now de ne another helper function to reason about
paths in the dependency graph of an attribute:

De nition A.8 (Dependency Paths) etx 2 A be an at-
tribute, with a transitive dependency oy 2 D(x). The func-
tion pathqx;y) gives all acyclic paths from toy following
the attribute dependency graph.
In other words, for eaclp = (az;az;

the following holds:

X =a,

y =an,

andaj+1 2d(a), wherel

;an) in pathgx;y),

i <n.

Lemma A.9 (Case2 on All if None Done)Letx 2 A be an
attribute, transitively depending gn2 D(x), and leti be an
iteration of the loop i€asex). For each path 2 pathgx;y),
fromx toy, where none of the attributesprare marked as
done by the end 0f Case?z;i) is executed for each attribute
Zin p duringi.

Proof.By induction on pre xes ofp. The one-length pre x
of p is equal tox, and sincd is an iteration of CaseXx),
CaseZx;i) is directly executed in the loop body.
Assuming that the lemma holds for amlength pre x of
p, we must show that it holds for a pre x of lengtim + 1.
Let a, be thent" element ofp, then it follows from the
induction hypothesis that donda, ), and by the de nition
of pathgx;y) it follows that ay+1 2 d(a,). By the induction



hypothesis it also follows thatasefa,;i), and together with
the conclusion that donda,), Lemma A.7 gives the goal:
casefan+1;i).

By induction the lemma holds for any length pre x of
p 1, sothe lemma holds fap.

Lemma A.10 (Done =) Fix). Letx 2 A be an attribute,
andi an iteration of the loop i€aselx). If x is marked as
donebefore the end ofthen for each transitive dependency
y 2 D(x), the shared approximationyis equal to the xed-
point value of/ before the end of

Proof.Note that an attribute can only be marked aeneby
the CAS after theCaselloop. CAS is linearizable, so the
e ect of several (concurrent) CAS calls is identical to the

elementz of p. By Lemma A.9 it follows thaCase3y;i) is
executed during iteration for ally 2 D(x).

LemmaA.12 (Casel Sound)Letx 2 A be an attribute, with
a transitive dependency on some attriyuD(x), and let
i be the last iteration of an executionQsselx). Then, the
shared approximation gfis equal toy's xed-point value
before the end of iterationi.e.€x(y;i) is true.

Proof.By Lemma A.11 there are two cases:

all attributes inD(x) have reached their xed-point
values before the end of iteratioin or,

CaseZ2is executed for all attributes iD(x) during
iterationi.

Inthe rst case, the goal follows directly from the premise,

e ect of some sequential ordering of the CAS operations. y 2 p(x).

Consequently, among the CAS calls that mark attributes in
D(x) asdone there exists a rst one.

Consider the rst attributey 2 D(x) that is marked as
doneby the CAS at the end o€asel The loop always takes
at least one iteration, so lé¢ denote the last iteration before
y was marked aslone

From Lemma A.9 and the assumption thats the rst
attribute in D(y) which is marked aglone it follows that
Case2was executed for alt 2 D(y). The loop condition
implies that none of the attributes ilD(y) changed approxi-
mation, thus a simultaneous xed-point has been reached
and€x(z;k) is true for allz 2 D(y).

Becausé®(x) is strongly connected, ang 2 D(x), then
D(x) = D(y). SubstitutingD(y) for D(x) gives the goal: for
allz 2 D(x) it holds that€x(z;k) is true.

Lemma A.11 (All Fix Or Case2) Letx 2 A be an attribute,
andi an iteration of the loop i€aselx). Then one of the
following properties hold:

all attributes inD(x) have reached their xed-point
value before the end of iteratioror,

Caseds executed for all attributes Id(x) during itera-
tioni.

Proof.There are two cases:

some attributez 2 D(x) was marked as done before
the end of iterationi, or,

none of the attributes irD(x) were marked as done
before the end of iteratiom.

In the rst case, there exists some 2 D(x) such that
dondz;i) is true, and by Lemma A.10 we have the fact that
all attributesw 2 D(z) have reached their xed-point values
before the end of iteratiom. Additionally, D(x) is strongly
connected, and 2 D(x) means thatD(x) = D(z). Substitut-
ing D(z) for D(x) gives the goal: for aiv 2 D(x); fix (w;i)
is true.

In the second case, there does not exist an attritm@
D(x) such thatdongz;i) is true. Consequently, for each path
p 2 pathgx;y) it most hold thatdondz;i) is false for each
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In the second cas€aseZz;i) is executed during iteration
i for all z 2 D(x). Sincei was the last iteration, and the
loop is only exited iftls:charge = false , it must be that all
attributesz 2 D(x) were computed to the same value as
their previous approximations. According to our de nition
of simultaneous xed-point, all attributes i (x) must then
have reached their xed-point value. Again, according to the
premisey 2 D(x) leads to the conclusion that has reached
its xed-point value.

Lemma A.13 (Case2 is Monotonic)Letx 2 A be an at-
tribute andi an iteration of the loop i€aselx). Then, exe-
cutingCase?x;i) does not update the shared approximation
for x to a new value that is lower in the value latticexof

Proof.First note that the shared approximations of attributes
are updated only by using CAS. The CAS operation is lin-
earizable, so the calls take e ect as if executed in some se-
guential order. Consequently, there exists a rst shared ap-
proximation update among any set of shared approximation
updates for any set of attributes.

Proof by contradiction. Assume that there exists an at-
tribute z 2 A which is the rst attribute whose approxima-
tion gv, is updated to a lower value in the value lattice of
by CaseZz;k) during some iteratiork.

At the start of Casedz;k), the valuevg was read frormgyv, .
Note that the approximatiowvo was computed by applying
the semantic function of to some state&,. Later inCase2
computingz gives a value/1 applying the semantic function
to a stateS;. Because the semantic function is monotone,
according to well-formedness condition WF3, the value
can only be lower tharvg in the attributes value lattice if
S is lower than in the state lattice. However, sincg is
read afterSy, there must exist some other attributewhose
approximation has been updated to a lower value, but this
contradicts the assumption thatwas the rst attribute to
update approximation to a lower value.

Lemma A.14. For a well-formed attribute 2 A , the xed-
point loop inCasex) performs a nite number of iterations.



Proof.For each iteration of Casel by Lemma A.11, there
are two cases:

all attributes inD(x) have reached their xed-point
values before the end of iteration or,

Case2is executed for all attributes i (x) during
iterationi.

Ifthe rstcase holds for some iteratioh theni is either the
last or penultimate iteration. There can not be more than one
additional iteration afteli because the next iteration will not
be able to update any attribute approximation to a new value,
causingtls.changdo remainfalse after the assignment at
the start of the next iteration, and then leading to the loop
exiting after that iteration.

Now, assume that there is an unbounded number of it-
erations. This implies that the second case must hold for
all iterations:Case2is executed for all attributes iD(x) in
each iteratiork. However, executingcase2for all attributes
means thatls.changes set totrue only if at least one at-
tribute changed approximation. Since attribute values are
in a lattice, there are only a nite number of possible value
updates until no value can be further updated. Additionally,
Lemma A.13 shows that all approximation updates are mono-
tonic. Thus, after a nite number of iterations it will not be
possible to update any approximation atld.changeemains
false and the loop ends.

Lemma A.15. For a well-formed attribute 2 A, and an
iterationi of the loop iCaselx), Case2x;i) does not cause
unbounded recursion.

Proof.If there exists unbounded recursion, executing
CaseZx;i) leads to a call taCasedx;i). However, the condi-
tion of the if -statement for callingCase2in CEval tests ifx
has already been computed during the iteratinrby reading
tlsiter(x) and comparing against In the rst execution of
Casedx;i), tlsiiter (x) is assigned before theComputecall,
which is the only control ow path that could lead to recur-
sion. ThusCase2does not lead to unbounded recursion.

Now we can nally present the main correctness theorems
and proofs using the above lemmas. There are two things
we must prove: thalCEval always terminates, and that it
returns the correct value.

Theorem A.16 (Termination) For a well-formed circular
attributex, CEval(x;0) terminates.

Proof.Some of the operations used I§Eval terminate due

to Java semantics, and the remaining can be ensured to termi-

nate using appropriate library implementations (thread-local

To show thatCEval terminates, we must show that only
a nite number of these operations are performed. For this,
it su ces to show that CEval, Casel Case2 andCase3
are executed a nite number of times. Except the initial
call to CEval (x;0), all calls toCEval, Case2 andCase3are
executed viaCasel Additionally, Case2causes recursion.
So, we must show thaCaselexecutes a nite number of
iterations andCase2never leads to unbounded recursion.
These properties are provided by Lemma A.14 and A.15.

Theorem A.17 (Fixpoint Sound) For a well-formed circular
attributex, CEval(x;0) computes the least xed-point value
ofx.

Proof.Lemma A.12 shows thaTaseXx) only terminates af-
ter the shared approximations of all 2 D(x) have reached
their xed-point values. The approximations of all attributes
in D(x) then form a simultaneous xed point. Because
x 2 D(x), this means thak has reached a xed-point value.
To show that the value ox is theleast xed-point value, we
must show that the initial approximations of all attributes
in D(x) were their respective bottom values. This is ensured
by the rst if -statement at the start oCEval. Because the
approximation of each attribute is initially set tfnil ;false ),
any thread executingCEval will attempt to initialize gv, to
(?x;false) if it sees the initial state. This happens before us-
ing the shared approximation, because all uses of the shared
approximation are inCase2which only happens after the
rst if -statement ofCEval.

It remains to show that multiple threads can concurrently
execute the algorithm without a ecting the correctness of
each other's results. For this we only need to look at the
points in the algorithm where threads communicate - that
is, viareadgv, ) andCASgv,; ).

The CAS used to initialize the shared valueofo the
bottom value,? ,, only has an e ect for a single invocation
of the CAS, and it ensures that all threads read the bottom
value ofx as the rst approximation ofx.

In Casel the shared value is accessed when the xed-
point computation is nished and a thread tries to mark the
shared approximation as the nal result. The CAS fails if
another thread has marked the same result as nal. Since
the returned value is read from the shared approximation
two separate threads will return the same result regardless
of which thread performed the successful CAS.

In Case2 the shared approximation is read and used as
the local approximation in case it was di erent from the local
approximation. A fundamental property o€ase2is that it
should only be able to update the shared approximation to a

data can use non-concurrent data structures). We assume higher value, which is proven in Lemma A.13.

that the following operations terminate:

reads and writes of thread-local data,
updating and reading shared approximations,
unpacking tuples.
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Figure 6. Screenshot of DrAST extended with ExtendJ. The center part of the window contains a graph of the AST of one
source le in freecol-0.10.7. The left part of the window contains a list of all attributes in the currently selected node. The
canCompleteNormallyattribute has been selected and manually computed by the user. The right side of the window contains
alistof all lesin freecol-0.10.7, and below that is a source le view of the currently selected le. The bottom center part of the
window shows status messages from DrAST. Note the message about compile-time error checking at the end. No compile-time

errors or warnings were present in freecol-0.10.7.

B DrAST Extension

DrAST is a tool for inspecting ASTs in JastAdd-generated
compilers. We extended the tool for interactive attribute
gueries in ExtendJ, using concurrent attribute evaluation.
Semantic warnings and errors are computed concurrently
in the background, while interactive queries can be issued
by the user via the graphical interface. A screenshot of the
DrAST Graphical User Interface is seen in Figure 6.

C Generated Code

The algorithms we have shown were designed to be simple
to present and prove correct. The actual implementations are
slightly di erent, in order to improve performance. For the
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most part the control ow is identical, but we try to reduce
redundant object creation where possible. We will note a
few small but notable di erences in the implementation for
circular attributes. Our implementation adds a new option
in the JastAdd metacompiler which enables concurrent code
generation for attribute evaluation.

With JastAdd, attributes are computed by a Java method
that JastAdd generates for the node class that the attribute
belongs to. To demonstrate generated attribute code, we will
use a very simple attribute, which is speci ed with the
following JastAdd declaration:
syn X A.a() circular [

new X()] = new X();



The attributea is a simple synthesized attribute that com- class A extends ASTNode {
putes an instance of class Note thata is not e ectively CircularAttributeValue value
circular. However, the declaration uses tlegcular key-
word, so the generated code will evaluate it as if it could public X a() {
be e ectively circular. The bottom value for the attribute is it (value.done) {
computed by the expression in square brackets. The attribute return  value.get();
computes the same value as the bottom value expression,

so the attribute evaluation will stop after one xed-point Object prev = value.get();

if (prev == NIL) {

new CircAttrVal();

Itera.‘tlon' . . . . /I Compute bottom value expression:
Figure 7 shows a slightly simpli ed version of the gen- X bottom = new X();

erated code for the attribute. The generated code im- it (Ivalue.compareAndSet(NIL, bottom)) {

plements Algorithm 2, with some di erences. The largest bottom = value.get();

di erence is in how attribute approximations are stored: }

Shared approximations are stored in an instance of the prev = bottom;

CircularAttributeValue  class. This class has a volatile }

done ag, and an atomic reference to the current approxima- ASTState tls = state();

tion value. This is done to avoid creating new tuple objects it (ttls.inCircle()) {

for each approximation update, and it works similarly to
the synthesized attribute memoization in Listing 1. A tuple
was used in the algorithm to simplify the presentation and

tls.enterCircle();
do {
tls.nextlteration();

/I CASE1l - start fixed-point loop.

correctness proofs. Our implementation preserves correct- tls. updatelteration(value);
ness while trying to improve performance slightly. Smaller X next = a_compute();
di erences to note about the generated code, compared to if (lAttributeValue.equals(prev, next)) {
the algorithm: tls.setChangeFlag();
The Casel Case2 andCase3calls have all been in- it (tvalue.compareAndSet(prev, next)) {

lined into the main attribute method. next = value.get()

The attribute method does not take an iteration index }

as parameter. Instead, the iteration index is stored in ; _ )
. . . . prev = next;

the thread-local state. The iteration index is reset to

} while (tls.testAndClearChangeFlag());

zero at the end of each xpoint iteration. tls.leaveCircle ():

All thread-local state is accessed via methods. For value.done = true :

example, theinCircle method is used to test return (X) prev;

if the current iteration index is zero, and the } else if (!tls.observedinCycle(value)) {
testAndClearChangeFlagmethod is used to test and /I CASE2 - compute new approximation.
reset the thread-local change ag. The iteration map tls.updatelteration(value);

is also accessed via methods on the thread-local state. X next = a_compute();

Attribute value equality tests are done with a static
method in theAttributeValue class.
Attributes are identi ed by the object storing the at-

tls.setChangeFlag();

next = value.get();

if (!AttributeValue.equals(prev, next)) {

if (!lvalue.compareAndSet(prev, next)) {

tribute value, which is unique to each attribute in- }

stance, and does not change during attribute evalu- }

ation. Theupdatelteration method is used to up- return next;

date the iteration index for an attribute, using the } else {

value reference as unique attribute identi er. The I/l CASE3 - reuse prev approximation.
observedInCycle method used to test if an attribute return (X) prev;

has been tagged with the current iteration index in the }

thread-local iteration map. }

In practice, data used during xpoint iterations can }
be discarded when the xpoint loop is nished. The

enterCircle andleaveCircle methods are used to Figure 7. Generated code for circular attribute a.

initialize and clean up the iteration map.

20



	Abstract
	1 Introduction
	2 Circular Reference Attribute Grammars

