Inflammation-associated graft loss in renal transplant recipients

Dahle, Dag Olav; Mjoen, Geir; Öqvist, Björn; Scharnagl, Hubert; Weihrauch, Gisela; Grammer, Tanja; Maerz, Winfried; Abedini, Sadollah; Norby, Gudrun E.; Holme, Ingar; Fellstrom, Bengt; Jardine, Alan; Holdaas, Hallvard

Published in:
Nephrology Dialysis Transplantation

DOI:
10.1093/ndt/gfr163

2011

Link to publication

Citation for published version (APA):
Inflammation-associated graft loss in renal transplant recipients

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Nephrology Dialysis Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>NDT-00012-2011.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>23-Feb-2011</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Dahle, Dag Olav; Oslo University Hospital, Ullevaal, Cardiology Mjøen, Geir; National Hospital, Nephrology Öqvist, Björn; University Hospital of Lund, Department of Nephrology Scharnagl, Hubert; Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics Grammer, Tanja; Rupertus Carola University Heidelberg, Medical Faculty Mannheim, Mannheim Institute of Public Health, Social and Preventive Medicine März, Winfried; Rupertus Carola University Heidelberg, Medical Faculty Mannheim, Mannheim Institute of Public Health, Social and Preventive Medicine; Synlab, Center of Laboratory Diagnostics Abedini, Sadollah; Vestfold Hospital, Nephrology Norby, Gudrun; National Hospital, Nephrology Holme, Ingar; Dept Cardiology, OUS Ullevål Fellstrom, Bengt; University Hospital Uppsala, Internal Medicine, Nephrology Jardine, Alan; British Heart Foundation, Glasgow Cardiovascular Research Centre Holdaas, Hallvard; National Hospital/Medical Dpt B, Nephrology</td>
</tr>
<tr>
<td>Key Words:</td>
<td>ALERT, high-sensitivity CRP, inflammation, interleukin-6, renal allograft survival, chronic transplant dysfunction</td>
</tr>
</tbody>
</table>
Dear Dr. Lameire,

Please find attached a revised version of the manuscript "Inflammation-associated graft loss in renal transplant recipients" for consideration for publication in Nephrology Dialysis Transplantation.

Thank you again for reviewing a previous version of the manuscript. In preparing this revision, we performed extensive additional analyses based on advice and helpful comments from the reviewers.

Reviewer 2 raises some interesting aspects about inflammation. He focuses on smoking and pulmonal function (bronchitis) as potential causes for elevated inflammation markers in renal transplant patients. Close to 20% of the patients included in the ALERT trial were smokers. Although smoking was an independent risk factor for renal graft loss, there was no interaction or confounding with smoking and the inflammation markers IL-6 and hs-CRP. We have included a separate point-by-point answer to the reviewer’s comments.

We have prepared the manuscript in accordance with your instruction for authors.

The results presented in this paper have not been published previously and is not being considered for publication elsewhere in whole or in part in any language except as an abstract.

Thank you for considering this revised manuscript for publication. We believe this work will be of interest to your readership, and are thus eager to resolve your concerns and proceed to publication. Please contact us if you have any questions.

Yours Sincerely

Dag Olav Dahle
Lead author

Hallvard Holdaas
Senior author
Inflammation-associated graft loss in renal transplant recipients

Dag Olav Dahlea,*, Geir Mjøena, Björn Öqvistb, Hubert Scharnaglc, Gisela Weihrauchc, Tanja Grammed, Winfried Märc, Sadollah Abedinf, Gudrun Norbyag, Ingar Holmeg, Bengt Fellströmh, Alan Jardinei, Hallvard Holdaas.a

dDept of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
bDept of Nephrology, Lunds University, Lund, Sweden
cClinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
dInstitute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Germany
eSynlab Center of Laboratory Diagnostics Heidelberg LLC, Eppelheim, Germany
fToensberg County Hospital, Toensborg, Norway
gOslo University Hospital, Ullevaal, Oslo
hUniversity Hospital Uppsala, International Medicine, Nephrology, Uppsala, Sweden
iBritish Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom

*Corresponding author: Dag Olav Dahle, d_o_dahle@yahoo.com. Current adr of Dept cardiology, Oslo University Hospital, Ullevål, Oslo, Norway. Ph.+4722118080

Abbreviations: Assessment of Lescol in Renal Transplant (ALERT) study. Chronic transplant dysfunction (CTD). High-sensitivity C-reactive protein (hsCRP). Interleukin 6 (IL-6). Estimated glomerular filtration rate (eGFR).
Abstract

Background. Although short-term graft survival has improved substantially in renal transplant recipients, long-term graft survival has not improved over the last decades. The lack of knowledge of specific causes and risk factors has hampered improvements in long-term allograft survival. There is an uncertainty if inflammation is associated with late graft loss.

Methods. We examined in a large prospective trial the inflammation markers high-sensitivity C-reactive protein (hsCRP) and interleukin 6 (IL-6) and their association with chronic graft dysfunction. We collected data from Assessment of Lescol in Renal Transplant (ALERT) trial which recruited 2102 maintenance renal transplant recipients.

Results. Baseline values were hsCRP 3.8 +/- 6.7 mg/l and IL-6 2.9 +/- 1.9 pg/ml. Adjusted for traditional risk factors, hsCRP and IL-6 were independently associated with death censored graft loss, the composite endpoints graft loss or death, and doubling of serum creatinine, graft loss or death.

Conclusions: The inflammation markers hsCRP and IL-6 are associated with long term graft outcomes in renal transplant recipients.
Key words: ALERT, high-sensitivity CRP, inflammation, interleukin-6, renal allograft survival.

Short summary: This post-hoc analysis of maintenance renal transplant recipients (n=2102) from the Assessment of Lescol in Renal Transplantation (ALERT) study demonstrates associations of the inflammatory markers high-sensitivity C-reactive protein and interleukin 6 with chronic transplant dysfunction.
Introduction

Advances in immunosuppression, histocompatibility testing, surgery and medical management have allowed transplantation to become favoured treatment for patients with end stage renal disease, with a low rate of acute rejection and excellent short term results. The paradox is that long-term graft survival has barely improved over the last two decades despite short term improvements in graft survival \(^1\). Annual graft loss is still 2-7\% \(^2-4\) and the average deceased donor kidney transplant functions for about ten years \(^5\). Clinically, we observe a progressive transplant dysfunction characterised by a slowly rising serum creatinine, proteinuria and hypertension \(^3\). Early detection of chronic transplant dysfunction is recognised to be important, although current interventions have a limited effect (eg “creeping creatinine study”). Current recommendations are to follow serum creatinine, estimated glomerular filtration rate (eGFR), proteinuria and to consider performance of protocol (surveillance) biopsies or to have a low threshold for early diagnostic biopsy \(^4\). Once serum creatinine rises, or proteinuria appears, the decline in renal function is usually inevitable.

Inflammation is present in the biopsies of patients with chronic graft dysfunction \(^6\), but little is known about the role of markers of inflammation on graft outcome. The association of inflammation with atherosclerosis and macrovascular disease is well documented in other populations \(^7,8\), specifically C-reactive protein (CRP). Cytokines induce production of interleukin 6 (IL-6) from various tissues, including lungs in smokers, and increases downstream mediators such as CRP \(^9,10\). Renal transplant recipients, by the process of receiving an allograft, have an additional activation of their inflammation status \(^11-13\). We documented recently that the inflammation markers IL-6 and high sensitivity CRP (hsCRP) were independently associated with cardiovascular events and all-cause mortality in renal transplant recipients \(^14\). Whether IL-6 predicts graft survival in renal transplant recipients has not yet been documented in a prospective study. The aim of the present study is therefore to investigate the baseline role of inflammatory biomarkers on progressive graft dysfunction and graft failure.
Subjects and methods

Study design

The design of the ALERT has been described previously. In short, ALERT was a randomized double-blinded placebo-controlled trial of fluvastatin 40 to 80 mg in renal transplant patients with follow-up for 5 to 6 years. Thereafter participants were offered open-label fluvastatin 80 mg in a 2-year extension study. In all, 2102 renal transplant recipients were included with a mean duration of follow-up for 6.7 years. Endpoints were cardiovascular and renal events, recorded by an independent critical events committee. Recruitment was undertaken June 1996 to October 1997.

Eligible patients were renal transplant recipients 30-75 yr old, with stable graft function, transplanted more than 6 months before enrolment. The patients were recruited to the study at a mean of 5.1 years after transplantation with a stable graft function. Patients were seen 1.5 months after enrolment and at 6 months intervals, recording clinical status and blood biochemistry including lipids, creatinine, creatine kinase and liver enzymes analyzed at a central laboratory (CRL, Medinet, Breda, The Netherlands). IL-6 was measured by human IL-6 immunoassay (R&D Systems Inc., Minneapolis, MN, USA) and hsCRP by immunoturbometric analysis (Roche Diagnostics GmbH, Mannheim, Germany). IL-6 and hsCRP were measured at baseline. The study adhered to the International Conference on Harmonization guidelines for Good Clinical Practice and in accordance with the Declaration of Helsinki. All participants provided written informed consent, and the ethics committee at each participating center approved the trial (no S-02169).

Statistical analysis

In the initial analysis, treatment arm and placebo arm were analyzed separately for renal endpoints.
Since the two arms showed no significant heterogeneity in relation between the inflammation markers hsCRP and IL-6, subsequent analyses were performed on the pooled patient population. HsCRP and IL-6 were not normally distributed and logarithmic transformation of these factors was used in the analysis. HsCRP and IL-6 were analysed in separate models due to confounding (not shown) and the close etiological relationship. Risk factors were evaluated using uni- and multivariate Cox proportional hazard model. Covariates were chosen in a stepwise approach, including covariates with univariate significance and previously reported factors associated with graft outcomes, and then excluding most variables that did not retain statistical significance in the multivariate analysis. SPSS version 17.0 (SPSS Inc., Chicago, IL) was used for statistical analysis.

Results

Baseline characteristics in ALERT and ALERT extension were similar in both treatment arms\(^ {15;16}\). Baseline characteristics in relation to renal endpoints in the placebo group have been reported separately\(^ 2\). The present study reports treatment and placebo group together. Baseline characteristics are shown in table 1. Mean age at study entry was 50 years, 66% were male and all received cyclosporine-based immunosuppression at entry. The main causes of renal failure leading to transplantation were glomerulonephritis and polycystic kidney disease. Frequencies of graft failure endpoints are shown in table 2.

HsCRP and IL-6 were available in 1910 and 1751 patients, respectively. Mean (SD) and median (interquartile range) values were for hsCRP 3.8 (6.7) mg/l and 1.5 (3.1) mg/l and for IL-6 2.9 (1.9) pg/ml and 2.4 (2.2) pg/ml. The hsCRP and IL-6 cohort had almost identical baseline characteristic as reported earlier\(^ {14}\), with no differences in proportions with diabetes, coronary heart disease, current smokers or live donor.

Uni- and multivariate hazard ratios for the hsCRP and IL-6 cohorts are shown in tables 3 and 4.
Missing data excluded 450 (21.4%) and 576 (27.4%) patients in the hsCRP and IL-6 multivariate models, respectively. Both hsCRP and IL-6 were in separate multivariate models significantly associated with the renal endpoints shown, ie death-censored graft loss, graft loss including death, and graft loss including death and doubling of serum creatinine. Due to a surprisingly high percentage of current smokers we performed separate analysis (not shown) to examine a potential interaction with smoking and inflammation. All interaction covariates were non-significant p>0.20, and the inflammation markers were equally strong in smokers and non-smoker, i.e. no interaction. Excluding smoking as a covariate (not shown) changed the regression coefficients for the inflammation markers less than 15% and the hazard ratios less than 5 %, indicating no confounding effect.

In multivariate analysis for death-censored graft loss the results were similar in the hsCRP and IL-6 cohorts. We found significant negative associations of age and BMI. Siginificant positive associations were seen for current smoking, systolic blood pressure, creatinine, time since last transplantation, two HLA-DR mismatches, previous treatment for rejection and proteinuria.

When including death in the endpoint the association of age became significantly positive, diabetes became significant and previous treatment for rejection lost significance. HLA-DR mismatch was significant when including doubling of serum creatinine in the endpoint. We still found significant negative association of BMI and positive associations of current smoking, systolic blood pressure, creatinine, time since last transplantation and proteinuria.

Discussion

In the present post hoc analysis, we have shown that inflammation, adjusted for traditional risk factors, is associated with death-censored renal graft loss, and the composite endpoints; graft loss or death, and graft loss or death or doubling of serum creatinine. To our knowledge this is the first
prospective cohort in renal transplant patients documenting an association of IL-6 with graft loss.

HsCRP and IL-6 are close participants in the inflammatory cascade, and the observation that both markers were predictive of outcome parameters, strengthens the perception of inflammation as an important risk factor for graft related outcomes in renal transplant patients.

The baseline levels of inflammatory markers in our patients seem moderately elevated compared to a non-transplanted background population, as seen in most studies with renal transplant recipients. No universally accepted cutoff values for inflammatory markers in renal transplant recipients exists, but regarding cardiovascular outcomes in the general population CRP < 1 mg/dL confers low risk, CRP 1 to 3 mg/dL average risk and CRP > 3 mg/dL high risk, and the same cutoff values were described by van Ree et al. as predicting a rising creatinine in renal transplant recipients. This leaves n=1203 (63%) of our hsCRP cohort with hsCRP > 1 mg/dL in the moderate to high risk group. IL-6 levels are harder to compare with other studies due to different measurement methodology. A study by Karczewski et al. found significantly higher IL-6 levels in chronic rejection (1.64 +/- 0.8 pg/mL) than in patients with stable graft function (0.42 +/- 0.3 pg/mL, p<0.001) or acute rejection (0.93 +/- 1.7 pg/dL, p=0.001).

Our findings supports the concept that inflammation might be a component of the pathogenesis of chronic graft dysfunction, and is in line with the report on hsCRP and graft deterioration by van Ree et al. CRP and IL-6 has been related to renal function in predialytic chronic renal failure. However, the exact pathogenetic role of hsCRP and IL-6 in graft failure is yet elusive. Indeed, genetic elevation in CRP was not associated with post-transplant morbidity and mortality, and lowering of hsCRP with statin in dialysis patients did not improve cardiovascular outcome, neither did statin treatment improve graft outcome in the ALERT. IL-6 is upstream to CRP in the inflammatory cascade and seems to play an etiological role in other inflammatory disease states including rheumatoid arthritis, where tocilizumab, a monoclonal antibody against IL-6-receptor,
has a proven effect. A murine model of cardiac transplantation demonstrated a tripled survival time of IL-6 deficient grafts \(^{24}\), but allogeneic cardiac transplants into IL-6 deficient mice did not show prolonged graft survival indicating that the graft was the relevant source of IL-6. In human heart transplant recipients IL-6 is associated with low grade cellular rejection \(^{25}\). In renal transplant recipients elevations in serum and urine IL-6 levels are documented in acute rejection episodes \(^{26}\), and increased soluble IL-6 receptor was found in urine twelve and 6 months before late graft failure \(^{27}\). A murine model of calcineurin-inhibitor (CNI) nephrotoxicity showed a protective effect of an IL-6 neutralizing antibody \(^{28}\), another animal study found a preventive effect of 13-cis-retinoic acid on chronic allograft nephropathy possibly mediated through decreased secretion of inflammatory cytokines including tumor necrosis factor-alpha and IL-6 \(^{29}\). Some genetic polymorphism studies in man has shown a protective role on renal graft function of a high IL-6 gene expression in renal transplant recipients, and low IL-6 production donor genotype was associated with increased prevalence of chronic graft dysfunction \(^{30};^31\), whereas other studies failed to show this association \(^{32};^33\). A small retrospective study by Cueto-Manzano et al. found no difference in inflammation markers in patients with or without CTD \(^{34}\). A pilot randomized placebo-controlled trial with an inflammation antagonist demonstrated reduced inflammation in maintenance hemodialysis patients \(^{35}\). A human randomized trial of IL-6 suppressive therapy might give an answer to whether inflammation is causative in chronic graft dysfunction, but is probably still premature awaiting further evidence from mechanistic and correlation studies. Indeed, neutralizing IL-6 antibody treatment in a murine model of acute reperfusion injury was deleterious \(^{36}\).

Our finding of protective effect of older age of recipient for death-censored graft loss is in line with other studies \(^{18};^37;^38\), and might represent higher immunoreactivity in younger subjects. Hypertension, previous rejection and HLA-DR mismatch were independent risk factors in the present study is in line with current reviews \(^{4};^39\). Creatinine and proteinuria were significant independent risk factors for graft loss as described previously \(^{2};^40\), as was time since transplantation.
Creatinine and proteinuria are used as biomarkers of CTD, although they are unspecific of the underlying pathology and not ideal. Smoking may be a risk factor for reduced patient and graft survival after transplantation. Smoking may by itself increase inflammation markers. Due to a surprisingly high percentage of current smokers we performed separate analysis to examine a potential interaction with smoking and inflammation. Although smoking was an independent risk marker there was no interaction with smoking and inflammation.

A limitation of this study was having only one analysis at baseline for hsCRP and IL-6, and the difference measured between groups is small and of limited prognostic value for individual renal transplant recipients. Our method of choosing covariates increases the possibility of type 1 error and should be regarded as tentative. The strength of the study is the many patients followed for an extended period and an independent adjudication of predefined outcome parameters.

In conclusion we found that the inflammatory biomarkers hsCRP and IL-6 are significantly associated with graft related outcomes in renal transplant recipients, independent of the other examined risk factors for graft loss.

Acknowledgements

The ALERT trial was sponsored by Novartis AG.

Disclosure

The authors of this manuscript have conflicts of interest to disclose as described by Nephrology, Dialysis and Transplantation. The ALERT trial was sponsored by Novartis AG. Otherwise, the authors report no conflict of interest.
Conflict of interest

This paper have not been published previously in whole or part.

Reference List

1. Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 2004; 4: 1289-1295

20. Panichi V, Migliori M, De PS et al. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. *Nephron* 2002; 91: 594-600

28. LaSpina M, Tripathi S, Gatto LA, Bruch D, Maier KG, Kittur DS. An interleukin-6-

Table 1. Baseline data. Results are expressed as means (SD) and frequencies (% of valid) where appropriate.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Available data</th>
<th>Total n=2102</th>
<th>HS-CRP cohort n=1910</th>
<th>IL-6 cohort n=1751</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at baseline, years</td>
<td>2102</td>
<td>49.7 (10.9)</td>
<td>49.7 (11.0)</td>
<td>49.5 (11.0)</td>
</tr>
<tr>
<td>Male gender</td>
<td>2102</td>
<td>1387 (66.0)</td>
<td>1257 (65.8)</td>
<td>1150 (65.7)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>2100</td>
<td>389 (18.5)</td>
<td>358 (18.8)</td>
<td>326 (18.6)</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>2051</td>
<td>25.8 (4.5)</td>
<td>25.7 (4.3)</td>
<td>25.6 (4.2)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2101</td>
<td>396 (18.8)</td>
<td>362 (19.0)</td>
<td>327 (18.7)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2102</td>
<td>1575 (74.9)</td>
<td>1424 (74.6)</td>
<td>1305 (74.5)</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>2094</td>
<td>143.9 (18.9)</td>
<td>144.4 (18.9)</td>
<td>144.6 (18.9)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>2093</td>
<td>85.6 (10.0)</td>
<td>85.9 (10.0)</td>
<td>86.0 (9.9)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>2101</td>
<td>201 (9.6)</td>
<td>175 (9.2)</td>
<td>145 (8.3)</td>
</tr>
<tr>
<td>Left ventricular hypertrophy</td>
<td>2076</td>
<td>311 (15.0)</td>
<td>279 (14.8)</td>
<td>256 (14.8)</td>
</tr>
<tr>
<td>ST-T ECG abnormalities</td>
<td>2077</td>
<td>405 (19.5)</td>
<td>367 (19.4)</td>
<td>329 (19.0)</td>
</tr>
<tr>
<td>Serum creatinine, µmol/L</td>
<td>2028</td>
<td>145.4 (53.0)</td>
<td>144.8 (53.3)</td>
<td>144.5 (52.9)</td>
</tr>
<tr>
<td>Number of transplantations</td>
<td>2101</td>
<td>1.2 (0.4)</td>
<td>1.2 (0.4)</td>
<td>1.2 (0.4)</td>
</tr>
<tr>
<td>Time since last tx, years</td>
<td>2101</td>
<td>5.1 (3.4)</td>
<td>5.1 (3.4)</td>
<td>5.2 (3.4)</td>
</tr>
<tr>
<td>Time on dialysis, months</td>
<td>2100</td>
<td>27.5 (41.6)</td>
<td>27.7 (42.4)</td>
<td>27.5 (42.5)</td>
</tr>
<tr>
<td>Live donor</td>
<td>2100</td>
<td>469 (22.3)</td>
<td>429 (22.5)</td>
<td>400 (22.8)</td>
</tr>
<tr>
<td>Donor age, years</td>
<td>2058</td>
<td>40.5 (15.3)</td>
<td>40.9 (15.4)</td>
<td>40.7 (15.4)</td>
</tr>
<tr>
<td>Cold ischemia time, hours</td>
<td>1520</td>
<td>19.8 (7.7)</td>
<td>19.7 (7.6)</td>
<td>19.7 (7.7)</td>
</tr>
<tr>
<td>Panel reactive antibodies</td>
<td>1845</td>
<td>327 (17.7)</td>
<td>288 (17.1)</td>
<td>258 (16.7)</td>
</tr>
<tr>
<td>No HLA-DR mismatch</td>
<td>2029</td>
<td>662 (32.6)</td>
<td>623 (33.7)</td>
<td>560 (32.9)</td>
</tr>
<tr>
<td>One HLA-DR mismatch</td>
<td>2029</td>
<td>1039 (51.2)</td>
<td>930 (50.3)</td>
<td>866 (50.9)</td>
</tr>
<tr>
<td>Two HLA-DR mismatch</td>
<td>2029</td>
<td>328 (16.2)</td>
<td>297 (16.1)</td>
<td>274 (16.1)</td>
</tr>
<tr>
<td>Delayed graft function</td>
<td>2063</td>
<td>365 (17.7)</td>
<td>321 (17.1)</td>
<td>294 (17.1)</td>
</tr>
<tr>
<td>Treatment for rejections</td>
<td>2076</td>
<td>902 (43.4)</td>
<td>818 (43.3)</td>
<td>759 (43.8)</td>
</tr>
<tr>
<td>Treatment for CMV</td>
<td>2030</td>
<td>286 (14.1)</td>
<td>252 (13.6)</td>
<td>231 (13.6)</td>
</tr>
<tr>
<td>Derived proteinuria g/24 hr</td>
<td>1981</td>
<td>0.4 (1.0)</td>
<td>0.4 (1.0)</td>
<td>0.4 (1.0)</td>
</tr>
<tr>
<td>Hs-CRP, mg/L</td>
<td>1910</td>
<td>3.8 (6.7)</td>
<td>3.8 (6.7)</td>
<td>3.8 (6.7)</td>
</tr>
<tr>
<td>IL-6, pg/mL</td>
<td>1751</td>
<td>2.9 (1.9)</td>
<td>2.9 (1.9)</td>
<td>2.9 (1.9)</td>
</tr>
<tr>
<td>Variable</td>
<td>All n=2102 (%)</td>
<td>hsCRP cohort n=1910 (%)</td>
<td>IL-6 cohort n=1751 (%)</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Death-censored graft loss (%)</td>
<td>362 (17.2)</td>
<td>346 (18.1)</td>
<td>308 (17.6)</td>
<td></td>
</tr>
<tr>
<td>Graft loss, doubling of s-creatinine or death</td>
<td>701 (33.3)</td>
<td>662 (34.7)</td>
<td>590 (33.7)</td>
<td></td>
</tr>
<tr>
<td>Graft loss or death (%)</td>
<td>644 (30.6)</td>
<td>606 (31.7)</td>
<td>539 (30.8)</td>
<td></td>
</tr>
<tr>
<td>All death (%)</td>
<td>383 (18.2)</td>
<td>354 (18.5)</td>
<td>309 (17.6)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. High-sensitive C-reactive protein cohort, n=1652*

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Graft loss (death-censored), n=288</th>
<th>Graft loss, doubling of s-creatinine or death, n=567</th>
<th>Graft loss or death, n=515</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted HR (95% CI)</td>
<td>Adjusted HR (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unadjusted HR (95% CI)</td>
<td>Adjusted HR (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.98 (0.97-0.99)</td>
<td>0.99 (0.98-1.00)</td>
<td>0.040</td>
</tr>
<tr>
<td>Female gender</td>
<td>0.79 (0.63-0.99)</td>
<td>1.02 (0.78-1.34)</td>
<td>0.88</td>
</tr>
<tr>
<td>Current smoking</td>
<td>1.90 (1.51-2.39)</td>
<td>1.68 (1.29-2.19)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI</td>
<td>0.97 (0.94-0.99)</td>
<td>0.94 (0.91-0.97)</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>1.02 (1.01-1.02)</td>
<td>1.01 (1.00-1.01)</td>
<td>0.017</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.28 (0.99-1.64)</td>
<td>1.30 (0.96-1.75)</td>
<td>0.09</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.01 (1.01-1.02)</td>
<td>1.02 (1.02-1.02)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time since last tx</td>
<td>1.05 (1.02-1.08)</td>
<td>1.06 (1.02-1.10)</td>
<td>0.001</td>
</tr>
<tr>
<td>HLA-DR mismatch, one</td>
<td>0.86 (0.70-1.06)</td>
<td>1.17 (0.88-1.55)</td>
<td>0.28</td>
</tr>
<tr>
<td>HLA-DR mismatch, two</td>
<td>1.64 (1.28-2.11)</td>
<td>1.59 (1.14-2.22)</td>
<td>0.006</td>
</tr>
<tr>
<td>Treatment for rejection</td>
<td>1.50 (1.22-1.84)</td>
<td>1.29 (1.01-1.64)</td>
<td>0.045</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>1.38 (1.33-1.44)</td>
<td>1.36 (1.29-1.44)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ln hs-CRP</td>
<td>1.13 (1.05-1.21)</td>
<td>1.18 (1.09-1.27)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Multivariate Cox regression analysis for hsCRP cohort. P values for the adjusted hazard ratios are shown. All n are for cases with no missing values for risk factors in the multivariate analysis, ie n=450 (21.4%) cases with missing values were excluded when estimating adjusted hazard ratios.

Abbreviation: Ln - natural logarithmic transformed.
<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Graft loss (death-censored), n=259</th>
<th>Graft loss, doubling of s-creatinine or death, n=509</th>
<th>Graft loss or death, n=461</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted HR</td>
<td>Adjusted HR</td>
<td>Unadjusted HR</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Age</td>
<td>0.98 (0.97-0.99)</td>
<td>0.99 (0.97-1.00)</td>
<td>1.02 (1.01-1.02)</td>
</tr>
<tr>
<td>Female gender</td>
<td>0.79 (0.63-0.99)</td>
<td>1.03 (0.78-1.37)</td>
<td>0.90 (0.77-1.06)</td>
</tr>
<tr>
<td>Current smoking</td>
<td>1.90 (1.51-2.39)</td>
<td>1.65 (1.24-2.19)</td>
<td>1.74 (1.47-2.06)</td>
</tr>
<tr>
<td>BMI</td>
<td>0.97 (0.94-0.99)</td>
<td>0.95 (0.92-0.98)</td>
<td>1.00 (0.98-1.02)</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>1.02 (1.01-1.02)</td>
<td>1.01 (1.00-1.02)</td>
<td>1.02 (1.01-1.02)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.28 (0.99-1.64)</td>
<td>1.32 (0.96-1.81)</td>
<td>1.57 (1.32-1.86)</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.01 (1.01-1.02)</td>
<td>1.02 (1.01-1.02)</td>
<td>1.01 (1.00-1.01)</td>
</tr>
<tr>
<td>Time since last tx</td>
<td>1.05 (1.02-1.08)</td>
<td>1.05 (1.02-1.09)</td>
<td>1.03 (1.01-1.06)</td>
</tr>
<tr>
<td>HLA-DR mismatch, one</td>
<td>0.86 (0.70-1.06)</td>
<td>1.18 (0.87-1.60)</td>
<td>1.01 (0.87-1.17)</td>
</tr>
<tr>
<td>HLA-DR mismatch, two</td>
<td>1.64 (1.28-2.11)</td>
<td>1.61 (1.13-2.30)</td>
<td>1.33 (1.10-1.61)</td>
</tr>
<tr>
<td>Treatment for rejection</td>
<td>1.50 (1.22-1.84)</td>
<td>1.36 (1.04-1.77)</td>
<td>1.23 (1.06-1.43)</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>1.38 (1.33-1.44)</td>
<td>1.39 (1.31-1.47)</td>
<td>1.33 (1.29-1.37)</td>
</tr>
<tr>
<td>Ln IL-6</td>
<td>1.53 (1.27-1.83)</td>
<td>1.26 (1.01-1.56)</td>
<td>1.75 (1.53-2.00)</td>
</tr>
</tbody>
</table>

*Multivariate Cox regression analysis for IL-6 cohort. P values for the adjusted hazard ratios are shown. All n are for cases with no missing values for risk factors in the multivariate analysis, ie n=576 (27.4%) cases with missing values were excluded when estimating adjusted hazard ratios. Abbreviation: Ln - natural logarithmic transformed.
Your paper has been evaluated by a subject editor, 2 external reviewers and at the editorial office. Although of interest to the readership of NDT, both the subject editor and I feel that major modifications are necessary before your paper can be considered for publication. We would like to ask you to submit a revised version, taking into account the reviewers' remarks below.

As reviewer 2 points out in a very careful evaluation of your paper, there are some flaws and the conclusion that hsCRP and IL-6 are independent risk factors is most likely overstated or may even be wrong (for more details, please see below).

We have detailed this issue in response to reviewer 2

We ask you to address these concerns of the reviewers below and already look forward to receiving your revised paper.

If you do decide to resubmit, we would be pleased to review your modified version for publication. Please submit both a corrected version with additions underlined in red and deletions crossed out in blue, and a clean version of your revision without the corrections still marked in the text. Please also include a cover letter to the Editor-in-Chief, and a separate point-by-point answer to the reviewers’ comments. Note that a final decision on your manuscript will only be taken after evaluation of the revised version.

IMPORTANT! You must resubmit via the website and under the same manuscript ID. For instructions on this procedure, please click on 'Instructions and Forms' in your author centre.

Figures: When submitting your revised version, please upload your final publication quality figures to the Manuscript Central website.

These figures should meet the following conditions:
- Line drawings (black and white) should be 600 dpi minimum
- Colour and greyscale figures should be 300 dpi minimum
- Colour figures should be supplied in CMYK colours, not RGB colours
- Each figure must be clearly labelled with the figure/scheme number

Please also note that we require all authors to complete a Conflict of Interest Form (see 'Instructions to Authors'), which should be inserted at the end of the manuscript.

We look forward to hearing from you. Please take into account that the deadline for resubmission is six months, after which your paper will be considered as a new submission.

Yours sincerely,
Prof. dr. N. Lameire Editor In Chief, Nephrology Dialysis Transplantation
Reviewer: 1

Comments to the Author

Many papers of the ALERTE study group have been already published during the last decade. The current paper is obviously another analysis of the huge ALERTE database (n=2102 renal transplant recipients) investigating the association between the inflammatory markers high-sensitivity CRP and interleukin-6 with graft outcomes.

The aim of the present study is therefore to investigate the baseline role of inflammatory biomarkers on progressive graft dysfunction and failure.

The authors came out with the result that adjusted for traditional risk factors, hsCRP and IL-6 were independently associated with death censored graft loss, the composite endpoints graft loss or death, and doubling of serum creatinine, graft loss or death.

Despite some flaws of the paper like the fact that only baseline levels of hsCRP and IL-6 were available etc., the large number of patients and the longterm observational period merrits the publication of the data. There will be only little chance to wait for a human randomized controlled trial. It is also not possible to recruit more data from the ALERT database. There might be the risk that the data are only tentative however for me it is worthwhile to read it.

We understand reviewer’s concern regarding the lack of longitudinal data for IL-6 and hsCRP. That was one of the flaws we regret in the original study design of the trial. The strength as the reviewer points out; large number of patients, long follow-up time and not least an endpoint committee adjudicating clinical events.

We do agree with the reviewer that the data may be tentative. In our discussion we have stated: “Our method of choosing covariates increases the possibility of type 1 error and should be regarded as tentative.”

We appreciate the reviewer’s opinion that our data are worthwhile to read.

Reviewer: 2

Comments to the Author

Inflammation-associated graft loss in renal transplant recipients

Dahle et al.

The authors describe an association of hs-CRP and IL-6 blood levels with graft loss and conclude that graft loss might be due to inflammation-induced chronic graft rejection. During a randomized double-blind placebo-controlled trial of fluvastatin in a total of 2102 patients (ALERTE study), hs-CRP and IL-6 blood levels were determined in 1910 and 1751 renal transplant recipients, respectively. Both parameters were determined once at baseline. Because placebo- and verum-treated patients showed similar hsCRP and IL-6 blood levels, statistical analysis was performed on the pooled patient population. Patients were followed for at least 5 years with a mean follow up of 6.7 years. Enrolled patients were 30-75 years old (mean 50 years), showed stable graft function at enrollment (mean creatinine 145 µmol/l), and had been transplanted more than 6 months before enrollment (mean 5.1 years). Patients were seen at 6 month intervals during the study period.

Based on 1910 patients in the hsCRP cohort and 1751 patients in the IL-6 cohort, approximately 18% (18.1% and 17.6%) of the patients in the two groups showed death-censored graft loss, approximately 34% (34.7% and 33.7%) graft loss, doubling of serum creatinine or death, and approximately 31% (31.7% and 30.8%) graft loss or death after 7 years of follow up (Table 2).

Due to missing data, 450 (21.4%) patients in the hsCRP and 576 (27.4%) patients in the IL-6 cohort were excluded from analysis, leaving 1652 patients in the hsCRP cohort and 1526 patients in the IL-6 cohort (Tables 3 and 4). In multivariate models, both hs-CRP and IL-6 were significantly associated with the renal endpoints death-censored graft loss, graft loss including death, and graft loss including death and doubling of serum creatinine. In multivariate analysis for death-censored graft loss, there were negative associations of age and BMI and positive associations of current smoking, systolic blood pressure, creatinine, time since last transplantation, 2 HLA-DR mismatches, and previous treatment for rejection and proteinuria.

Major concerns:
• IL-6 is the major inducer of CRP in the liver (J Immunol. 2008 Mar 1;180(5):3492-501).
Transcriptional complex formation of c-Fos, STAT3, and hepatocyte NF-1 alpha is essential for
cytokine-driven C-reactive protein gene expression. Nishikawa T, Hagihara K, Serada S, Isobe T, Matsumura A, Song J, Tanaka T, Kawase I, Naka T, Yoshizaki K.). Induction of CRP is strongly IL-6-dependent and blood levels of the two parameters would be expected to behave similarly in patients with strong IL-6 induction. Both parameters are sensitive indicators of inflammation.

The reviewer highlights an important point by commenting that hsCRP is strongly IL-6 dependent. Indeed, we do agree. We also share the reviewer’s point that the two parameters would be expected to behave similarly, and they did indeed in our trial. We performed a comprehensive statistical re-run for hsCRP with and without IL-6. IL-6 is probably by a large extent a precipitator for hsCRP. In the regression analysis running both inflammation markers included, versus separately, there was a confounding effect indicating a causal relation. We have added a comment on this in the article.

In the present study, current smoking was strongly associated with death-censored graft loss, graft loss, doubling of serum creatinine or death, and graft loss or death in the hsCRP as well as the IL-6 cohort (p<0.001) (Tables 3 and 4). It can be assumed that “current smoker” includes many strong smokers with associated chronic bronchitis at study baseline. Chronic bronchitis might have been responsible - at least in part - for the increased hsCRP and IL-6 blood levels at baseline (Chest. 2009 Oct;136(4):1039-46. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Watz H, Waschki B, Kirsten A, Müller KC, Kretschmar G, Meyer T, Holz O, Magnussen H.). To minimize the effect of chronic bronchitis, the authors should analyze hsCRP and IL-6 blood levels patients excluding “current smokers”.

We tested for a possible confounding effect of smoking on the effect of inflammation by running the multivariate analyses with and without current smoking as a covariate, and found no significant difference in the regression coefficient of hsCRP or IL6 (ie all change <15%) nor in the hazard ratios of hsCRP or IL6 (ie all change <5%). We also tested for interaction between smoking and inflammation by adding a multiplication covariate (ie smoking*ln_hsCRP or smoking*ln_IL6, respectively), with all p>0.20, indicating no interaction. An analysis excluding current smokers reduces the study population, but multivariate hazard ratios did not change substantially, also indicating no interaction between smoking and inflammation. HsCRP remains highly significant among non-smokers for all endpoints (p<=0.001), whereas IL6 remains significant for graftloss or death, graft loss doubling creatinine or death. The multivariate HR of IL6 for death-censored graftloss in nonsmokers is 1.20 (95% CI 0.93-1.55) p=0.16. We added a comment in the article on the multivariate tests for interaction and confounding, but not for the stratified analysis, as it refers to a much smaller study cohort.

- It would be interesting to study whether hs-CRP and IL-6 blood levels were stronger associated with current smoking than with creatinine levels or proteinuria.

As proposed by the reviewer we performed this analysis. As smoking is a dichotomized endpoint we also dichotomized creatinine and protein excretion by median in regard to blood levels of the inflammation markers. IL-6 in smokers 3.27 (2.05) pg/ml and in patients with “high” creatinine 3.08 (1.98) pg/ml. Corresponding values for hsCRP were 4.89 (8.189) mg/L and 4.01 (7.39) mg/L smokers and “high” creatinine patients. But as stated above, there was no interaction with current smoking. We thus observed small but statistically significant higher baseline levels (Mann-Whitney U-test) of both inflammatory markers in smokers than non-smokers. We also observed significantly higher level of IL-6 in the “high” creatinine group than the “low” creatinine group, and significantly higher level of IL-6 in the “high” proteinuria group than the “low” proteinuria group, while hsCRP was not different in the creatinine or proteinuria groups. Among non-smokers the baseline s-IL6 was significantly higher in the “high” creatinine group than the “low” creatinine group. For non-smokers we observed a trend (p=0.09) for higher IL-6 in the “high” proteinuria-group than the “low” proteinuria group. Among the smokers the baseline IL-6 and hs-CRP levels were not significantly different between creatinine or proteinuria groups. As expected baseline inflammatory levels seem related both to smoking status and to serum creatinine levels and proteinuria levels. These results are not added in the article.
There are reports in the literature indicating that history of smoking before transplantation is associated with impaired transplant and patient survival and an increased risk of early rejection (Am J Kidney Dis. 2010 May;55(5):907-15. Cigarette smoking, kidney function, and mortality after live donor kidney transplant. Nogueira JM, Haririan A, Jacobs SC, Cooper M, Weir MR). With smokers included and not considered separately, and given the association of chronic bronchitis with inflammation markers, it is difficult to draw the conclusion from the data that increased hsCRP and IL-6 blood levels are early predictive markers of inflammation-induced graft loss. The sentence at the end of the discussion section, saying that hsCRP and IL-6 increases are risk factors independent of other recognized risk factors for graft loss, seems unsustainable and needs to be substantiated.

The reviewer addresses the point if smoking pre-transplantation is a possible confounder or an effect modifier. There was no interaction or confounding for smoking (see above). We also believe that smoking for several reasons is an important issue also in renal transplant, but as we have outlined above the inflammation status in transplanted patients might be driven by other factors than smoking. We have nuanced the sentence at the end of discussion to “examined risk factors.” It might be to ambitious to include all “recognizable risk factors”.

Minor concerns:

- In Table 1: “live donor ??????"

 Typing error, the question marks are deleted

- In Tables 3 and 4: “Ln hsCRP” and “Ln IL-6”. What is the meaning of Ln?

 Ln is abbreviation for natural logarithm, we add explanation in the tables.
Inflammation-associated graft loss in renal transplant recipients

*Dept of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
*Dept of Nephrology, Lunds University, Lund, Sweden
Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Germany
Synlab Center of Laboratory Diagnostics Heidelberg LLC, Eppelheim, Germany
Toensberg County Hospital, Toensborg, Norway
Oslo University Hospital, Ullevaal, Oslo
University Hospital Uppsala, International Medicine, Nephrology, Uppsala, Sweden
British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom

*Corresponding author: Dag Olav Dahle, d_o_dahle@yahoo.com. Current ad of Dept cardiology, Oslo University Hospital, Ullevaal, Oslo, Norway. Ph. +47 22118080

Abbreviations: Assessment of Lescol in Renal Transplant (ALERT) study. Chronic transplant dysfunction (CTD). High-sensitivity C-reactive protein (hsCRP). Interleukin 6 (IL-6). Estimated glomerular filtration rate (eGFR).
Abstract

Background. Although short-term graft survival has improved substantially in renal transplant recipients, long-term graft survival has not improved over the last decades. The lack of knowledge of specific causes and risk factors has hampered improvements in long-term allograft survival. There is an uncertainty if inflammation is associated with late graft loss.

Methods. We examined in a large prospective trial the inflammation markers high-sensitivity C-reactive protein (hsCRP) and interleukin 6 (IL-6) and their association with chronic graft dysfunction. We collected data from Assessment of Lescol in Renal Transplant (ALERT) trial which recruited 2102 maintenance renal transplant recipients.

Results. Baseline values were hsCRP 3.8 \pm/\ 6.7 mg/l and IL-6 2.9 \pm/\ 1.9 pg/ml. Adjusted for traditional risk factors, hsCRP and IL-6 were independently associated with death censored graft loss, the composite endpoints graft loss or death, and doubling of serum creatinine, graft loss or death.

Conclusions: The inflammation markers hsCRP and IL-6 are associated with long term graft outcomes in renal transplant recipients.
Key words: ALERT, high-sensitivity CRP, inflammation, interleukin-6, renal allograft survival.

Short summary: This post-hoc analysis of maintenance renal transplant recipients (n=2102) from the Assessment of Lescol in Renal Transplantation (ALERT) study demonstrates associations of the inflammatory markers high-sensitivity C-reactive protein and interleukin 6 with chronic transplant dysfunction.
Introduction

Advances in immunosuppression, histocompatibility testing, surgery and medical management have allowed transplantation to become favoured treatment for patients with end stage renal disease, with a low rate of acute rejection and excellent short term results. The paradox is that long-term graft survival has barely improved over the last two decades despite short term improvements in graft survival. Annual graft loss is still 2-7% and the average deceased donor kidney transplant functions for about ten years. Clinically, we observe a progressive transplant dysfunction characterised by a slowly rising serum creatinine, proteinuria and hypertension. Early detection of chronic transplant dysfunction is recognised to be important, although current interventions have a limited effect (eg “creeping creatinine study”). Current recommendations are to follow serum creatinine, estimated glomerular filtration rate (eGFR), proteinuria and to consider performance of protocol (surveillance) biopsies or to have a low threshold for early diagnostic biopsy. Once serum creatinine rises, or proteinuria appears, the decline in renal function is usually inevitable.

Inflammation is present in the biopsies of patients with chronic graft dysfunction, but little is known about the role of markers of inflammation on graft outcome. The association of inflammation with atherosclerosis and macrovascular disease is well documented in other populations, specifically C-reactive protein (CRP). Cytokines induce production of interleukin 6 (IL-6) from various tissues, including lungs in smokers, and increases downstream mediators such as CRP. Renal transplant recipients, by the process of receiving an allograft, have an additional activation of their inflammation status. We documented recently that the inflammation markers IL-6 and high sensitivity CRP (hsCRP) were independently associated with cardiovascular events and all-cause mortality in renal transplant recipients. Whether IL-6 predicts graft survival in renal transplant recipients has not yet been documented in a prospective study. The aim of the present study is therefore to investigate the baseline role of inflammatory biomarkers on progressive graft dysfunction and graft failure.
Subjects and methods

Study design

The design of the ALERT has been described previously. In short ALERT was a randomized double-blinded placebo-controlled trial of fluvastatin 40 to 80 mg in renal transplant patients with follow-up for 5 to 6 years. Thereafter participants were offered open-label fluvastatin 80 mg in a 2 year extension study. In all, 2102 renal transplant recipients were included with a mean duration of follow-up for 6.7 years. Endpoints were cardiovascular and renal events, recorded by an independent critical events committee. Recruitment was undertaken June 1996 to October 1997. Eligible patients were renal transplant recipients 30-75 yr old, with stable graft function, transplanted more than 6 months before enrolment. The patients were recruited to the study at a mean of 5.1 years after transplantation with a stable graft function. Patients were seen 1.5 months after enrolment and at 6 months intervals, recording clinical status and blood biochemistry including lipids, creatinine, creatine kinase and liver enzymes analyzed at a central laboratory (CRL, Medinet, Breda, The Netherlands). IL-6 was measured by human IL-6 immunoassay (R&D Systems Inc., Minneapolis, MN, USA) and hsCRP by immunoturbometric analysis (Roche Diagnostics GmbH, Mannheim, Germany). IL-6 and hsCRP were measured at baseline. The study adhered to the International Conference on Harmonization guidelines for Good Clinical Practice and in accordance with the Declaration of Helsinki. All participants provided written informed consent, and the ethics committee at each participating center approved the trial (no S-02169).

Statistical analysis

In the initial analysis, treatment arm and placebo arm were analyzed separately for renal endpoints.
Since the two arms showed no significant heterogeneity in relation between the inflammation markers hsCRP and IL-6, subsequent analyses were performed on the pooled patient population. HsCRP and IL-6 were not normally distributed and logarithmic transformation of these factors was used in the analysis. HsCRP and IL-6 were analysed in separate models due to confounding (not shown) and the close etiological relationship. Risk factors were evaluated using uni- and multivariate Cox proportional hazard model. Covariates were chosen in a stepwise approach, including covariates with univariate significance and previously reported factors associated with graft outcomes, and then excluding most variables that did not retain statistical significance in the multivariate analysis. SPSS version 17.0 (SPSS Inc., Chicago, IL) was used for statistical analysis.

Results

Baseline characteristics in ALERT and ALERT extension were similar in both treatment arms. Baseline characteristics in relation to renal endpoints in the placebo group have been reported separately. The present study reports treatment and placebo group together. Baseline characteristics are shown in table 1. Mean age at study entry was 50 years, 66% were male and all received cyclosporine-based immunosuppression at entry. The main causes of renal failure leading to transplantation were glomerulonephritis and polycystic kidney disease. Frequencies of graft failure endpoints are shown in table 2.

HsCRP and IL-6 were available in 1910 and 1751 patients, respectively. Mean (SD) and median (interquartile range) values were for hsCRP 3.8 (6.7) mg/l and 1.5 (3.1) mg/l and for IL-6 2.9 (1.9) pg/ml and 2.4 (2.2) pg/ml. The hsCRP and IL-6 cohort had almost identical baseline characteristic as reported earlier, with no differences in proportions with diabetes, coronary heart disease, current smokers or live donor.

Uni- and multivariate hazard ratios for the hsCRP and IL-6 cohorts are shown in tables 3 and 4.
Missing data excluded 450 (21.4%) and 576 (27.4%) patients in the hsCRP and IL-6 multivariate models, respectively. Both hsCRP and IL-6 were in separate multivariate models significantly associated with the renal endpoints shown, ie death-censored graft loss, graft loss including death, and graft loss including death and doubling of serum creatinine. Due to a surprisingly high percentage of current smokers we performed separate analysis (not shown) to examine a potential interaction with smoking and inflammation. All interaction covariates were non-significant p>0.20, and the inflammation markers were equally strong in smokers and non-smoker, i.e. no interaction. Excluding smoking as a covariate (not shown) changed the regression coefficients for the inflammation markers less than 15% and the hazard ratios less than 5%, indicating no confounding effect.

In multivariate analysis for death-censored graft loss the results were similar in the hsCRP and IL-6 cohorts. We found significant negative associations of age and BMI. Significat positive associations were seen for current smoking, systolic blood pressure, creatinine, time since last transplantation, two HLA-DR mismatches, previous treatment for rejection and proteinuria.

When including death in the endpoint the association of age became significantly positive, diabetes became significant and previous treatment for rejection lost significance. HLA-DR mismatch was significant when including doubling of serum creatinine in the endpoint. We still found significant negative association of BMI and positive associations of current smoking, systolic blood pressure, creatinine, time since last transplantation and proteinuria.

Discussion

In the present post hoc analysis, we have shown that inflammation, adjusted for traditional risk factors, is associated with death-censored renal graft loss, and the composite endpoints; graft loss or death, and graft loss or death or doubling of serum creatinine. To our knowledge this is the first
prospective cohort in renal transplant patients documenting an association of IL-6 with graft loss. HsCRP and IL-6 are close participants in the inflammatory cascade, and the observation that both markers were predictive of outcome parameters, strengthens the perception of inflammation as an important risk factor for graft related outcomes in renal transplant patients.

The baseline levels of inflammatory markers in our patients seem moderately elevated compared to a non-transplanted background population, as seen in most studies with renal transplant recipients. No universally accepted cutoff values for inflammatory markers in renal transplant recipients exists, but regarding cardiovascular outcomes in the general population CRP < 1 mg/dL confers low risk, CRP 1 to 3 mg/dL average risk and CRP > 3 mg/dL high risk, and the same cutoff values were described by van Ree et al. as predicting a rising creatinine in renal transplant recipients.

This leaves n=1203 (63%) of our hsCRP cohort with hsCRP > 1 mg/dL in the moderate to high risk group. IL-6 levels are harder to compare with other studies due to different measurement methodology. A study by Karczewski et al. found significantly higher IL-6 levels in chronic rejection (1.64 +/- 0.8 pg/mL) than in patients with stable graft function (0.42 +/- 0.3 pg/mL, p<0.001) or acute rejection (0.93 +/- 1.7 pg/dL, p=0.001).

Our findings supports the concept that inflammation might be a component of the pathogenesis of chronic graft dysfunction, and is in line with the report on hsCRP and graft deterioration by van Ree et al. CRP and IL-6 has been related to renal function in predialytic chronic renal failure. However, the exact pathogenetic role of hsCRP and IL-6 in graft failure is yet elusive. Indeed, genetic elevation in CRP was not associated with post-transplant morbidity and mortality, and lowering of hsCRP with statin in dialysis patients did not improve cardiovascular outcome, neither did statin treatment improve graft outcome in the ALERT. IL-6 is upstream to CRP in the inflammatory cascade and seems to play an etiological role in other inflammatory disease states including rheumatoid arthritis, where tocilizumab, a monoclonal antibody against IL-6-receptor,
has a proven effect. A murine model of cardiac transplantation demonstrated a tripled survival time of IL-6 deficient grafts \(^{24}\), but allogeneic cardiac transplants into IL-6 deficient mice did not show prolonged graft survival indicating that the graft was the relevant source of IL-6. In human heart transplant recipients IL-6 is associated with low grade cellular rejection \(^{25}\). In renal transplant recipients elevations in serum and urine IL-6 levels are documented in acute rejection episodes \(^{26}\), and increased soluble IL-6 receptor was found in urine twelve and 6 months before late graft failure \(^{27}\). A murine model of calcineurin-inhibitor (CNI) nephrotoxicity showed a protective effect of an IL-6 neutralizing antibody \(^{28}\), another animal study found a preventive effect of 13-cis-retinoic acid on chronic allograft nephropathy possibly mediated through decreased secretion of inflammatory cytokines including tumor necrosis factor-alpha and IL-6 \(^{29}\). Some genetic polymorphism studies in man has shown a protective role on renal graft function of a high IL-6 gene expression in renal transplant recipients, and low IL-6 production donor genotype was associated with increased prevalence of chronic graft dysfunction \(^{30;31}\), whereas other studies failed to show this association \(^{32;33}\). A small retrospective study by Cueto-Manzano et al. found no difference in inflammation markers in patients with or without CTD \(^{34}\). A pilot randomized placebo-controlled trial with an inflammation antagonist demonstrated reduced inflammation in maintenance hemodialysis patients \(^{35}\). A human randomized trial of IL-6 suppressive therapy might give an answer to whether inflammation is causative in chronic graft dysfunction, but is probably still premature awaiting further evidence from mechanistic and correlation studies. Indeed, neutralizing IL-6 antibody treatment in a murine model of acute reperfusion injury was deleterious \(^{36}\).

Our finding of protective effect of older age of recipient for death-censored graft loss is in line with other studies \(^{18;37;38}\), and might represent higher immunoreactivity in younger subjects. Hypertension, previous rejection and HLA-DR mismatch were independent risk factors in the present study is in line with current reviews \(^{4;39}\). Creatinine and proteinuria were significant independent risk factors for graft loss as described previously \(^{2;40}\), as was time since transplantation.
Creatinine and proteinuria are used as biomarkers of CTD, although they are unspecific of the underlying pathology and not ideal. Smoking may be a risk factor for reduced patient and graft survival after transplantation. Smoking may by itself increase inflammation markers. Due to a surprisingly high percentage of current smokers we performed separate analysis to examine a potential interaction with smoking and inflammation. Although smoking was an independent risk marker there was no interaction with smoking and inflammation.

A limitation of this study was having only one analysis at baseline for hsCRP and IL-6, and the difference measured between groups is small and of limited prognostic value for individual renal transplant recipients. Our method of choosing covariates increases the possibility of type 1 error and should be regarded as tentative. The strength of the study is the many patients followed for an extended period and an independent adjudication of predefined outcome parameters.

In conclusion we found that the inflammatory biomarkers hsCRP and IL-6 are significantly associated with graft related outcomes in renal transplant recipients, independent of the other examined risk factors for graft loss.

Acknowledgements

The ALERT trial was sponsored by Novartis AG.

Disclosure

The authors of this manuscript have conflicts of interest to disclose as described by Nephrology, Dialysis and Transplantation. The ALERT trial was sponsored by Novartis AG. Otherwise, the authors report no conflict of interest.
Conflict of interest

This paper have not been published previously in whole or part.

Reference List

1. Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? *Am J Transplant* 2004; 4: 1289-1295

20. Panichi V, Migliori M, De PS et al. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron 2002; 91: 594-600
28. LaSpina M, Tripathi S, Gatto LA, Bruch D, Maier KG, Kittur DS. An interleukin-6-

