
Concurrent Circular Reference Attribute Grammars (Extended Version)

Öqvist, Jesper; Hedin, Görel

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Öqvist, J., & Hedin, G. (2017). Concurrent Circular Reference Attribute Grammars (Extended Version).
(Technical report, LU-CS-TR; Vol. 2017-254, No. Report 103). Department of Computer Science, Lund
University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/portal/en/publications/concurrent-circular-reference-attribute-grammars-extended-version(4809a5fc-f7e3-4082-bf41-314091c98e0d).html
https://portal.research.lu.se/portal/en/persons/jesper-oeqvist(ef52ba60-55d3-4cb3-b013-45411e597fb6).html
https://portal.research.lu.se/portal/en/persons/goerel-hedin(a7e57feb-19d7-42e9-ba79-637d042ee464).html
https://portal.research.lu.se/portal/en/publications/concurrent-circular-reference-attribute-grammars-extended-version(4809a5fc-f7e3-4082-bf41-314091c98e0d).html

Concurrent Circular
Reference Attribute Grammars

(Extended Version)

Jesper Öqvist

Görel Hedin

Technical report, LU-CS-TR:2017-254
ISSN 1404-1200, Report 103, 2017

Lund University

Concurrent Circular Reference Attribute Grammars
(Extended Version)

Jesper Öqvist
Lund University

Sweden
jesper.oqvist@cs.lth.se

Görel Hedin
Lund University

Sweden
gorel.hedin@cs.lth.se

Abstract
Reference Attribute Grammars (RAGs) is a declarative exe-
cutable formalism used for constructing compilers and re-
lated tools. Existing implementations support concurrent
evaluation only with global evaluation locks. This may lead
to long latencies in interactive tools, where interactive and
background threads query attributes concurrently.

We present lock-free algorithms for concurrent attribute
evaluation, enabling low latency in interactive tools. Our al-
gorithms support important extensions to RAGs like circular
(�xed-point) attributes and higher-order attributes.

We have implemented our algorithms in Java, for the Jast-
Add metacompiler. We evaluate the implementation on a
JastAdd-speci�ed compiler for the Java language, demon-
strating very low latencies for interactive attribute queries,
on the order of milliseconds. Furthermore, initial experi-
ments show a speedup of about a factor 2 when using four
parallel compilation threads.

CCS Concepts ˆ Theory of computation � Concur-
rency; Parallel algorithms ; ˆ Software and its engineer-
ing � Compilers ;Translator writing systems and com-
piler generators ; Concurrent programming structures;

Keywords Reference Attribute Grammars, Concurrency,
Parallelization, Memoization, Circular Attributes

1 Introduction
Reference Attribute Grammars (RAGs) [9] have proven use-
ful for generating extensible compilers for languages like
Java [6, 28] and Modelica [1]. They are supported in sev-
eral attribute grammar systems, for example, JastAdd [9],
Silver [27], Kiama [22], JavaRAG [8], and RACR[3].

Typically, attributes are evaluated sequentially, in a single
thread. To extend such evaluation to several threads requires
a global evaluation lock, leading to attribute value queries
in one thread being blocked by ongoing attribute evaluation
in other threads. This blocking can cause long latencies in
interactive tools, like Integrated Development Environments
(IDEs). In IDEs, it is typically desired to keep the response
time below 0.1 seconds, to ensure that users perceive the tool
as reacting instantaneously [20]. By using concurrency, an
interactive task can be performed within this time limit even

This is an extended version of a paper to appear at SLE 2017.

while longer-running analysis tasks run in the background.
Concurrent evaluation also enables parallelization, which
could speed up regular compilation tasks.

A challenge in supporting concurrent attribute evalua-
tion is to safely handle circular attributes, i.e., attributes that
are in a dependency cycle, and evaluated by �xed-point it-
eration [7, 11, 18]. Circular attributes are useful for many
complex problems in compilers, like de�nite assignment (a
data�ow problem) and type inference. However, concurrent
evaluation in the presence of circular attributes is nontrivial
because approximations for each attribute value in a depen-
dency cycle need to be stored and updated safely between
multiple threads. An implementation based on locking in-
dividual attributes would cause deadlocks whenever two or
more threads attempt to evaluate (and lock) attributes on the
same dependency cycle.

We solve the latency problem by developing concurrent
algorithms for RAG attribute evaluation. The algorithms are
lock-free and safe to use with circular attributes without
risk of deadlock. Our algorithms support other common
extensions to RAGs like higher-order attributes, collection
attributes, and attribute-controlled rewrites. The supported
attribute kinds are described in Section 2.

Our contributions are:

� Lock-free concurrent evaluation algorithms for ex-
tended RAGs (Section 4), including circular attributes
(Section 5).

� Correctness proofs for the concurrent attribute eval-
uation algorithms for extended RAGs (Section 4) and
for the circular attribute evaluation (Appendix A).

� Relaxed requirements on circular attributes to make
their speci�cation simpler (Section 6).

� Implementation of the concurrent algorithms in the
JastAdd metacompiler. For a correctly speci�ed Jast-
Add project, our implementation can be used without
further modi�cation. We validate this by using our
implementation on a full Java compiler speci�ed with
JastAdd attributes (Section 7.1). We also validate the
implementation by using it in an interactive tool for
exploring Java programs.

� Empirical evaluation of attribute evaluation latency in
interactive tasks, comparing our concurrent implemen-
tation to a sequential one. The results show signi�cant

latency improvements using concurrent evaluation
(Section 7.2).

� Empirical evaluation of speedup using parallel at-
tribute evaluation, with results of about a factor 2 in
speedup when compiling large Java programs (Sec-
tion 7.3).

2 Circular Reference Attribute Grammars
In a RAG [9], an abstract grammar is viewed as a set of
node classes representing the nonterminals of the grammar.
Attributes are speci�ed for node classes, and an Abstract
Syntax Tree (AST) de�ned by the grammar has attribute
instances attached to its nodes. We refer to attribute instances
as simply attributes, unless otherwise noted.

An attribute is de�ned by asemantic functionof an AST
node. For example, an attributex with semantic functionf
can be written asx = f (n), wheren is an AST node. The
attributex belongs to eithern or one of its children. Ifx is
an attribute ofn, we say thatx is synthesized, and if it is an
attribute of one ofn's children, we say thatx is inherited.1

Synthesized attributes are typically used for propagating
information upwards in the AST, such as propagating the
type of an expression to its surrounding statement. Inherited
attributes are typically used for propagating information
downwards in the AST, such as propagating the set of visible
declarations from a block to its inner statements.

Unlike the original de�nition of attribute grammars by
Knuth [15], RAGs allow attributes to bereferencesto nodes
in the AST. For example, a variable access may have a refer-
ence to the declaration of the variable. In RAGs, the semantic
functions can access information in remote nodes via refer-
ence attributes. For example, the declared type of a variable
can be accessed via a reference to the declaration.

RAGs also supportparameterizedattributes, where the
semantic function depends not only on the node, but also
on arguments supplied when using the attribute. A typical
example is comparing two types by a parameterized attribute
on one of the types, where the type to compare against is
the argument.

The typical way to evaluate a Knuth AG is to statically
analyze attribute dependencies, and use a static schedule
to evaluate all attributes in dependency order, for example
using Ordered AGs [14]. For RAGs, this does not work, since
attribute dependencies are not statically known due to the
use of reference attributes and parameterized attributes. In-
stead, RAGs use recursive dynamic attribute evaluation that
memoizes attributes to make subsequent accesses fast [12].

Extensions to RAGs supported in the JastAdd system in-
clude circular attributes, higher-order attributes, collection
attributes and attribute-controlled rewrites.

1It can be noted that the attribute grammar concept ofinheritedis indepen-
dent of the object-oriented concept with the same name.

Circular attributes, useful for data-�ow problems, may de-
pend upon themselves, and are evaluated using a �xed-point
iteration algorithm [7]. For RAGs, the �xed-point algorithm
is recursive [18].

A higher-orderattribute is an attribute whose value is a
fresh AST subtree, and which can itself have attributes [26].
Example uses are computation of transformed structures
and macro-like expansions. In RAGs, it is important that
even if a higher-order attribute is evaluated more than once,
each time creating a fresh subtree, only one result reference
should become visible to the rest of the program.

Collectionattributes allow compound values to be de�ned
by a combination of contributions in an AST [2,17]. A typical
use is to collect all error messages in the program.

Attribute-controlledrewritesallow AST nodes to be condi-
tionally rewritten [5]. They have recently been shown to be
equivalent to circular higher-order attributes [23]. Typical
uses include specialization of nodes depending on context,
for example, replacing a �eld access node by a static or in-
stance �eld access, depending on its declaration.

For attribute evaluation to work correctly, certain well-
formedness conditions must be met. The following are of
particular importance for concurrent evaluation:

WF1: Pure semantic functions. Each semantic func-
tion must beobservationally pure[19], meaning that it
always computes the same value, does not modify the
AST, and does not rely on external mutable data.

WF2: Terminating semantic functions. Each seman-
tic function must terminate, given that access to other
attributes terminates.

WF3: Circular attributes are computable. To guar-
antee a computable least �xed point, we require the
semantic function of circular attributes to be mono-
tonic and yield values in a lattice of �nite height. This
is the condition used by Jones [11].

3 Correctness
We will prove correctness properties for the concurrent at-
tribute evaluation algorithms presented in this report. The
main correctness properties we wish to prove are soundness
and lock-freedom.

Soundness means that the algorithms compute the correct
attribute values. Lock-freedom is important to ensure that
the algorithms do not cause deadlocks when used in circular
attribute evaluation.

To show lock-freedom we prove a stronger progress guar-
antee: that the algorithms terminate in a �nite number of
steps. This means that most of our algorithms are actually
wait-free. However, some of the data structures used in our
implementation are not wait-free, only lock-free. If wait-free
implementations of those data structures were used, our
algorithms would be wait free.

2

For higher-order attributes we must prove an additional
correctness property: that the attribute can only compute a
single reference. A higher-order attribute creates a new AST
node object each time it is computed, but only one result
node must be attached to the AST and become visible to the
rest of the program. By proving that the evaluation algorithm
for higher-order attributes only allows a single reference to
be computed, we ensure that only a single node object is
shared between multiple threads.

4 Non-Circular Attribute Implementation
A recursive attribute evaluator computes an attribute by call-
ing its semantic function, and memoizing the result for fast
future accesses. Calling the semantic function leads to other
attributes being evaluated recursively. For non-circular at-
tributes, implementation of lock-free concurrent evaluation
is fairly straightforward. The main problem is to make sure
that memoization is done in a thread-safe way. For higher-
order attributes, it must be ensured that all threads will share
the same resulting reference to the new subtree.

A template attribute evaluator algorithm,Eval , is shown
in Algorithm 1. TheEval procedure takes as parameter an
attribute instance to be evaluated. Computation and mem-
oization have been abstracted out ofEval as four separate
procedures:

Compute Compute the value of an attribute.
Memoized Test if an attribute has been memoized.
Store Memoize a value for an attribute.
Load Retrieve a previously memoized value of an at-

tribute.

Algorithm 1 Template attribute evaluation algorithm for
memoized non-circular attributes.

procedure Eval (x) . Evaluate attributex.
if Memoized(x) then . Test if already memoized.

return Load(x) . Return memoized value.
else

u Compute(x) . Compute attribute value.
return Store (x;u) . Memoize and return result.

end if
end procedure

TheEval procedure can be trivially translated to Java as
a method of an AST node class that the attribute it evaluates
was declared on [9]. In the following sections we present
Java methods implementing the procedures used inEval for
non-circular attributes.

The attribute instance is not explicitly passed to the meth-
ods, as it is not a concrete Java object. Instead, the implicit
this parameter of the Java methods separates the evaluation
of di�erent attribute instances.

By proving that the procedures used byEval ful�ll certain
requirements we can show that the resultingEval implemen-
tation is sound and lock-free. For soundness, the procedures
must ful�ll the following soundness requirements:

Memoization Requirement
In one thread, ifMemoized(x) returns true before
Load(x), then Load(x) returns a valuev stored by
some thread executingStore (x;v).

Store Requirement
ExecutingStore (x;_) returns some valuev stored by
some thread executingStore (x;v).

We will later show that our implementations of the mem-
oization procedures ful�ll these requirements. Given that
these requirements are ful�lled,Eval computes the right
value for any non-circular attribute:

Theorem 4.1 (Eval Sound). If Memoized, Store andLoad
ful�ll the Memoization Requirement and Store Requirement,
then, for an attributex, Eval(x) (Algorithm 1) computes the
value ofx.

Proof.Consider a thread that executesEval (x). The if -
statement inEval has two branches:

� If Memoized(x) returnedtrue , then by the Memoiza-
tion Requirement the returned value,v , was stored by
some callStore (x;v). Because all calls toStore (x;_)
store a computed value ofx, and becausex is well-
formed (WF1), the returned value is the value ofx.

� Otherwise, Memoized(x) returned false . The re-
turned value is the result ofStore (x;u). According
to the Store Requirement, the resultv was stored by
some callStore (x;v). Because all calls toStore (x;_)
store a computed value ofx, the returned value is the
value ofx.

�

For a non-higher-order attribute the semantic function
always computes an identical value. However, for a higher-
order attribute this is not the case, as the attribute computes
a freshly created AST node reference. It is important that
only one reference becomes visible to the rest of the program.
For higher-order attributes we add the following soundness
requirement:

Higher-Order Memoization Requirement
For a higher-order attribute instancex, each call to
Store (x;_) returns a single reference, and any call to
Load(x) that happens after some call toStore (x;_)
returns the same value asStore (x;_).

The requirement ensures thatEval only returns a single
result reference.

Theorem 4.2. Consider a higher-order attribute instancex.
If Memoized, Store andLoad ful�ll the Higher-Order Mem-
oization Requirement, thenEval(x) (Algorithm 1) returns a
single reference.

3

Proof.Consider a thread that executesEval (x). The if -
statement inEval has two branches that return either the
result of Store (x;_) or Load(x). The �rst case is trivially
true, sinceStore (x;_) is required to return a single reference.
In the second case,Memoized(x) returnedtrue , so accord-
ing to the Higher-Order Memoization Requirement,Load
returns a single reference. Additionally, the Higher-Order
Memoization Requirement speci�es thatLoad(x) returns
the same reference asStore (x;_), so only one reference can
be returned fromEval (x). �

To ensure thatEval is lock-free, we require thatCompute,
Memoized, Store , andValue are lock-free:

Theorem 4.3 (Eval Lock-Free). Consider a non-circular at-
tribute instancex. If Compute, Memoized, Store andLoad
are lock-free, thenEval(x) (Algorithm 1) is lock-free.

Proof.Eval itself uses no iteration and no self-recursion
(becausex is not circular). Thus,Eval is lock-free because
all called procedures are lock-free by assumption. �

4.1 Synthesized and Inherited Attributes

For synthesized attributes, theComputeprocedure is a direct
translation of the semantic function into an executable form,
where other attribute uses are replaced by calls toEval .
Because JastAdd attributes are speci�ed with Java code, the
translation of theComputeprocedure is just a Java method
containing the code of the semantic function.

For inherited attributes, theComputeprocedure that com-
putes an inherited attribute on a noden must �nd the se-
mantic function for the inherited attribute. This is done by
accessing the parent ofn, and determining which semantic
function should be computed for the child noden.

The equation used for an inherited attributea on a node
n depends on the child position ofn in its parent node. The
original de�nition of inherited attributes by Knuth requires
the equation for an inherited attribute to be de�ned on the
direct parent of the node that the attribute belongs to. An
example of this is theb attribute in Figure 1: it belongs to
Z, and the equation for it is de�ned byX. RAGs allow the
equation to be de�ned further up in the AST, as in Figure
2, where the equation forb on X is propagated down toZ.
Conceptually, inherited attributes in RAGs work by using
implicit copy attributes on all intermediate nodes between
the node de�ning the equation for the attribute, and the node
that owns the attribute, as illustrated in Figure 3.

Concurrent memoization for synthesized and inherited
attributes can be implemented using a simple cache �eld
and volatile �ag in Java, as shown in Listing 1. It is not
necessary to exclude concurrentstore calls, because well-
formed synthesized and inherited attributes always compute
the same value, so concurrentstore calls will only store the
same value. Note, however, that the order of assignments
inside thestore procedure is critical: the write to the volatile

X

Y Z
a(Y) = 3 b

b(Z) = 4

Figure 1. An AST, rooted at the nodeX. NodesY andZ are
children ofX. The attributea is synthesized: it belongs toY
and its equation is de�ned onY. The attributeb is inherited:
it belongs toZ, but its equation is de�ned onX.

X

W

Z
b

b(W) = 4

Figure 2. An example of elided inherited attribute equations:
X de�nes the value ofb for Z, despiteX not being the direct
parent ofZ.

X

W

Z
b

b
b(Z) = b

b(W) = 4

Figure 3. An implicit copy attribute is used onW to copy
the value of the attributeb from X to Z.

cache �ag must be after the write to the value �eld to ensure
that the value is safely published to other threads.

4.1.1 Correctness

For synthesized attributes, theComputeprocedure is lock-
free, due to well-formedness condition WF2. For inherited
attributes, locating the semantic function is implemented by
a loop that iterates over parent references in the AST. Since

4

Listing 1. Simple attribute memoiza-
tion.
T value ;
volati le boolean cached = false ;

boolean memoized () {
return cached ;

}

T store (T v) {
value = v;
cached = true ;
return v;

}

T load () { return value ; }

Listing 2. Parameterized attribute
memoization.
ConcurrentMap map =

new ConcurrentHashMap ();

boolean memoized (Object args) {
return map. containsKey (args);

}

T store (Object args , T v) {
map. putIfAbsent (args , v);
return map.get (args);

}

T load (Object args) {
return (T) map.get (args);

}

Listing 3. Non-parameterized higher-
order attribute memoization.
AtomicReference value =

new AtomicReference (nil);

boolean memoized () {
return value .get () != nil;

}

T store (T v) {
value . compareAndSet (nil, v);
return value .get ();

}

T load () {
return (T) value .get ();

}

the AST has a �nite height, this loop terminates in a �nite
number of steps. The number of children for any node in an
AST is �nite, so each iteration of the loop performs a �nite
amount of work and is thus lock-free. The procedure for
�nding the equation for an inherited attribute is thread-safe
because the AST is not modi�ed after construction, making
it e�ectively immutable during attribute evaluation.

Theorem 4.4. The methods in Listing 1 ful�ll the Memoiza-
tion Requirement.

Proof.The Memoization Requirement entails that if
memoizedreturns true beforeload, then load returns a
valuev stored by some execution ofstore(v) .

Thecached�ag starts out asfalse . Hence,memoizedre-
turns true only after some write has setcachedto true .
Thecached�ag is declared asvolatile . According to the
Java Memory Model, a previous write tovalue must there-
fore be visible to the thread that observedcachedhaving
the valuetrue , so a following call toload will return this
value or some other value ofx stored bystore . �

Theorem 4.5. The methods in Listing 1 ful�ll the Store Re-
quirement.

Proof.The Store Requirement entails thatstore(u) returns
a valuev stored by some execution ofstore(v) . The require-
ment is ful�lled becausestore(u) always returnsu. �

Theorem 4.6. The methods in Listing 1 are lock-free.

Proof.All of the operations used are lock-free according to
the Java speci�cation. There exists no iteration or recursion,
hence the methods are lock-free. �

4.2 Parameterized Attributes

Synthesized and inherited attributes can be optionally param-
eterized. To compute a parameterized attribute, additional
arguments are sent to theComputeprocedure.

Parameterized attributes are memoized by mapping argu-
ment values to result values. To this end we use a concurrent
map. For unary attributes, the single argument value is used
as map key, and for 2+ arity attributes a list of the argument
values is used as map key. Map keys of primitive type are
converted to object types likejava.lang.Integer .

Our parameterized attribute implementation, in Listing 2,
uses the classConcurrentHashMapfrom the Java standard
library as map structure. The methodputIfAbsent is used
in store to atomically associate an argument list with an
attribute value. UsingputIfAbsent allows only one thread
to succeed in updating the map for any given argument list.

The ConcurrentHashMapimpelementation is lock-free
but the rest of our implementation is wait-free. If full wait-
freedom is required, a Java implementation of a wait-free
map could be used.

4.2.1 Correctness

For parameterized attributes, the memoization methods in
Listing 2 are used.

Theorem 4.7. The methods in Listing 2 ful�ll the Memoiza-
tion Requirement.

Proof.The Memoization Requirement entails that if
memoized(p)returns true beforeload(p) , then load(p)
returns a valuev stored by some execution ofstore(p,v) .

The mapis initially empty, with no key associated to a
value. A call tomap.containsKey(p) then only returnstrue
if some call toputIfAbsent(p,_) inserted a value for the
given key previously. Keys are never disassociated in the map,
somap.get(p) is guaranteed to return an inserted valuev,
which was inserted bystore(p,v) . �

Theorem 4.8. The methods in Listing 2 ful�ll the Store Re-
quirement.

5

Proof.The Store Requirement entails thatstore(p,u) re-
turns a valuev stored by some execution ofstore(p,v) .

Keys are never disassociated in the map, and because
store(p,_) either inserts a value for some keyp, or does
not because the key was already associated to some value,
and because the call tomap.get(p) occurs after that in pro-
gram order,map.get(p) returns an inserted valuev, which
was inserted bystore(p,v) . �

Theorem 4.9. The methods in Listing 2 are lock-free if the
ConcurrentMapimplementation is lock-free.

Proof.The methods do not use iteration or recursion, so if
the methods implemented by theConcurrentMapobject are
lock-free (containsKey, putIfAbsent , andget), then the
methods in Listing 2 are lock-free. �

4.3 Higher-Order Attributes

A higher-order attribute can be either synthesized or inher-
ited, and optionally parameterized. In either case, the only
di�erence in computing the attribute is that, at the end of
the Computeprocedure, the result node is attached to the
AST by setting its parent reference.

For non-parameterized higher-order attributes we can-
not reuse the memoization method in Listing 1 because two
threads can race to write a value withstore , making it
possible for two separate AST nodes to be shared with the
rest of the program. This is a consensus problem: concur-
rent threads callingstore must agree on a single value. A
standard solution forn-thread consensus is to useCompare-
And-Set(CAS) [10]. CAS is a lock-free and atomic operation
that atomically tests the value of a variable and conditionally
updates it to a new value if it had the expected value. In
our implementation, in Listing 3, we use the Java standard
library classAtomicReference, that implements CAS by the
compareAndSetmethod. The �rst argument is the expected
value, and the second is the new value.

We usenil to represent an illegal attribute value (not
equal tonull). This value is used to indicate that the attribute
has not yet been computed and thus replaces thecached�ag
from the synthesized memoization methods (Listing 1).

For parameterized higher-order attributes, we reuse the
parameterized memoization methods in Listing 2.

4.3.1 Correctness

For non-parameterized higher-order attributes, the imple-
mentation in Listing 3 is used. As mentioned, theCompute
method for a higher-order attribute sets the parent reference
of the result node. Updating the parent reference does not
a�ect the lock-freedom ofCompute: it still terminates in
a �nite number of steps. However, we must show the that
the implementation ful�lls the Higher-Order Memoization
Requirement:

Theorem 4.10. The methods in Listing 3 ful�ll the Higher-
Order Memoization Requirement.

Proof.Thevalue �eld is only updated by the CAS instore ,
with the expected valuenil . Only one CAS is able to succeed,
because the attribute value is never equal tonil . Because
store returns the single successful CAS value, it always
returns the same value for a single attribute instance.

Note thatmemoizedreturnstrue only if a previous CAS
has succeeded, and thenload must return the stored value
of the single successful CAS. �

Theorem 4.11. The methods in Listing 3 are lock-free.

Proof.All methods ofAtomicReferenceare lock-free. No
other method calls are used, and no iteration or recursion is
used, so the methods in Listing 3 are lock-free. �

For parameterized higher-order attributes, the parameter-
ized memoization implementation in Listing 2 is used. The
following theorem proves that it is sound for higher-order
attribute memoization.

Theorem 4.12. The methods in Listing 2 ful�ll the Higher-
Order Memoization Requirement.

Proof.The associated value for some keyp is only updated
by putIfAbsent(p,_) in store(p,_) . Because keys are
never disassociated, only oneputIfAbsent(p,_) is able to
succeed. Becausestore(p,_) returns the single successful
putIfAbsent(p,_) value, it always returns the same refer-
ence, for a single attribute instance.

Note thatmemoized(p)returns true only if a previous
putIfAbsent(p,v) call has succeeded, and thenload(p)
must return the valuev stored by the single successful
putIfAbsent(p,v) call. �

4.4 Collection Attributes

Collection attributes [17] collect values from multiple nodes
in a subtree of the AST. Each node that potentially con-
tributes a value to a collection attribute is called acontributor.
A contributor has a semantic function to compute the con-
tributed value, and it may additionally have a contribution
condition, i.e., a boolean expression that restricts the node
to contribute a value to the collection only if some condition
holds.

Collection attribute computation is divided into two
phases [17]:

Survey phase A subtree of the AST is traversed, starting
from some predeterminedcollection root. All nodes that
are potential contributors to the collection attribute
are added to a worklist for the next phase.

Collection phase For each node in the worklist from
the previous phase, the contribution condition is

6

checked to determine if the node actually should con-
tribute a value. If the node is contributing to the col-
lection then its semantic function is computed and its
value is added to the result.

A simple method of computing collection attributes is to
perform a depth-�rst traversal for the survey phase, and then
use a loop to iterate over the resulting list of contributors in
the collection phase.

Collection attributes are only computed using the base
AST, excluding higher-order attributes. Computing a non-
parallelized collection attribute is lock-free because each
contribution is computed by a semantic function that must
terminate in a �nite number of steps, and there are a �nite
number of contributions because the base AST has a bounded
height and each AST node has a �nite number of children.

A sequentially evaluated collection attribute is safe for
concurrent use if it does not memoize the result. If memo-
ization is needed the memoization scheme for concurrent
synthesized attributes can be used.

4.5 Rewrites

JastAdd provides automatic AST rewriting controlled by
attributes. This is a powerful tool for transforming the AST,
but the original implementation in JastAdd was not safe for
concurrent evaluation, as it modi�ed the AST whenever a
rewrite was evaluated [5]. JastAdd provides an alternative
rewrite mechanism that implements rewrites using higher-
order attributes, based on the work of Söderberg and Hedin
[23].

For concurrent evaluation, we use the higher-order at-
tribute implementation of rewrites in order to avoid modi-
�cation of the base AST by rewrite evaluation. This makes
rewrites safe for concurrent evaluation by keeping the
AST immutable after construction, and using concurrent
attributes to implement the rewrites.

5 Circular Attribute Implementation
Circular attributes in RAGs are evaluated recursively, by
�xed-point iteration. The current approximations of at-
tributes need to be stored in order for the attribute values
to be successively re�ned. This could be done by using only
thread-local storage, or by using a global evaluation lock
to prevent concurrency problems in sharing attribute ap-
proximations, but neither of these solutions is attractive. We
instead investigate an algorithm that allows multiple threads
to safely cooperate in computing attribute approximations
in a recursive �xed-point iteration.

A circular attribute can be seen as a �xed-point functionf .
Usually, a �xed-point function is evaluated by repeated ap-
plication, starting from some bottom value. However, there
may be multiple mutually dependent attributes. Therefore,
f does not necessarily correspond to a single semantic func-
tion, rather it represents multiple simultaneously applied

semantic functions. Furthermore, it is possible to apply the
individual semantic functions one at a time, in any order,
and reach the same simultaneous least �xed-point. This is
true because the values of each attribute can be arranged
in a lattice, and a combination of attribute approximations,
for example a vector of approximations, is also a value in a
lattice. Since each semantic function is monotonic, according
to well-formedness condition WF3 in Section 2, updating one
approximation is a monotonic operation on the combined
approximation vector.

We will now illustrate how a circular attribute can be eval-
uated in practice. Letx be some circular attribute (instance),
with D(x) being the set of attribute (instances) thatx transi-
tively depends on. For now, we assume that all attributes in
D(x) are circular and mutually transitively dependent. We
discuss how to relax these requirements later, in Section 6.

Let S be a vector of attribute approximations for the at-
tributesD(x). TheSvector forms the state of a �xed-point
computation of the attributesD(x). A successor stateS0 is
found by updating one approximationS0

y = fy (S), wherey
is an attribute inD(x). If the new approximation ofy is not
equal to the previous approximation, i.e.,S0

y , Sy , then since
fy is monotonic,S0 is greater thanS.

Consider a starting stateS? , where each approximation is
equal to the bottom value of the corresponding attribute. By
repeatedly updating approximations of attributes inD(x) as
above, in any order, starting in stateS? , the approximations
will eventually reach a simultaneous �xed point in which
all approximations are equal to the �xed-point value of the
corresponding attribute.

A stateSfp is a simultaneous �xed point of the attributes
in D(x) if, for all y 2 D(x), Sfp

y = fy (Sfp).

5.1 Concurrent Circular Attribute Algorithm

Our algorithm for concurrent evaluation of circular attributes
is shown in Algorithm 2(see Appendix C for example Java
code generated by our implementation). The algorithm
works by using a �xed-point loop (inCase1) to iteratively
re�ne attribute approximations for all attributes in a depen-
dency cycle. The algorithm terminates when all approxima-
tions have reached a simultaneous �xed point.

Each iteration of the �xed-point loop starts by computing
some attributex in the dependency cycle (by callingCase2),
and recursively computing the attributes used byx, and so on.
Recursion stops when an attribute that was previously visited
in the current iteration is encountered (Case3). The previous
approximation is then reused. To track if an attribute has
been visited in the current iteration of the �xed-point loop,
attributes are tagged with an index identifying the current
iteration. These iteration tags are stored in the thread-local
maptls.iter.

A change �ag,tls.change, is used to track if any attribute
approximation changes in the �xed-point loop. When the

7

change �ag remainsfalse after an iteration, the loop is exited
and the attribute is memoized.

If a single thread is used, our algorithm executes similarly
to the sequential algorithm of Magnusson and Hedin[18]. If
multiple threads are working in the same dependency cycle,
they will exchange attribute approximations through global
atomic variables. An invariant in both cases is that a thread
can only update attribute approximations to monotonically
increasing values (WF3).

The main procedure of our algorithm,CEval, uses three
Casesubroutines similarly to the formulation of the sequen-
tial algorithm of Söderberg and Hedin[23]. Each thread starts
in Case1, which starts a new �xed-point loop. During the
loop,Case2is used to update approximations of attributes
on the dependency cycle. When an attribute is recursively
revisited during a particular iteration of the loop,Case3is
used to fetch the most recent approximation.

To illustrate, assume there are two threadsT1 and
T2 computing mutually dependent attributesx and y
respectively. The control �ow then looks like this:
(call, loop)

T1: CEval (x) Case1x Case2x Case2y Case3x

T2: CEval (y) Case1y Case2y Case2x Case3y

If T2 memoizesy, thenT1 will not call Case2or Case3for
y upon the next use ofy. Instead, the memoized value ofy
is used directly byT1.

The next sections describe the state variables used in the
algorithm, and how the individual procedures of the algo-
rithm work in more detail.

5.1.1 Shared State

All threads share a global approximation for each attributex,
stored in the atomic variablegvx . This atomic variable is
updated using Compare-And-Set (CAS). All reads and CAS
of gvx are lock-free and atomic.

The value ofgvx is a tuple of an attribute value and adone
�ag, indicating if the attribute is memoized. The attribute is
only memoized when it has reached its �xed-point value. If
the done�ag is false , the value is either uninitialized (nil),
or an approximation of the attributex.

The notation used for updatinggvx is CAS(gvx ;p;n),
wherep is the expected previous value andn is the value to
update to. When theCASis performed, if the value ofgvx
is indeedp then it is atomically updated ton. In Java, the
gvx �eld can be implemented byAtomicReferenceas in the
higher-order attribute memoization from Section 4.3.

5.1.2 Thread-Local State

Each thread stores thread-local state (TLS), that is not visible
to other threads, in thetls object. The purpose of eachtls
�eld is described below:

tls.change A �ag indicating if the current thread ob-
served any attribute approximation change during the
current iteration of the �xed-point loop.

tls.iter A map from attributes to iteration indices. Unas-
sociated keys are mapped to an unused non-zero iter-
ation index.

In each thread, the iterations of the �xed-point loop in
Case1are assigned unique indices. Each time a thread com-
putes an approximation of some attributex, it updates
tls:iter(x) to the current iteration index. Thus,tls:iter(x) is
used to tag which iteration an attribute was last computed
in. This works like a visit �ag, except that the iteration tags
do not need to be reset on each iteration. Instead, the current
iteration index is updated for each iteration. The iteration
index is always updated to a unique value, to ensure that
iteration indices are unique across allCase1invocations, not
only across iterations of a singleCase1invocation.

5.1.3 The CEval Procedure

TheCEval procedure takes two arguments: an attribute to
be evaluated,x, and an iteration index,i . The iteration index
identi�es separate iterations of the �xed-point loop in the
current thread.

CEval is called with i = 0 when there is no ongoing
�xed-point computation. In this case,CEval will return the
�xed-point value of x. If i , 0, thenCEval returns an ap-
proximation ofx.

The execution ofCEval starts by testing ifx has already
been memoized, in which case the memoized value is re-
turned. Otherwise, if the global approximation was not ini-
tialized (equal tonil), the global approximation is updated
to the bottom value ofx. Next, execution continues to either
Case1, 2, or 3:

� If i = 0, Case1(x) is called to start a new �xed-point
loop.

� Otherwise, if the current thread has not computed a
value forx during the current iterationi , Case2(x;i)
is called to compute a new approximation ofx.

� Otherwise,Case3(x) is called to reuse the current ap-
proximation ofx.

5.1.4 Case1 (Fixed-point Loop)

In Case1, a new �xed-point computation for an attributex
is started. The computation is performed by a loop, and an
iteration indexi is used to identify each iteration of the loop.

An iteration of the loop starts by updatingi to a new
unique, non-zero value, and clearing thetls.change�ag. Next,
Case2(x;i) is called to compute a new approximation ofx.
The loop is exited at the end of an iterationi if tls.changere-
mains unset. Thetls.change�ag remains unset only if, during
an iteration of theCase1loop, no attribute approximation
was updated to a new value viaCase2(x;i).

8

Algorithm 2 Concurrent evaluation algorithm for circular attributes.
. Shared global value of attributex:
gvx : Value� Boolean (nil ; false)

. Thread-local state:
tls.change: Boolean
tls.iter : (Attribute ! Integer)

. Main procedure for computing an attributex.

. Current iteration index is passed as thei parameter.
procedure CEval(x; i)

(value; done) read(gvx)
if donethen

return value
else if value= nil then

. Initialize gvx by Compare-And-Set:
CAS(gvx ; (nil ; false); (? x ; false))

end if
if i = 0 then

return Case1(x)
else if tls:iter(x) , i then

return Case2(x; i)
else

return Case3()
end if

end procedure

. Run a �xed-point computation of attributex.
procedure Case1(x)

repeat
i uniqueId()
tls:change false
Case2(x; i)

until : tls:change
. Memoizex by markinggvx as done:
(result; _) read(gvx)
CAS(gvx ; (result; false); (result; true))
return result

end procedure

. Compute a new approximation of attributex.
procedure Case2(x; i)

(prev; _) read(gvx)
tls:iter(x) i
next Compute(x; i)
if next , prevthen

tls:change true
CAS(gvx ; (prev; false); (next; false))

end if
return next

end procedure

. Read most recent approximation ofx.
procedure Case3(x)

(prev; _) read(gvx)
return prev

end procedure

After the loop is exited, the stored global value ofx is
equal to the �xed-point value ofx, so the current thread
attempts to memoize the attribute by updating thedone�ag
for x.

5.1.5 Case2 (Compute Approximation)

Case2computes a new approximation of an attributex by
calling Compute(x;i). TheCompute procedure is an exe-
cutable translation of the semantic function of attributex,
where each access to some other attributey is translated as
a call toCEval (y;i).

Case2starts by reading the current approximation ofx.
The current approximation is stored in a temporary variable
to be able to detect if the newly computed value di�ers from
the previous approximation.

Before computing a new approximation, the current
thread tags the attributex with the current iteration in-
dexi . This causes recursiveCEval (x;i) calls in the current
thread to enterCase3rather thanCase2, thereby avoiding
unbounded recursion.

A new approximation ofx is computed byCompute(x). If
the new value is di�erent from the previous approximation,
then tls.changeis set totrue and the shared approximation
of x is updated usingCAS.

5.1.6 Case3 (Recursion Termination)

Case3returns the most recent approximation computed
for the attributex. This case is necessary to terminate the
recursion when called viaCase2.

5.2 Correctness

We will here show informal outlines for proofs of soundness
and lock-freedom ofCEval. The full proofs are in Appen-
dix A.

Soundness.CEval is sound if, for a well-formed circular
attributex, CEval (x;0) computes the �xed-point value ofx.
Well-formedness is de�ned in Section 2. Speci�cally, the
semantic function ofx must be monotonic (WF3).

Consider a single thread executingCEval. It will al-
ways enterCase1initially, then perform iterations until
the tls.change�ag remains unset. For this to work,Case2

9

should be called for each attribute thatx depends on, that
can change value, in each iteration ofCase1. It can be shown
that in each iteration ofCase1, either all attributes thatx
transitively depends on have reached their �xed-point value,
or Case2is executed for all attributes thatx transitively
depends on(Lemma A.11).

It is important that a single thread only advances the global
state of an attribute to a monotonically increasing value. This
is both ensured by the monotonicity of semantic functions,
and by the fact that the current approximation is read before
computing a new approximation, and used as the expected
value before updating to a new approximation(Lemma A.13).

Lock-freedom. CEval is lock-free if it terminates in a �-
nite number of steps. Proving this is mostly straight-forward.
The only challenging parts are to show that the loop inCase1
performs a �nite number of iterations, and that each one per-
forms a �nite amount of work. This relies on the fact that the
attributes are well-formed and thus have terminating seman-
tic functions (WF2), and a �nite greatest possible value (WF3)
which is eventually reached by successive approximation in
Case1. Since all attribute approximation states form a lattice
of �nite height, and approximation updates are monotonic,
the algorithm will always terminate in a �nite number of
iterations of theCase1loop if at least one approximation is
updated on each iteration. If not at least one approximation
update happens, thenCase1would terminate anyway.

5.3 Parameterized Circular Attributes

Like most other kinds of attributes, circular attributes can be
parameterized. To support parameterized circular attributes,
we need a few modi�cations to Algorithm 2. A new parame-
ter p is added to theCEval procedure. The parameterp is
a list of the attribute argument values, and it is passed to
Case1, Case2, Case3, andCompute.

The global value of a non-parameterized circular attribute
is stored in an atomic variable with a CAS operation and
atomic read. To store global values for a parameterized cir-
cular attribute we instead use a concurrent map that maps
attributes to atomic variables. The global value map is in-
dexed byp, i.e.gvx (p) gives the atomic variable for the global
value ofx with argumentsp.

A parameterized circular attributex is initialized by using
putIfAbsent to insert a new atomic variable containing the
bottom value ofx in the global value map. The other uses
of gvx from the non-parameterized algorithm are replaced
by map lookupsgvx (p). Because we useputIfAbsent , we
ensure that an attribute is only initialized once. The rest of
the uses ofgvx will all act as before, but on di�erent atomic
variables for di�erent argument combinations.

The local iteration maptls.iterneeds to be indexed by both
attribute and argument values. We implement this by using
tuple objects containing the attribute and argument value
list as map key.

x y g h

u w

z

Figure 4. An attribute dependency graph. Each circle is an
attribute instance. Attributes with underlined names are
circularly evaluated (with bottom value). Attributes inside
the dashed rectangles are strongly connected and e�ectively
circular. The attributesu andw are e�ectively non-circular.

6 Relaxed Requirements on Circular RAGs
Up until now we have used some simplifying assumptions
about the structure of circular attributes in RAGs. In this
section we review these assumptions, and we show why
some of them are not necessary for correctness, and how
others can be relaxed by simple additions to our algorithms.

By relaxing assumption 1 below, we allow more general
combinations of circular and non-circular attributes than
were previously allowed in Circular RAGs according to Mag-
nusson and Hedin[18]. This relaxed requirement is useful in
practice since it is common that attributes are on a cycle only
for a small fraction of typical ASTs. Requiring these attributes
to be declared as circular would cause expensive �xed-point
computations during runtime even for many ASTs where
there actually is no cycle.

To concisely discuss these assumptions we will �rst need
two auxiliary de�nitions:

Circularly evaluated attribute An attribute instance
x is circularly evaluatedif it has a bottom value, and
CEval is used to compute its value.

E�ectively circular attribute An attribute instance is
e�ectively circularif it depends transitively on itself.
Otherwise it is said to bee�ectively non-circular.

An attribute declaration can have both e�ectively circular
and e�ectively non-circular instances.2

These are the assumptions we have used so far:

1. A circularly evaluated attribute instance depends only
on circularly evaluated attribute instances.

2. All circularly evaluated attribute instances are e�ec-
tively circular.

3. All e�ectively circular attribute instances are circularly
evaluated.

4. If an e�ectively circular attribute instancex transi-
tively depends on an attribute instancey, theny tran-
sitively depends onx.

Assumption (1) can be relaxed. Figure 4 shows two at-
tribute instances breaking this assumption:g andu are both

2Magnusson and Hedin[18] refer to circularly evaluated attributes aspo-
tentially circularand to e�ectively circular attributes asactually circular.

10

circularly evaluated, but depend on attributes that are not,
namelyu andz. Evaluatingu with Algorithm 1 works as
it should, becauseu is not e�ectively circular and always
computes the same value. Forz, however, Algorithm 1 does
not work correctly, becausez is e�ectively circular and can
compute di�erent values based on an approximation ofx.

A problem arises because Algorithm 1 memoizes attributes
on the �rst computation, but during a �xed-point compu-
tation, e�ectively circular attributes return approximations,
which are not safe to memoize. To avoid premature memo-
ization, an attribute depending (transitively) on a circularly
evaluated attribute should not memoize its result during a
�xed-point computation.

Assumption (1) can be relaxed by replacing Algorithm 1 by
Algorithm 3 for non-circular attributes. This changes mem-
oization of attributes to be conditional, so thatEval only
memoizes an attribute when it is called outside any ongoing
�xed-point computation. An additional �eld,tls.i, is added
to the thread-local state to track the current �xed-point iter-
ation index. At the start of each iteration of theCase1loop,
tls.i is updated to the current iteration index, and at the end of
Case1, tls.i is set to0. A memoized attribute must ensure that
tls:i = 0 before memoizing a result. The updated algorithm
works even for higher-order attributes, because the result
node is not memoized by any other attribute that depends
on the higher-order attribute before the circular evaluation
has reached the �xed point, thereby di�erent AST nodes do
not become visible to the rest of the program.

Algorithm 3 can be further improved by memoizing at-
tribute values and tagging the memoized value with the
current iteration index. This allows the attribute value to be
reused in a singleCase1iteration. This improved algorithm
is the one that we implemented in JastAdd.

Algorithm 3 Evaluation algorithm for memoized non-
circular attributes with circular dependees.

procedure Eval (x)
if Memoized(x) then

return Load(x)
else

u Compute(x)
. Test if called in circular evaluation.
if tls:i , 0 then

. In circular evaluation: not safe to memoize.
return u

else
. Memoize the computed value as usual.
return Store (x;u)

end if
end if

end procedure

Assumption (2) is not necessary for correctness. In Fig-
ure 4,w is circularly evaluated, but it is not e�ectively circu-
lar. In general, if some attributea is not e�ectively circular,
but circularly evaluated withCEval, then there are two cases:
a transitively depends on some circularly evaluated attribute
instance, or it does not.

If a depends on some circularly evaluated attribute in-
stance, then, as long as that attribute changes approximation,
the Case1loop for a will not terminate, thereby the circular
attribute reaches its �xed-point.

If a does not depend on a circular attribute, then in the
�rst Case1iteration, there is no approximation ofa so the
change �ag is set inCase2. Sincea is not circular it does not
compute a new approximation in the secondCase1iteration,
so the �xed-point loop completes after the second iteration,
and the value ofa is memoized.

Assumption (3) is not necessary for correctness of Algo-
rithm 2. It is su�cient that at least one distinguished attribute
in each dependency cycle is circularly evaluated. The non-
distinguished attributes can then be seen as non-memoized
circular attributes with bottom values computed using the
bottom values of the distinguished circular attributes. Recur-
sive computation terminates inCase3at the distinguished
attributes, preventing unbounded recursion.

Assumption (4) is not necessary for correctness. It im-
plies that the dependency graph of each circular attribute is
strongly connected. If it is not strongly connected, our algo-
rithm works without modi�cation. However, the algorithm
could potentially be modi�ed to improve performance by
separately evaluating the connected components in topologi-
cal order and memoizing each component separately, similar
to the method used by Magnusson and Hedin[18]. Future
work could investigate extending our concurrent circular
evaluation algorithms to improve runtime performance for
separate components.

7 Empirical Evaluation
The research questions we want to answer in the evaluation
are:

RQ1 Does our implementation of the concurrent algo-
rithms work on existing well-formed JastAdd projects?

RQ2 Can the implementation be used for interactive
tools with both interactive and long-running tasks?

RQ3 Does our concurrent implementation give su�-
ciently low latency for interactive tasks?

Section 7.1 addresses the applicability of the approach
(RQ1 and RQ2). Latency (RQ3) is addressed in Section 7.2.
Speedup is discussed in Section 7.3. Threats to validity are
discussed in Section 7.4.

11

7.1 Concurrent ExtendJ and Interactive
Applications

We applied our concurrent implementation3 to ExtendJ, a
full-featured Java compiler [6]. The ExtendJ speci�cation
is complex, with more than 3000 attributes, including all
attribute kinds discussed in this paper.

Initially, running ExtendJ concurrently did not work be-
cause its speci�cation was not completely well-formed, with
some semantic functions being non-pure (WF1). Most of
these problems happened to be masked in sequential evalua-
tion, but resulted in errors when running concurrently. In
one case there was also an error when running sequentially
caused by purity issues.

Substantial work was required to �nd and �x attribute pu-
rity problems, but the result bene�ts the sequential compiler
by removing cases where it could compute incorrect results
when attributes were evaluated in a certain order.4

After �xing the identi�ed well-formedness problems, we
successfully ran both the sequential and the concurrent im-
plementations on all regression tests for ExtendJ using the
same JastAdd speci�cation. Based on this, we can answer
RQ1 a�rmatively.

To address RQ2 we implemented an extension of an inter-
active AST debugging tool named DrAST [16]. DrAST has
a Graphical User Interface in which the user can explore a
JastAdd AST for a program and interactively inspect/com-
pute attribute values of nodes in the AST. In our extension to
DrAST, we integrated ExtendJ and added a few features: We
added a source editor for the program, and changes to the
program are re�ected in the AST view. A screenshot of our
version of the tool is shown in Figure 6 in Appendix B. We
also added a computation of ExtendJ'sproblems attribute
containing compile-time error and warning messages so that
these messages are displayed by DrAST. The user can in-
teractively inspect/compute attribute values while the long-
running problems attribute is computed. Any interactive
attribute queries are run concurrently with error-checking
tasks using our concurrent attribute evaluator. The tool thus
works similarly to a typical Integrated Development Envi-
ronment, and we can thereby answer RQ2 a�rmatively.

7.2 Latency

The independent variable in studying latency is the attribute
evaluator implementation. We measure two di�erent at-
tribute evaluators: the sequential implementation from Jast-
Add, and our concurrent implementation presented in this
paper (Algorithms 2 and 3). Attribute evaluation time is the
measured dependent variable. Confounding variables are the

3Our concurrent attribute implementation is available in JastAdd ver-
sion 2.3.0. Seeh�p://jastadd.org.
4The �xes are available in ExtendJ version 8.0.1-183-g812e434, from the
public Git repositories. Seeh�p://extendj.org.

Table 1. The thread-task mapping for each benchmark.

Benchmark
Thread

1 2 3 4
1 Task P Task VD � �
2 Task P Task MT � �
3 Task P � � �
4 Task P Task P Task P Task P

compiler (ExtendJ) on which we measure, and the attributes
measured.

7.2.1 Setup

We designed benchmarks to measure attribute evaluation
latency and overall overhead and speedup of concurrent at-
tribute evaluation. For evaluation latency we measure two
relatively short-running attributes that are evaluated con-
currently with a long-running attribute. For overhead and
speedup we measure the evaluation time of the long-running
attribute when evaluated sequentially and in parallel.

We use four benchmark con�gurations, as shown in Ta-
ble 1. Each benchmark runs some combination of three tasks
executed in separate concurrent threads:

Task P Evaluates the long-running attributeproblems
on all CompilationUnit nodes.

Task VD Evaluates the short-running attributedecl
(variable declaration) on 500 stochastically selected
VarAccessnodes.

Task MT Evaluates the short-running attribute
type (method type) on 500 stochastically selected
MethodDeclnodes from classes and interfaces.

The �rst two benchmarks are used to measure attribute
evaluation latency in an interactive setting. They run many
short-running attributes in one thread, and a long-running
attribute in a separate concurrent thread. Benchmark 3 is
used to measure sequential performance by running a long-
running attribute in a single thread. Benchmark 4 is used
to measure parallelization performance by running long-
running attributes in parallel in four threads.

All benchmarks are run both with the sequential and
concurrent implementation. In the concurrent mode, task
threads are allowed to evaluate attributes concurrently, but
in the sequential mode, we use a lock to ensure that only
one thread at a time is evaluating any attribute.

Each benchmark con�guration is executed 15 times in a
single Java process. The results of the �rst three iterations
are discarded to reduce the impact of warm-up e�ects in the
Java environment.

Before Benchmark 1 and 2 are executed we �rst search
the AST of the subject program to �nd allVarAccessor
MethodAccessnodes, then the list of nodes is shu�ed and
the �rst 500 nodes are used in the benchmark.

12

http://jastadd.org
http://extendj.org

Figure 5. Latency results from Benchmark 1 and 2. Red� :s show the latency for interactive tasks when using the concurrent
implementation. Each� shows the average time for computing a variable declaration (left) or a method type (right) attribute,
when running concurrently with the long-runningproblemsattribute. Blue� :s show the time it took to complete the long-
running task of computing theproblemsattribute when using the sequential algorithms with locking. This is the minimum
latency for interactive tasks that would occur when the interactive task is started right after starting the long-running task.

Subject programs we used for the benchmarks are taken
from the Qualitas Corpus, Version 20130901 [25]. We mea-
sured the �rst 10, in alphabetical order, of the subject pro-
grams in the Qualitas Corpus that were written for Java 5 or
higher.

The benchmark suite was run on an Intel Core i7-3820
CPU at 3.60GHz, running 64-bit Linux Mint, with Java ver-
sion 1.8.0_112 (Oracle JDK). A relatively large Java heap size
of 32Gb was used, more than 10� the minimum requirement
to compile each subject program in sequential mode, in order
to limit runtime garbage collection.

7.2.2 Results

RQ3 asks whether our concurrent implementation gives suf-
�ciently low latency for interactive tasks. Benchmark 1 and
2 address this question by measuring the time it took to
evaluate 500 instances of two kinds of attributes: a variable
declaration attribute (Benchmark 1) and a method type at-
tribute (Benchmark 2). In both benchmarks, the attributes
are evaluated while concurrently computing compile-time
errors and warnings for the whole subject program via a
long-running attribute.

Our results show that when running the concurrent imple-
mentation, for any of the 10 programs, the highest average
latency for �nding a variable declaration is below 0.5 ms, and
the highest average latency for computing a method type is
below 5 ms. This is far below the acceptable threshold of 100
ms, so this answers RQ3 a�rmatively.

If the sequential implementation with locks is used in-
stead, the lower bound for the latency of an interactive task
that starts right after the start of a long-running task will
be the time it takes to complete the long-running task. This
could in principle be a very long time. In our experiments,
we used the computation of theproblemsattribute as a typ-
ical representative of a long-running task. Our experiments
show that the average time for this computation is between
500 ms and 11 seconds for the 10 di�erent programs. The
latency in the sequential case is thus clearly too high for
interactive tasks. Figure 5 shows the average latency of the
short-running attributes in Benchmark 1 and 2 compared to
the long-running attribute.

7.3 Speedup

Although it is not one of our research questions, we were
interested to investigate the overhead and speedup of con-
current evaluation. We make some observations here based
on the results of Benchmark 3 and 4 (Section 7.2.1).

For overhead, we use the time for evaluating a long-
running attribute in a single thread by using both the concur-
rent and sequential implementation. The overhead is com-
puted as the concurrent evaluation time divided by the se-
quential time. Speedup of parallelization is measured by
taking the time to �nd all compile-time errors in a program
using four parallel threads, divided by the running time of the
same computation in a single thread, using the concurrent
implementation. We measured the overhead and speedup
for the 10 subject programs, see Table 2. On average, the

13

overhead was less than 20%, and the speedup was around 2
for most programs.

Table 2. Overhead of one thread running the concurrent
algorithms, compared to the sequential algorithms. Speedup
on a 4-core processor when running four threads in paral-
lel, compared to running only one thread, all running the
concurrent algorithms. Note that overhead is independent
of code size (NCLOC, non-comment lines of code).

Program NCLOC Overhead Speedup
ant-1.8.4 105,007 1.10 1.95
antlr-4.0 21,919 1.16 2.04
aoi-2.8.1 111,725 1.22 2.07
argouml-0.34 192,410 1.33 2.24
aspectj-1.6.9 412,394 1.17 2.43
azureus-4.8.1.2 484,739 1.22 2.32
castor-1.3.1 115,543 1.18 2.03
cayenne-3.0.1 127,529 1.16 1.98
checkstyle-5.1 23,316 1.07 2.27
cobertura-1.9.4.1 51,860 1.19 1.52
average 1.18 2.15

7.4 Threats to Validity

The general applicability of our results is limited by the
fact that we have measured only three attributes in a single
JastAdd-speci�ed compiler, ExtendJ. However, in our opin-
ion, ExtendJ is representative of a typical JastAdd compiler.
Also, ExtendJ is one of the largest JastAdd projects freely
available, and it uses all di�erent attribute kinds discussed
in this paper.

An alternative compiler we considered is JModelica: a
compiler for the Modelica language. However, JModelica
currently uses several di�cult to remove side-e�ects in the
speci�cation that would need to be �xed in order to run it
concurrently.

Our results of course depend on the subject programs
that were used. We selected these programs in a systematic
manner from a well-known corpus in order to avoid bias.

8 Related Work
There are many algorithms for concurrent and parallel eval-
uation of Knuth attribute grammars, see, e.g., the surveys by
Jourdan[13] and Paakki[21]. However, that work is based
on tree-walking evaluators which are not applicable to RAGs.
First, tree-walking evaluators take only local dependencies
into account, and can therefore not deal with the non-local
dependencies arising from the use of reference attributes.
Second, the tree-walking algorithms evaluateall attributes
in an AST, whereas in RAGs, the only attributes that are
evaluated are those needed for the computation of some goal
attribute. Third, the tree-walking algorithms do not work

for circularly dependent attributes. We have not found any
previous attempts to parallelize the demand-driven evalu-
ation algorithms used in RAGs, neither for circular nor for
non-circular attributes.

In dynamic programming, results to subproblems are mem-
oized, typically in a hash table, so that they only need to be
computed once. In top-down dynamic programming, sub-
problems are computed and memoized recursively, similar to
demand-driven evaluation of RAGs. Stivala et al. [24] have
developed lock-free parallel algorithms for top-down dy-
namic programming. The basic idea is to let several threads
solve the complete problem in parallel, and let them store
and share the memoized subproblems through a global lock-
free hash table. Randomization is used to encourage di�erent
threads to work on di�erent subproblems. This approach is
not su�cient for concurrent evaluation of RAGs, with their
di�erent kinds of attributes and �xed point computations.
However, the idea of using randomization is interesting to
investigate in future work for RAGs in order to gain better
speed-up when running threads in parallel.

Ditter et al. [4] develop a method for evaluating �xed-
points in parallel, with the goal of speeding up software
veri�cation using boolean equation systems. They observe
that in a �xed point iteration, the order of evaluating the
di�erent equations does not matter, and the equations can
therefore be evaluated in parallel. We also make use of this
observation in order to let several threads cooperatively
evaluate a circular attribute. Our demand-driven �xed point
algorithm is, however, substantially di�erent from the tradi-
tional �xed-point algorithm used by Ditter. In the traditional
algorithm, it is assumed that both the equations and the
variables to be solved are known a-priori, and it is therefore
straight-forward to view this as a homogeneous data-parallel
problem. For RAGs, neither the equations nor the variables
are known a-priori, but are discovered during the recursive
evaluation algorithm, and the �xed-point problem is hetero-
geneous, involving attributes associated with many di�erent
node types and which are de�ned by many di�erent equa-
tions.

9 Conclusions
The goal of this work was to develop safe concurrent algo-
rithms for Circular Reference Attribute Grammars, in order
to reduce latency in interactive tools. To this end, we de-
signed new lock-free attribute evaluation algorithms that can
be run concurrently by several threads. Our algorithms sup-
port synthesized, inherited, parameterized, higher-order, col-
lection, and circular attributes, as well as attribute-controlled
rewrites. Furthermore, we have generalized the algorithms
to work with relaxed requirements on circular attributes.

We implemented our algorithms in the JastAdd metacom-
piler, and the implementation can be used directly for any
well-formed JastAdd project. With our implementation, it

14

is straightforward to evaluate attributes concurrently in an
interactive tool, for example to perform attribute computa-
tions in a background thread at the same time as computing
attribute query results in an interactive thread.

Through empirical evaluation, we demonstrated that our
algorithms signi�cantly reduce the attribute evaluation la-
tency, from seconds to milliseconds for an interactive thread.
Our results are well below the threshold of 0.1 seconds
strived for in interactive systems, and we conclude that con-
current RAGs is a very attractive implementation technology
for interactive tooling.

We also did initial experiments on using the concurrent
algorithms for improving performance using parallelization.
We found that the overhead of the concurrent algorithm over
the sequential algorithm is under 20% on average and that
it is outweighed when running in parallel: We measured a
speedup of about 2 on average when running four parallel
threads.

Our results are very encouraging, and exploring how
to improve and take advantage of parallel evaluation is a
very interesting direction of future work. Possibilities for
performance improvement include tuning which attributes
are memoized, and improving work distribution between
threads, for example using randomization and work stealing.
Refactoring attributes to be more long/short-running could
also a�ect parallel performance: Short-running attributes
reduce the risk of duplicate work when running in parallel,
while long-running attributes reduce the relative concurrent
memoization overhead.

Acknowledgments
This work was partially funded by a 2015 Google Faculty
Research Award on supporting concurrent analyses in inter-
active programming tools. We would like to thank to Emma
Söderberg, Niklas Fors, Alfred Åkesson, Axel Mårtensson,
and the anonymous reviewers for valuable feedback.

References
[1] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and

Hubertus Tummescheit. 2010. Modeling and optimization with Opti-
mica and JModelica.org - Languages and tools for solving large-scale
dynamic optimization problems.Computers & Chemical Engineering
34, 11 (2010), 1737�1749.

[2] John Tang Boyland. 2005. Remote attribute grammars.J. ACM52, 4
(2005), 627�687.

[3] Christo� Bürger. 2015. Reference attribute grammar controlled graph
rewriting: motivation and overview. InSLE '15. ACM, Pittsburgh, PA,
USA, 89�100.

[4] Alexander Ditter, Milan Ceska, and Gerald Lüttgen. 2012. On Parallel
Software Veri�cation Using Boolean Equation Systems. InSPIN 2012
(LNCS), Vol. 7385. Springer, Oxford, UK, 80�97.

[5] Torbjörn Ekman and Görel Hedin. 2004. Rewritable Reference At-
tributed Grammars. InECOOP 2004 (LNCS), Vol. 3086. Springer, Oslo,
Norway, 144�169.

[6] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd extensible Java
compiler. InOOPSLA '07. ACM, Montreal, Canada, 1�18.

[7] Rodney Farrow. 1986. Automatic generation of �xed-point-�nding
evaluators for circular, but well-de�ned, attribute grammars. InPro-
ceedings of the 1986 SIGPLAN Symposium on Compiler Construction.
ACM, Palo Alto, CA, USA, 85�98.

[8] Niklas Fors, Gustav Cedersjö, and Görel Hedin. 2015. JavaRAG: a Java
library for reference attribute grammars. InMODULARITY '15. ACM,
Fort Collins, CO, USA, 55�67.

[9] Görel Hedin. 2000. Reference Attributed Grammars.Informatica
(Slovenia)24, 3 (2000), 301�317.

[10] Maurice Herlihy and Nir Shavit. 2008.The art of multiprocessor pro-
gramming. Morgan Kaufmann, San Francisco, CA, USA.

[11] Larry G. Jones. 1990. E�cient Evaluation of Circular Attribute Gram-
mars.ACM Trans. Program. Lang. Syst.12, 3 (1990), 429�462.

[12] Martin Jourdan. 1984. An Optimal-time Recursive Evaluator for At-
tribute Grammars. InInternational Symposium on Programming (LNCS),
Vol. 167. Springer, Toulouse, France, 167�178.

[13] Martin Jourdan. 1991. A Survey of Parallel Attribute Evaluation Meth-
ods. InAttribute Grammars, Applications and Systems (LNCS), Vol. 545.
Springer, Prague, Czechoslovakia, 234�255.

[14] Uwe Kastens. 1980. Ordered Attributed Grammars.Acta Inf.13 (1980),
229�256.

[15] Donald E. Knuth. 1968. Semantics of Context-Free Languages.Mathe-
matical Systems Theory2, 2 (1968), 127�145.

[16] Joel Lindholm, Johan Thorsberg, and Görel Hedin. 2016. DrAST: An
Inspection Tool for Attributed Syntax Trees (Tool Demo). InSLE '16.
ACM, Amsterdam, The Netherlands, 176�180.

[17] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. 2009. Demand-
driven evaluation of collection attributes.Autom. Softw. Eng.16, 2
(2009), 291�322.

[18] Eva Magnusson and Görel Hedin. 2007. Circular reference attributed
grammars - their evaluation and applications.Sci. Comput. Program.
68, 1 (2007), 21�37.

[19] David A. Naumann. 2005. Observational Purity and Encapsulation. In
FASE '05 (LNCS), Vol. 3442. Springer, Edinburgh, UK, 190�204.

[20] Jakob Nielsen. 1993.Usability engineering. Academic Press, San Fran-
cisco, CA, USA.

[21] Jukka Paakki. 1995. Attribute Grammar Paradigms - A High-Level
Methodology in Language Implementation.ACM Comput. Surv.27, 2
(1995), 196�255.

[22] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. 2013. A pure
embedding of attribute grammars.Sci. Comput. Program.78, 10 (2013),
1752�1769.

[23] Emma Söderberg and Görel Hedin. 2015. Declarative rewriting through
circular nonterminal attributes.Computer Languages, Systems & Struc-
tures44 (2015), 3�23.

[24] Alex D. Stivala, Peter J. Stuckey, Maria Garcia de la Banda, Manuel V.
Hermenegildo, and Anthony Wirth. 2010. Lock-free parallel dynamic
programming.J. Parallel Distrib. Comput.70, 8 (2010), 839�848.

[25] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. 2010. Qualitas Corpus: A
Curated Collection of Java Code for Empirical Studies. InAPSEC '10.
IEEE Comp. Soc., Sydney, Australia, 336�345.

[26] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989. Higher-
Order Attribute Grammars. InPLDI '89. ACM, Portland, Oregon, USA,
131�145.

[27] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: An extensible attribute grammar system.Sci. Comput. Program.
75, 1-2 (2010), 39�54.

[28] Eric Van Wyk, Lijesh Krishnan, Derek Bodin, and August Schwerdfeger.
2007. Attribute Grammar-Based Language Extensions for Java. In
ECOOP '07 (LNCS), Vol. 4609. Springer, Berlin, Germany, 575�599.

15

A Circular Attribute Correctness Proofs
This section gives the proofs of soundness and termina-
tion for CEval, i.e., the concurrent algorithm for circular
attributes (Algorithm 2). We start by giving several technical
lemmas with proofs. The main theorems and proofs appear
at the end of this section.

The lemmas below state properties about iterations of
Case1as executed in one single thread. There may be con-
currently executing threads, running their ownCase1itera-
tions, but threads never shareCase1executions. The only
interaction between threads happens through reading and
writing shared attribute approximations (gvx , gvz, etc.). Iter-
ation indices can, without loss of generality, be thought of
as being globally unique between all threads.

We will often talk about properties such as thedone�ag
being set before some point in execution. This means that
given some linearization of several threads executing the
algorithm concurrently, the linearization point of a write
to gvx , settingdoneto true , was linearized as happening
before the given point in the current thread being discussed.

Also note that the lemmas only deal with attribute in-
stances, though we sometimes refer to them as just attributes.

First, we need a few de�nitions:

De�nition A.1 (Attribute Set). A is the set of attribute
instances in some attributed AST.

De�nition A.2 (Direct Dependencies). For an attributex 2
A , d(x) is the set of attributes thatx directly depends on.

De�nition A.3 (Transitive Dependencies). For an attribute
x 2 A , D(x) is the set of attributes thatx transitively de-
pends on, includingx.

We assume here thatD(x) is strongly connected, in other
words, for ally 2 D(x), D(y) = D(x).

The following observation restates a consequence of how
semantic functions are translated intoComputeprocedures:

Observation 1. For an attributex 2 A and an iterationi of
the loop inCase1(x), executingCase2(x;i) leads to executing
CEval(y;i) for all y 2 d(x).

We will need to reason about what happens during an
iteration i of the loop inCase1. The following de�nitions
introduce boolean functions to succinctly reason about this.

De�nition A.4 (Execution of Case2). Let x 2 A be an at-
tribute, andi an iteration of the loop inCase1(x). Then,
case2(x;i) is true i� Case2(x;i) was executed during itera-
tion i .

De�nition A.5 (Fixed-Point Value). Let x 2 A be an at-
tribute and i an iteration of the loop inCase1(x). Then,
€x(x;i) is true i�, before the end of iterationi , the shared
approximation forx is equal to the �xed-point value ofx.

De�nition A.6 (Memoized Value). Let x 2 A be an at-
tribute and i an iteration of the loop inCase1(x). Then,

done(x;i) is true i� the done�ag in the tuple gvx is true
before the end of iterationi .

In other words,done(x;i) implies thatx was memoized
before or during iterationi .

Note that€x(x;i) is not equivalent todone(x;i), though if
the algorithm is correct,done(x;i) implies€x(x;i). We prove
this in Lemma A.10.

Lemma A.7 (Case2 on Direct Dependency). Letx 2 A be
an attribute, andi an iteration of the loop inCase1(x), and let
y 2 d(x) be a direct dependency ofx. If Case2(x;i) is executed
during iterationi , andy is not marked as done before the end of
the iteration, thenCase2(y;i) is executed at some point during
the iteration.

Proof.According to Observation 1,CEval (y;i) is executed
as a direct consequence of executingCase2(x;i).

WhenCEval (y;i) is executed, there are three cases:
� y is already marked as done, contradicting the premise

of the lemma, or,
� no previous approximation has been stored fory dur-

ing iteration i , so thenCase2(y;i) is executed, or,
� a local approximation ofy has been previously stored

during iterationi . Note that local approximations are
only stored inCase2, so thenCase2(y;i) was executed
at some point duringi .

�

We now de�ne another helper function to reason about
paths in the dependency graph of an attribute:

De�nition A.8 (Dependency Paths). Let x 2 A be an at-
tribute, with a transitive dependency ony 2 D(x). The func-
tion paths(x;y) gives all acyclic paths fromx to y following
the attribute dependency graph.

In other words, for eachp = (a1;a2; � � � ;an) in paths(x;y),
the following holds:

� x = a1,
� y = an ,
� andai +1 2 d(ai), where1 � i < n.

Lemma A.9 (Case2 on All if None Done). Letx 2 A be an
attribute, transitively depending ony 2 D(x), and leti be an
iteration of the loop inCase1(x). For each pathp 2 paths(x;y),
fromx toy, where none of the attributes inp are marked as
done by the end ofi , Case2(z;i) is executed for each attribute
z in p duringi .

Proof.By induction on pre�xes ofp. The one-length pre�x
of p is equal tox, and sincei is an iteration ofCase1(x),
Case2(x;i) is directly executed in the loop body.

Assuming that the lemma holds for ann-length pre�x of
p, we must show that it holds for a pre�x of lengthn + 1.
Let an be thenth element ofp, then it follows from the
induction hypothesis that: done(an), and by the de�nition
of paths(x;y) it follows that an+1 2 d(an). By the induction

16

hypothesis it also follows thatcase2(an ;i), and together with
the conclusion that: done(an), Lemma A.7 gives the goal:
case2(an+1;i).

By induction the lemma holds for any length pre�x of
p � 1, so the lemma holds forp. �

Lemma A.10 (Done =) Fix). Letx 2 A be an attribute,
andi an iteration of the loop inCase1(x). If x is marked as
donebefore the end ofi , then for each transitive dependency
y 2 D(x), the shared approximation ofy is equal to the �xed-
point value ofy before the end ofi .

Proof.Note that an attribute can only be marked asdoneby
the CAS after theCase1loop. CAS is linearizable, so the
e�ect of several (concurrent) CAS calls is identical to the
e�ect of some sequential ordering of the CAS operations.
Consequently, among the CAS calls that mark attributes in
D(x) asdone, there exists a �rst one.

Consider the �rst attributey 2 D(x) that is marked as
doneby the CAS at the end ofCase1. The loop always takes
at least one iteration, so letk denote the last iteration before
y was marked asdone.

From Lemma A.9 and the assumption thaty is the �rst
attribute in D(y) which is marked asdone, it follows that
Case2was executed for allz 2 D(y). The loop condition
implies that none of the attributes inD(y) changed approxi-
mation, thus a simultaneous �xed-point has been reached
and€x(z;k) is true for allz 2 D(y).

BecauseD(x) is strongly connected, andy 2 D(x), then
D(x) = D(y). SubstitutingD(y) for D(x) gives the goal: for
all z 2 D(x) it holds that€x(z;k) is true. �

Lemma A.11 (All Fix Or Case2). Letx 2 A be an attribute,
andi an iteration of the loop inCase1(x). Then one of the
following properties hold:

� all attributes inD(x) have reached their �xed-point
value before the end of iterationi , or,

� Case2is executed for all attributes inD(x) during itera-
tion i .

Proof.There are two cases:
� some attributez 2 D(x) was marked as done before

the end of iterationi , or,
� none of the attributes inD(x) were marked as done

before the end of iterationi .
In the �rst case, there exists somez 2 D(x) such that

done(z;i) is true, and by Lemma A.10 we have the fact that
all attributesw 2 D(z) have reached their �xed-point values
before the end of iterationi . Additionally,D(x) is strongly
connected, andz 2 D(x) means thatD(x) = D(z). Substitut-
ing D(z) for D(x) gives the goal: for allw 2 D(x); f ix (w;i)
is true.

In the second case, there does not exist an attributez 2
D(x) such thatdone(z;i) is true. Consequently, for each path
p 2 paths(x;y) it most hold thatdone(z;i) is false for each

elementz of p. By Lemma A.9 it follows thatCase2(y;i) is
executed during iterationi for all y 2 D(x). �

Lemma A.12 (Case1 Sound). Letx 2 A be an attribute, with
a transitive dependency on some attributey 2 D(x), and let
i be the last iteration of an execution ofCase1(x). Then, the
shared approximation ofy is equal toy's �xed-point value
before the end of iterationi , i.e.€x(y;i) is true.

Proof.By Lemma A.11 there are two cases:
� all attributes inD(x) have reached their �xed-point

values before the end of iterationi , or,
� Case2is executed for all attributes inD(x) during

iteration i .
In the �rst case, the goal follows directly from the premise,

y 2 D(x).
In the second case,Case2(z;i) is executed during iteration

i for all z 2 D(x). Sincei was the last iteration, and the
loop is only exited iftls:change = false , it must be that all
attributesz 2 D(x) were computed to the same value as
their previous approximations. According to our de�nition
of simultaneous �xed-point, all attributes inD(x) must then
have reached their �xed-point value. Again, according to the
premise,y 2 D(x) leads to the conclusion thaty has reached
its �xed-point value. �

Lemma A.13 (Case2 is Monotonic). Letx 2 A be an at-
tribute andi an iteration of the loop inCase1(x). Then, exe-
cutingCase2(x;i) does not update the shared approximation
for x to a new value that is lower in the value lattice ofx.

Proof.First note that the shared approximations of attributes
are updated only by using CAS. The CAS operation is lin-
earizable, so the calls take e�ect as if executed in some se-
quential order. Consequently, there exists a �rst shared ap-
proximation update among any set of shared approximation
updates for any set of attributes.

Proof by contradiction. Assume that there exists an at-
tribute z 2 A which is the �rst attribute whose approxima-
tion gvz is updated to a lower value in the value lattice ofz
by Case2(z;k) during some iterationk.

At the start ofCase2(z;k), the valuev0 was read fromgvz.
Note that the approximationv0 was computed by applying
the semantic function ofz to some stateS0. Later inCase2,
computingz gives a valuev1 applying the semantic function
to a stateS1. Because the semantic function is monotone,
according to well-formedness condition WF3, the valuev1
can only be lower thanv0 in the attributes value lattice if
S1 is lower thanS0 in the state lattice. However, sinceS1 is
read afterS0, there must exist some other attributey whose
approximation has been updated to a lower value, but this
contradicts the assumption thatz was the �rst attribute to
update approximation to a lower value. �

Lemma A.14. For a well-formed attributex 2 A , the �xed-
point loop inCase1(x) performs a �nite number of iterations.

17

Proof.For each iterationi of Case1, by Lemma A.11, there
are two cases:

� all attributes inD(x) have reached their �xed-point
values before the end of iterationi , or,

� Case2is executed for all attributes inD(x) during
iteration i .

If the �rst case holds for some iterationi , theni is either the
last or penultimate iteration. There can not be more than one
additional iteration afteri because the next iteration will not
be able to update any attribute approximation to a new value,
causingtls.changeto remainfalse after the assignment at
the start of the next iteration, and then leading to the loop
exiting after that iteration.

Now, assume that there is an unbounded number of it-
erations. This implies that the second case must hold for
all iterations:Case2is executed for all attributes inD(x) in
each iterationk. However, executingCase2for all attributes
means thattls.changeis set totrue only if at least one at-
tribute changed approximation. Since attribute values are
in a lattice, there are only a �nite number of possible value
updates until no value can be further updated. Additionally,
Lemma A.13 shows that all approximation updates are mono-
tonic. Thus, after a �nite number of iterations it will not be
possible to update any approximation andtls.changeremains
false and the loop ends. �

Lemma A.15. For a well-formed attributex 2 A , and an
iterationi of the loop inCase1(x), Case2(x;i) does not cause
unbounded recursion.

Proof.If there exists unbounded recursion, executing
Case2(x;i) leads to a call toCase2(x;i). However, the condi-
tion of the if -statement for callingCase2in CEval tests ifx
has already been computed during the iterationi , by reading
tls:iter (x) and comparing againsti . In the �rst execution of
Case2(x;i), tls:iter (x) is assignedi before theComputecall,
which is the only control �ow path that could lead to recur-
sion. Thus,Case2does not lead to unbounded recursion.�

Now we can �nally present the main correctness theorems
and proofs using the above lemmas. There are two things
we must prove: thatCEval always terminates, and that it
returns the correct value.

Theorem A.16 (Termination). For a well-formed circular
attributex, CEval(x;0) terminates.

Proof.Some of the operations used byCEval terminate due
to Java semantics, and the remaining can be ensured to termi-
nate using appropriate library implementations (thread-local
data can use non-concurrent data structures). We assume
that the following operations terminate:

� reads and writes of thread-local data,
� updating and reading shared approximations,
� unpacking tuples.

To show thatCEval terminates, we must show that only
a �nite number of these operations are performed. For this,
it su�ces to show that CEval, Case1, Case2, andCase3
are executed a �nite number of times. Except the initial
call to CEval (x;0), all calls toCEval, Case2, andCase3are
executed viaCase1. Additionally, Case2causes recursion.
So, we must show thatCase1executes a �nite number of
iterations andCase2never leads to unbounded recursion.
These properties are provided by Lemma A.14 and A.15.

�

Theorem A.17 (Fixpoint Sound). For a well-formed circular
attributex, CEval(x;0) computes the least �xed-point value
of x.

Proof.Lemma A.12 shows thatCase1(x) only terminates af-
ter the shared approximations of ally 2 D(x) have reached
their �xed-point values. The approximations of all attributes
in D(x) then form a simultaneous �xed point. Because
x 2 D(x), this means thatx has reached a �xed-point value.
To show that the value ofx is theleast�xed-point value, we
must show that the initial approximations of all attributes
in D(x) were their respective bottom values. This is ensured
by the �rst if -statement at the start ofCEval. Because the
approximation of each attribute is initially set to(nil ;false),
any thread executingCEval will attempt to initialize gvx to
(? x ;false) if it sees the initial state. This happens before us-
ing the shared approximation, because all uses of the shared
approximation are inCase2which only happens after the
�rst if -statement ofCEval.

It remains to show that multiple threads can concurrently
execute the algorithm without a�ecting the correctness of
each other's results. For this we only need to look at the
points in the algorithm where threads communicate - that
is, viaread(gvx) andCAS(gvx ; � � �).

The CAS used to initialize the shared value ofx to the
bottom value,? x , only has an e�ect for a single invocation
of the CAS, and it ensures that all threads read the bottom
value ofx as the �rst approximation ofx.

In Case1, the shared value is accessed when the �xed-
point computation is �nished and a thread tries to mark the
shared approximation as the �nal result. The CAS fails if
another thread has marked the same result as �nal. Since
the returned value is read from the shared approximation
two separate threads will return the same result regardless
of which thread performed the successful CAS.

In Case2, the shared approximation is read and used as
the local approximation in case it was di�erent from the local
approximation. A fundamental property ofCase2is that it
should only be able to update the shared approximation to a
higher value, which is proven in Lemma A.13. �

18

Figure 6. Screenshot of DrAST extended with ExtendJ. The center part of the window contains a graph of the AST of one
source �le in freecol-0.10.7. The left part of the window contains a list of all attributes in the currently selected node. The
canCompleteNormallyattribute has been selected and manually computed by the user. The right side of the window contains
a list of all �les in freecol-0.10.7, and below that is a source �le view of the currently selected �le. The bottom center part of the
window shows status messages from DrAST. Note the message about compile-time error checking at the end. No compile-time
errors or warnings were present in freecol-0.10.7.

B DrAST Extension
DrAST is a tool for inspecting ASTs in JastAdd-generated
compilers. We extended the tool for interactive attribute
queries in ExtendJ, using concurrent attribute evaluation.
Semantic warnings and errors are computed concurrently
in the background, while interactive queries can be issued
by the user via the graphical interface. A screenshot of the
DrAST Graphical User Interface is seen in Figure 6.

C Generated Code
The algorithms we have shown were designed to be simple
to present and prove correct. The actual implementations are
slightly di�erent, in order to improve performance. For the

most part the control �ow is identical, but we try to reduce
redundant object creation where possible. We will note a
few small but notable di�erences in the implementation for
circular attributes. Our implementation adds a new option
in the JastAdd metacompiler which enables concurrent code
generation for attribute evaluation.

With JastAdd, attributes are computed by a Java method
that JastAdd generates for the node class that the attribute
belongs to. To demonstrate generated attribute code, we will
use a very simple attributea, which is speci�ed with the
following JastAdd declaration:

syn X A.a() circular [new X()] = new X();

19

The attributea is a simple synthesized attribute that com-
putes an instance of classX. Note thata is not e�ectively
circular. However, the declaration uses thecircular key-
word, so the generated code will evaluate it as if it could
be e�ectively circular. The bottom value for the attribute is
computed by the expression in square brackets. The attribute
computes the same value as the bottom value expression,
so the attribute evaluation will stop after one �xed-point
iteration.

Figure 7 shows a slightly simpli�ed version of the gen-
erated code for the attributea. The generated code im-
plements Algorithm 2, with some di�erences. The largest
di�erence is in how attribute approximations are stored:
Shared approximations are stored in an instance of the
CircularAttributeValue class. This class has a volatile
done�ag, and an atomic reference to the current approxima-
tion value. This is done to avoid creating new tuple objects
for each approximation update, and it works similarly to
the synthesized attribute memoization in Listing 1. A tuple
was used in the algorithm to simplify the presentation and
correctness proofs. Our implementation preserves correct-
ness while trying to improve performance slightly. Smaller
di�erences to note about the generated code, compared to
the algorithm:

� TheCase1, Case2, andCase3calls have all been in-
lined into the main attribute method.

� The attribute method does not take an iteration index
as parameter. Instead, the iteration index is stored in
the thread-local state. The iteration index is reset to
zero at the end of each �xpoint iteration.

� All thread-local state is accessed via methods. For
example, the inCircle method is used to test
if the current iteration index is zero, and the
testAndClearChangeFlagmethod is used to test and
reset the thread-local change �ag. The iteration map
is also accessed via methods on the thread-local state.

� Attribute value equality tests are done with a static
method in theAttributeValue class.

� Attributes are identi�ed by the object storing the at-
tribute value, which is unique to each attribute in-
stance, and does not change during attribute evalu-
ation. TheupdateIteration method is used to up-
date the iteration index for an attribute, using the
value reference as unique attribute identi�er. The
observedInCycle method used to test if an attribute
has been tagged with the current iteration index in the
thread-local iteration map.

� In practice, data used during �xpoint iterations can
be discarded when the �xpoint loop is �nished. The
enterCircle andleaveCircle methods are used to
initialize and clean up the iteration map.

class A extends ASTNode {
CircularAttr ibuteValue value = new CircAttrVal ();

public X a() {
if (value .done) {

return value .get ();
}
Object prev = value .get ();
if (prev == NIL) {

// Compute bottom value expression :
X bottom = new X();
if (! value . compareAndSet (NIL , bottom)) {

bottom = value .get ();
}
prev = bottom;

}
ASTState tls = state ();
if (! tls . inCircle ()) {

// CASE1 - start fixed -point loop .
tls . enterCircle ();
do {

tls . nextI terat ion ();
tls . updateIterat ion (value);
X next = a_compute ();
if (! Attr ibuteValue .equals (prev , next)) {

tls . setChangeFlag ();
if (! value . compareAndSet (prev , next)) {

next = value .get ();
}

}
prev = next ;

} while (tls . testAndClearChangeFlag ());
tls . leaveCircle ();
value .done = true ;
return (X) prev ;

} else if (! tls . observedInCycle (value)) {
// CASE2 - compute new approximation .
tls . updateIterat ion (value);
X next = a_compute ();
if (! Attr ibuteValue .equals (prev , next)) {

tls . setChangeFlag ();
if (! value . compareAndSet (prev , next)) {

next = value .get ();
}

}
return next ;

} else {
// CASE3 - reuse prev approximation .
return (X) prev ;

}
}

}

Figure 7. Generated code for circular attribute a.

20

	Abstract
	1 Introduction
	2 Circular Reference Attribute Grammars

