
Microscopic approach to second harmonic generation in quantum cascade lasers

Winge, David; Franckie, Martin; Wacker, Andreas

Published in:
Optics Express

DOI:
10.1364/OE.22.018389

2014

Link to publication

Citation for published version (APA):
Winge, D., Franckie, M., & Wacker, A. (2014). Microscopic approach to second harmonic generation in quantum
cascade lasers. Optics Express, 22(15), 18389-18400. https://doi.org/10.1364/OE.22.018389

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. Sep. 2019

https://doi.org/10.1364/OE.22.018389
https://portal.research.lu.se/portal/en/publications/microscopic-approach-to-second-harmonic-generation-in-quantum-cascade-lasers(07319b2b-463e-4196-8896-d2799480cad3).html


Microscopic approach to second
harmonic generation in quantum

cascade lasers

David O. Winge� , Martin Lindskog and Andreas Wacker
Mathematical Physics, Lund University, Box 118, 22100 Lund, Sweden

� David.Winge@teorfys.lu.se

Abstract: Second harmonic generation is analyzed from a microscopical
point of view using a non-equilibrium Green's function formalism. Through
this approach the complete on-state of the laser can be modeled and results
are compared to experiment with good agreement. In addition, higher
order current response is extracted from the calculations and together
with waveguide properties, these currents provide the intensity of the
second harmonic in the structure considered. This power is compared to
experimental results, also with good agreement. Furthermore, our results,
which contain all coherences in the system, allow to check the validity of
common simpli�ed expressions.
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Fig. 1. One period of the structure from [15] with the two-well active region in the middle.
Carriers are injected into the upper laser state B ensuring inversion between B and A,
whereas levels A,C and B,D produce SH generation. The states and mean�eld potential
bending the conduction band structure are calculated at a bias drop of 190 mV per period.
The period lengthd is 49.5 nm.

1. Introduction

The Quantum Cascade Laser [1] (QCL) consisting of hundreds of coupled quantum wells is
well known to exhibit strong optical nonlinearities [2,3] in particular in the infrared [4]. These
nonlinearities have attracted much attention as they have proved a useful tool to achieve room-
temperature terahertz sources through difference-frequency generation [5] and they can also be
used the opposite way, extending the spectral range of the QCLs to lower wavelengths through
Second Harmonic (SH) generation [6,7].

Already today the QCL is widely used in many applications in both the mid-infrared [8] and
the terahertz [9] spanning a wide range of frequencies [10]. However the fundamental frequency
of a QCL is intrinsically limited by the conduction band offset as well as the energy level of
the L-valley which effectively decreases laser performance when it is below the energy of the
upper laser state [11]. The use of SH generation provides a way to circumvent these limitations.
Among the reasons to extend the operation of QCLs beyond 3.5mm [12] is the possibility to
access strong spectral lines of important trace gases and also to use the quick modulation speed
of QCLs compared to diode lasers [13, 14]. The latter could prove useful, if the wavelength
could be compressed even further down towards the telecom region [11].

In structure D2912 considered by [15] a nonlinear resonator with high second order suscepti-
bility is placed in the two central wells of the active region of the laser itself. The idea manifests
itself in the ladder structure seen in Fig. 1. This allows for gain at the fundamental frequency
and thus prevents saturation of the pump. The fact that the pump and the nonlinear resonator
are integrated in the same heterostructure [6], provides us with the possibility to model the gen-
eration of second harmonics with our non-equilibrium Green's function model for QCLs [16].
The same structure has recently been the subject of an optimization study centered at increas-
ing the nonlinear conversion ef�ciency by Gajić et al. [17], as well as earlier by Baiet al. [18]
where optimization was pursued by the use of supersymmetric mechanics and digitally graded
heterostructures. The results in this work will be compared and evaluated partly in reference to
these efforts.



2. The model

Simulations of quantum lasers are done on many different levels of complexity. Typically rate-
equation based calculations [19, 20] are used as a starting point, where the simple treatment
allows for a straightforward inclusion of additional effects as for example photon densities for
dynamical simulations [21,22]. More advanced are density matrix methods were the coherences
between different states are taken into account [23–26]. Monte-Carlo simulations are also used
with the strong bene�t that electron-electron scattering can be included at an early stage of
implementation [27–29]. Finally, a full quantum treatment requires a solution of the two-time
non-equilibrium Green's function (NEGF) [30–33], as is done in this work.

The two times of the Green's function contains the memory effects of the system. As an
example, this gives rise to broadening of the levels due to their limited lifetimes. More impor-
tantly, it allows for a consistent treatment of the coherences in the system, as they also will be
resolved in energy. This is problematic in for example density matrix approaches, where the
energy of a coherence between two levels can not be clearly de�ned. The NEGF formalism
solves this and thus extends further and beyond the semiconductor Bloch equations [35].

In our simulations we use a classical electromagnetic �eld. The �eld strength enters the
model asF(t) = Faccos(wt) wherew is the driving �eld frequency andFac is the �eld ampli-
tude. In the following we express the ac �eld strength aseFacd in units of eV, whered is the
period length. High intensities inside the QCL require a model going beyond linear response
to the external electromagnetic �eld. This is done in our simulations by decomposing the time
dependence of observables of the system in a Fourier series of the fundamental frequencyw
and its higher harmonics. This procedure follows the concepts outlined in [34].

The scattering via impurities, interface roughness, alloy disorder as well as acoustic and
optical phonons is contained in self-energies determined self-consistently. The phonons are as-
sumed to follow a thermalized Boltzmann distribution, and this is the only place where the tem-
perature enters the calculation. We use a lattice temperature of 100 K which is typically slightly
higher than the heatsink temperature de�ned in experimental work [15]. Throughout these cal-
culations the interface roughness was modeled by a exponential correlation function [16] with
average island size and height of 10 nm and 0.1 nm respectively. The self-energies used are
described in detail in [16] where we also show how solving for the Green's functions and pro-
jecting them down on to an ordinary density matrix gives access to observables such as the
current density and occupations in different states.

Due to the time periodicity enforced on the system, the current response can be written as a
Fourier series

J(t) = J0 +
nmax

å
n= 1

�
Jcos

n cos(nwt)+ Jsin
n sin(nwt)

�
(1)

whereJ0 is the stationary response and theJn-terms are induced by the oscillating �eld. The
dynamical responsegiven byJcos

1 can be directly related to the gain coef�cient after division
by Fac. In the same manner theJ2-terms can be seen as generators of second harmonics inside
the waveguide of the structure considered.

For numerical reasons the value ofnmax should be kept as low as possible as computational
time increases by the square of the system size, which is linear innmax. In practice this amounts
to converging the calculations of the desired parameters with respect tonmax for a given ac �eld
strength. Naturally convergence is more easily reached for observables involving terms related
to n = 1 than those relying on terms withn = 2.



Fig. 2. Simulated bias-current relation of the structure studied for both the off- and on-state.
The level of losses used to simulate the laser under operation was 40 cm� 1. Also shown is
the output power at the pump and second harmonic frequency, respectively, using the TW
model, which constitutes an upper bound. The second harmonic signal is scaled by a factor
of 105. At the marked points 180, 190, 200, 210, 230 and 250 mV further analyses of gain
and SH generation were carried out. A lattice temperature of 100 K was used.

3. Laser operation analysis

Calculations restricted bynmax = 0 provide the stationary responseJ0 from Eq. (1). The os-
cillating electromagnetic �eld is thus not taken into account, giving the current density in the
off-state of the laser, as shown in Fig. 2. Here, a number of bias points are marked indicating
the points were more extensive analyses were made.

Gain is obtained through the dynamical responseJcos
1 and thus accessible withnmax = 1. In

Fig. 3, gain spectra as a function of photon energies are shown for the different bias points
marked in Fig. 2. In the experiment of [15] a plasmon enhanced waveguide was used, similar
to the one described in [36], where the overlap factor was calculated to beG= 0:41. Using
reported waveguide loss from the experimental work,aW = 15 cm� 1, and by calculating the
mirror loss from the re�ectivity,aM = 5:6 cm� 1, the gain in the QCL structure required to
compensate the losses is

gthreshold=
aW + aM

G
:

In this work the overlap factor is set toG= 0:5 following [18]. This enables easy comparison
between results and yields the valuegthreshold= 40 cm� 1. Studying Fig. 3, it can be seen that
gain well above the level of the losses is reached for a large range of bias points. It can also be
seen how the gain has a two-peak structure (e.g. 131 and 142 meV atFd = 210 mV), where the
lower energy transition becomes dominating with increasing bias. This indicates that the level
structure is complex and that a crossing occurs at these bias points.

The gain spectra in Fig. 3 clearly show how the simulations predict the current threshold
to be around 8 kA/cm2, corresponding to 190 mV, for the design laser wavelength of 9.5mm,
or h̄w = 136:25 meV. This value compares well to experiment, where a threshold current of
6.6 kA/cm2 was reported. It can also be seen that the gain at the laser energy increases mono-
tonically with bias, suggesting a steady increase in output power with bias. Provided that the
nonlinear resonator in the active region is capable of sum frequency generation, conditions
are thus ful�lled for observation of second harmonic generation in the structure. Experimental



Fig. 3. Gain at weak ac �eld simulated at the bias points marked in Fig. 2. The orange arrow
indicates the photon energy 136.25 meV corresponding to the fundamental wavelength of
9.5mm, as well as increasing bias.

Fig. 4. Gain saturation with increasing ac �eld strength for the photon energy of 136.25
meV. The bias points examined are the ones indicated in Fig. 2. The ac �eld in the cavity
increases as long as gain surpassesgthresholdindicated as a dotted line.

measurements stop at 15 kA/cm2, but it is clear from the simulations that gain persists even at
higher bias points with higher currents.

By the use of a �nite ac �eld strength in the simulations, the operation dynamics of the laser
can be modeled as previously shown by our group in [37]. Increasing the ac �eld strength,
the dynamical responseJcos

1 increases sublinearly which leads to a saturation of the gain. This
process can be studied in Fig. 4, again for the bias points indicated in Fig. 2. By increasing the
ac �eld strength until gain reaches the level of the losses, the intensity at each bias point can be
found, as well as the increase in current from Eq. (1) due to the stimulated emission.

In order to determine the optical power emitted by the laser, we proceed as follows: In the
wave guide the electric �eld componentF0ezcos(kwx� wt) is traveling towards the facet with
an intensity given by the Pointing vector. Neglecting the intricate mode structure, we assume



a constant �eld over the active region of the waveguide. The corresponding facet area is given
by 32.5mm2 from experimental data (#periods� d � waveguidewidth). Furthermore 71% is
transmitted due to the Fresnel losses at the fundamental frequency. This provides the output
power from our data, which is proportional toF2

0 .
Now, we have to relateF0 to Fac used in our simulation. If the electric �eld is dominated by

the travelling wave (TW)F0ezcos(kx� wt), we can identifyF0 = Fac and the resulting power is
shown in Fig. 2. On the other hand, there is a re�ected wave, which is ampli�ed and becomes
of the same magnitude as the incoming wave further away from the facet. In the middle of the
waveguide we have actually a standing wave (SW)

F(x;t) = F0ezcos(kwx� wt)+ F0ezcos(kwx+ wt) = 2F0cos(kwx) cos(wt)ez: (2)

As can be seen in Fig. 4 the gain saturation is roughly proportional toF2
ac. Thus the spatial

averagehF2(x;t)i = 2F2
0 cos2(wt) should be compared to the simulatedF2

accos2(wt), and we
obtainF0 = Fac=

p
2, i.e. a reduction of output power with a factor of 2 compared to the TW

case above.
Obviously, the TW and SW are extreme cases and the reality is in between. In addition, the

z dependence of the electric �eld due to the mode pro�le will further complicate the situation.
Thus, the TW and SW values should be taken as a con�dence range for our results when we
compare to experimental data in the following.

For a current density of 15 kA/cm2, we �nd an output power of 280 mW for the TW case
and 140 mW for the SW case. Here the experimental value is about 100 mW [15]. Taking into
account, that the experimental collection ef�ciency is never unity and the Fresnel losses at the
facet provide an upper bound for the transmission, we conclude that our results are in good
agreement with the experimental data.

Finally, we compare the current simulations in the on-state with theoretical results obtained
by Gajíc et al. [17] and Baiet al. [18] who used a photon density equation coupled to the
electron rate equations. Baiet al. �nds an on-state current that shows NDR features already at
biases that compare to 200 mV per period with a maximum current of 22 kA/cm2. The features
of an early NDR is also observed by Gajić et al.where the maximum current is however lower,
at 8 kA/cm2. Both results differ from our �ndings and experimental observations. The linear
increase in gain with respect toFd, below saturation, see Fig. 3, is also reported by Baiet
al.. The output is estimated by both groups and their results are in the range of 300-400 mW,
showing a larger discrepancy with experiment than our results.

4. Second harmonic generation

The current at the second harmonic is given by the termsJcos
2 andJsin

2 in Eq. (1), which are
generated by our simulations ifnmax � 2 is used. Its total amplitudejJ2j = (( Jcos

2 )2 +( Jsin
2 )2)1=2

is plotted versus ac �eld strength in Fig. 5 for different dc bias points. As expected for the
process of SH generation, the second order current in the inset of Fig. 5 shows a quadratic
behavior for small ac �eld strengths. The convergence of the higher order terms in Eq. (1) with
respect tonmax can also be studied in Fig. 5. Here calculations withnmax = 3 andnmax = 4 are
compared for the bias of 230 mV per period. As seen, the inclusion of four-photon-processes
slightly affects the result, especially at high ac �eld strengths. However, the main features are
not changed (this is true for all bias points) and the values are very similar, which is the reason
that the computationally lighter simulations withnmax = 3 were used to calculate the mainstay
of the results.

In order to estimate the power emitted at the second harmonic, the waveguide is considered
isotropic in the direction transverse to both the growth direction and the propagation direction
of the laser �eld. The second order current response is then assumed to be modulated by the



Fig. 5. Current oscillationsjJ2j = (( Jcos
2 )2 + ( Jsin

2 )2)1=2, at the second harmonic frequency
plotted versus ac �eld strength for the bias points indicated in Fig. 2. Simulations were
made withnmax = 3. The points inserted along the 230 mV data are results withnmax = 4
in order to verify the convergence. AlongeFacd = 70 meV there is a dashed line indicating
the region studied in more detail in Fig. 6. The inset shows a close-up on small values of
the ac �eld strength, emphasizing the quadratic behavior.

intensity of the traveling wave, used for the linear power, at the fundamental frequency. Through
the Helmholtz equation the vector potential generated by this oscillating current density can be
calculated and related to a �eld propagating in the waveguide. Losses and the mismatch in
wavevectork for the fundamental and second harmonic frequency are then naturally taken into
account. A sketch of this derivation can be found in the Appendix. The resulting equation relates
the intensity and the second order current response as

I2w =
m0jJ2j2c

8n2w

�
�
�
�
�
1� e� k00

2wLeiDkL

Dk+ ik00
2w

�
�
�
�
�

2

(3)

wherem0 is the magnetic permeability,c the speed of light,nw the refractive index at frequency
w, L is the length of the cavity,Dk is the mismatch de�ned byÂf k2wg � 2kw , k00

2w = Áf k2wg
is the waveguide attenuation at 2w. Equation (3) is similar to Eq. (13) of [15], where it was
pointed out thatDk dominates overk00

2w . By achieving true phase matching and thus drastically
decreasing thek-mismatch, Maliset al. [38] was able to increase the conversion ef�ciency
almost three orders of magnitude compared to [15]. For the bias point ofFd = 215 mV and the
ac �eld strength of 82 meV, corresponding to the maximum experimental current and the value
eFacd which saturates the gain to the level of the losses, the second order current response is

case: TW SW Exp. res.
Iw 280 mW 140 mW 100 mW
I2w 6.0mW 1.5mW 550 nW

Table 1. Intensities for the different waveguide models outside the waveguide. These are
calculated for a transmission coef�cient of 71%. For comparison the experimental results
from [15] are shown.



Fig. 6. Current response at 2w in terms of the cosine and sine part respectively, from the
NEGF model (solid lines). These are compared with the results from Eq. (5) using occu-
pations and dipole matrix elements from our nonequilibrium states (connected dots). To
compare directly to Eq. 4, the negative particle current, appropriate for electrons, is shown.
The ac �eld strength is held constant ateFacd = 70 meV.

aboutjJ2j � 1450 A/cm2. Using Eq. (3) this would generate an intensity ofI2w = 260 nW/mm2

inside the waveguide yielding, including Fresnel losses, a total power outside the facet of 6.0
mW. The parameters of [15] were used, with a refractive index ofn2w = 3:35, an attenuation
of k00

2w = 3 cm� 1 together with a sample length ofL = 2:25 mm. Here as well, the reduction
in output power due to additional saturation from the back re�ected wave should be taken into
account. For a SW, the factor of one half enters the SH intensity squared, giving a reduction of
25% compared to a TW. All results are summarized in Table 1.

Compared to the calculations of Baiet al. and Gajíc et al. which yielded powers of 90mW
and 45mW respectively, our �ndings are signi�cantly closer to the experimental results, where
the maximum SH output power was reported to be 550 nW in total. As the mode structure in
the waveguide is not taken into account in the calculation, it is expected to overestimate the
experimental value. Although the quantitative agreement of the SH power is not perfect, the
�nal estimation of the second harmonic signal so close to the experimental value should still
be regarded as a good indication towards the validity of the approach and the robustness of the
�nite-intensity-model that we have applied to the problem.

5. Density matrix calculation

The bene�t from our approach described above is that the current response at 2w can be re-
lated directly to the coherences in the density matrix between the different states in the SH
generating ladder. Often these coherences are approximated using the difference in popula-
tions, i.e. the diagonal elements in the density matrix, and the widths of the transitions. This
approach is common when nonlinear conversion is considered [3, 6, 39] and the concept is
outlined by both Shen [40] and Boyd [41]. In the following we compare our data with the
standard density matrix approach of calculating the second order susceptibility. Using the de�-
nition P(t) = e0å wi

c (2wi)E2(wi)e� i2wi t (negative frequencies allowed) the current at 2w can



be expressed as

J(t) = �P(t) = � we0F2
ac

h
Âf c (2)(2w)gsin(2wt)

� Áf c (2)(2w)gcos(2wt)
i

(4)

whereFac enters the classical driving �eld asE(� w) = Fac=2 and the susceptibilityc (2) is
calculated following Boyd [41] from

c (2)(2w) = �
e3

h̄2de0
å
mnv

(nm � nv) � zmnznvzvm

(wnm� 2w � ignm)(wvm� w � igvm)

�
(nv � nn) � zmnzvmznv

(wnm� 2w � ignm)(wnv � w � ignv)
(5)

where the populationsni are sheet densities andz are the dipole matrix elements. In order
to use this formula we use the electron densities and states of our simulations. Our system
Hamiltonian is rediagonalized using the information of the already converged self-energies.
This way the Wannier-Stark states are found, giving an adequate description of the energy
eigenstates at the given bias point. The values for the level differenceswi j , occupations, and
dipole matrix elements are then extracted from these eigenstates, whereas the broadeningsGi
are extracted from the self-energies. The values ofgi j in Eq. (5) are the widths of the transitions
and this is taken to begi j = ( Gi + Gj )=4 which is half of the mean. This is done in order to take
correlation effects [42] into account phenomenologically.

The result from this calculation is shown alongside the simulation results of the NEGF model
in Fig. 6. Results are shown for a large range of bias points, although experimental studies most
likely do not reach beyond biases of 215 mV per period as discussed above. The calculations
via Eq. (5) show the same magnitude and general trends as the full simulations, although the
behavior appears erratic and shows a lot of jitter. Moreover the simulations show a large dip
in conversion ef�ciency around the bias point ofFd = 230 mV, also visible in Fig. 5. In the
density matrix calculation this is heavily damped, which indicates that the full model, where
also higher than second order parts are included, shows additional features not pursueable with
ordinary population- and rate-based calculations. It is our belief that these effects are better
described in the full model as the nonlinear current response is directly extracted from the
off-diagonal density matrix elements, i.e. the coherences in the system.

6. Conclusion

We reported microscopic simulations within our NEGF model for the sample of [15]. Using
nominal sample parameters, our results for the threshold current and the lasing power agree
well with experimental data. Having a full description of the physical state under operation, our
model also provides higher harmonics in the output. The intensity obtained for second harmonic
generation is comparable with experimental data. As earlier calculations with simpli�ed models
were more of qualitative nature, this demonstrates the necessity of a more detailed model, such
as the one used here. The second harmonic generation is compared with a common expression
for the second-order susceptibility, which reproduces the full numerical results qualitatively,
but shows some deviations and jitter due to the neglect of coherences.



Appendix

In this section we discuss Eq. (3), used to compare the current response to the generated in-
tensity in the waveguide. Both phase matching and absorption in the waveguide is included in
the expression, yielding a simple though reasonable estimate of the intensity due to the current
response function.

Waveguide models

In the simulations a local �eldF(t) = Fdc + Faccos(wt) is assumed. If the electric �eld has a
phase shiftj , this corresponds to a local shift in time tot0= t � j =w and the current response
is

J(t) = J0 + Âf J1e� i(wt� j ) + J2e� i(2wt� 2j )g for F(t) = Fdc+ Faccos(wt � j ): (6)

In the waveguide a traveling wave has the form

F0cos(kwx� wt) (7)

wherekw = nww=c is approximately real, as absorption and gain compensate (this is not en-
tirely true, as the absorption contains waveguide losses). This wave has the intensity given by
the time-averaged Poynting vector

S= F2
0

nwce0

2
ex

which is then subject to re�ection and transmission when it reaches the facet at the end of the
waveguide.

Second harmonic generation neglecting re�ecting wave

Without the re�ecting wave, we have the local �eld (7) and we can apply Eq. (6) with the phase
shift j = kwx. Thus we can identify

F0 = Fac;0

whereFac;0 is the ac �eld strength of a traveling wave in balance with the gain medium. This
simple equality would not hold for a standing wave, as the back re�ected wave would increase
the gain saturation.

Assuming a second order current distribution

Jsh(x;t) = Â f J̃sh(x)e� 2iwtgez

within the one-dimensional waveguide betweenx = 0, andx = L, where the complex current
J̃sh(x) = J2ei2kwx can be found from inspection of Eq. (6). Next we evaluate the electromagnetic
�eld radiated from this current distribution. We consider the Helmholtz equation for thez-
component of the vector potentialAz at a frequency 2w

¶2

¶x2 Az(x;2w)+ k2
2wAz(x;2w) = � m0J̃sh(x)

wherek2w is the complex wavevector at frequency 2w in the waveguide. With the outgoing
Green's function ieik2w jx� x0j=(2k2w) the solution for the Helmholtz equation reads forx � L

Az(x;2w) =
Z L

0
dx0m0J̃sh(x

0)
i

2k2w
eik2w (x� x0) : (8)



For a given vector potentialÂ
n

ezA0ei(k2w (x� L)� 2wt)
o

we obtain the time-averaged Poynting
vectorP within a standard calculation as

P = jA0j2
wÂf k2wg

m0
e� 2k00

2w (x� L)ex (9)

wherek00
2w = Áf k2wg is the waveguide attenuation at the second harmonic. InsertingA0 from

Eq. (8) will yield Eq. (3) withx = L and assuming thatÂ f k2wg >> Áf k2wg holds.
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