Gonadal Function and Bone Mineral Density in Young Male Cancer Survivors

Isaksson, Sigrid

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Gonadal Function and Bone Mineral Density in Young Male Cancer Survivors

Sigrid Isaksson

DOCTORAL DISSERTATION
which, by due permission of the Faculty of Medicine, Lund University, Sweden, will be defended in Patologens aula, Jan Waldenströms gata 59, Skåne University Hospital, Malmö,
on
Friday 27th April 2018 at 9.00.

Faculty opponent
Professor Johan Svartberg
Department of Clinical Medicine, University of Tromsö, Norway
The prognoses for testicular cancer and childhood cancer have improved significantly during recent decades, with survival rates now exceeding 95% for testicular cancer and 80% for childhood cancers. However, testicular cancer survivors (TCS) and childhood cancer survivors (CCS) have increased long-term morbidity and mortality. Among potential long-term side-effects of cancer treatment are azoospermia (the absence of spermatozoa in the ejaculate) and hypogonadism. Testosterone deficiency has previously been identified as a marker of reduced life expectancy. It has been suggested that TCS and CCS have reduced bone mineral density (BMD), but it is unclear whether this is due to hypogonadism or the effect of cancer treatment.

The first study was designed to investigate the frequency, and possible predictive factors, of azoospermia following treatment for testicular cancer. The second study was carried out to assess the frequency and possible risk factors of biochemical hypogonadism (S-testosterone <10 nmol/L and/or S-LH >10 IU/L, or ongoing testosterone replacement therapy) in TCS and CCS. Studies were then performed to investigate whether TCS or CCS had decreased BMD compared to controls, and to explore whether BMD or risk of low BMD (Z-score ≤-1) was related to hypogonadism and/or the cancer treatment received.

Possible predictive factors for azoospermia were explored in 117 TCS with confirmed sperm production after unilateral orchidectomy, but before further cancer treatment. Fasting morning blood samples were collected for the analysis of hypogonadism, and BMD was determined, in 92 TCS, 125 CCS and a corresponding number of age-matched controls from the general population. The mean follow-up time was 9 years for TCS and 24 years for CCS.

All TCS with confirmed sperm production after unilateral orchidectomy but before further cancer treatment and inhibin B levels >56 ng/L 12 months after cancer treatment had sperm production 3 years post-treatment. This finding may be important in counselling young cancer survivors regarding future fertility potential, if the findings are confirmed in future studies.

Hypogonadism was found in 26% of CCS and 36% of TCS, the risk being doubled compared to controls. Testosterone levels in cancer survivors with untreated hypogonadism were only moderately decreased; median value 9.3 nmol/L for TCS and 9.0 nmol/L for CCS. Testicular cancer survivors and CCS with untreated hypogonadism had lower hip and lumbar spine BMD than eugonadal TCS and CCS. Testicular cancer survivors with untreated hypogonadism also had increased risk of low BMD in the lumbar spine compared to eugonadal TCS. Childhood cancer survivors treated with cranial irradiation had lower hip and lumbar spine BMD than controls, but no increased risk of low BMD in the hip or lumbar spine. These findings highlight the necessity for long-term follow-up of young male cancer survivors regarding hypogonadism and BMD. The assessment of BMD in hypogonadal male cancer survivors should be considered already at moderately lowered testosterone levels, and prevention of osteoporosis should be considered an important part in future follow-up of these men.

In conclusion, two serum markers for the risk of complications resulting from cancer treatment in young male cancer survivors have been identified. Inhibin B level was found to be a good predictor of the risk of azoospermia in TCS, and low testosterone levels were found to be associated with an increased risk of low BMD in both TCS and CCS. The findings presented in this thesis can be used to improve the follow-up of young male cancer survivors.

Key words: azoospermia, testicular cancer, childhood cancer, inhibin B, hypogonadism, bone mineral density, cancer treatment

Supplementary bibliographical information

<table>
<thead>
<tr>
<th>Language: English</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBN 978-91-7619-612-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of pages 133</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Security classification</th>
</tr>
</thead>
</table>

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature ___________________________ Date ___________________
Gonadal Function and Bone Mineral Density in Young Male Cancer Survivors

Sigrid Isaksson

Department of Translational Medicine
Molecular Reproductive Medicine
Lund University
2018
To my family
Contents

Contents .. 7
List of Papers .. 11
Abbreviations .. 13
Populärvetenskaplig sammanfattning (summary in Swedish) ... 15
Background ... 17
 Childhood cancer, background and epidemiology ... 17
 Testicular cancer, background and epidemiology .. 18
 Cancer treatment in childhood cancer and testicular cancer ... 20
 Childhood cancer treatment ... 20
 Testicular cancer treatment .. 21
 Long-term side-effects of cancer treatment .. 22
 Childhood cancer ... 22
 Testicular cancer .. 23
 The male reproductive system ... 24
 Testicular function .. 24
 The hypothalamic-pituitary-gonadal axis .. 25
 Androgen action and metabolism ... 27
Hypogonadism .. 28
 Definition ... 28
 Symptoms ... 29
 Diagnosis .. 29
 Testosterone replacement therapy .. 30
Bone mineral density ... 31
 Skeletal growth and peak bone mass .. 31
 Androgen impact on the adult male skeleton .. 32
 Testosterone replacement therapy and bone mineral density 33
Cancer treatment and gonadal dysfunction ... 33
 Surgery ... 34
 Radiotherapy .. 34
 Chemotherapy .. 36
 Azoospermia in testicular cancer survivors ... 40
CONTENTS

Hypogonadism in cancer survivors and controls.................................79
Bone mineral density in cancer survivors and controls85

Discussion..103

Azoospermia in testicular cancer survivors......................................103
Treatment modality and risk of azoospermia103
Inhibin B as predictor of azoospermia..103
Cryptorchidism as predictor of azoospermia....................................104
Relevance of 36 months after therapy as the endpoint for azoospermia ...104
Strengths and weaknesses of the study..105

Hypogonadism and bone mineral density in young male cancer survivors..105

Hypogonadism in young male cancer survivors..............................105
Bone mineral density in young male cancer survivors....................106
Representativeness of the study participants.................................108
Strengths and weaknesses of the studies109

Summary and Conclusions ..111

Future Perspectives...113

Acknowledgements ...115

References ...117

Original publications ...135
List of Papers

This thesis is based on the following original publications, which will be referred to in the text by their Roman numerals.

The papers are reprinted with the permission of the publishers.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>adjuvant chemotherapy</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropin hormone</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>acute myeloid leukaemia</td>
</tr>
<tr>
<td>BEP</td>
<td>bleomycin, etoposide, cisplatin</td>
</tr>
<tr>
<td>BMD</td>
<td>bone mineral density</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMT</td>
<td>bone marrow transplantation</td>
</tr>
<tr>
<td>CBC</td>
<td>cisplatin-based chemotherapy</td>
</tr>
<tr>
<td>CCS</td>
<td>childhood cancer survivors</td>
</tr>
<tr>
<td>CCSS</td>
<td>Childhood Cancer Survivor Study</td>
</tr>
<tr>
<td>CED</td>
<td>cyclophosphamide equivalent dose</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DHT</td>
<td>dihydrotestosterone</td>
</tr>
<tr>
<td>DXA</td>
<td>dual X-ray absorptiometry</td>
</tr>
<tr>
<td>EP</td>
<td>etoposide, cisplatin</td>
</tr>
<tr>
<td>ETC</td>
<td>extensive treatment with chemotherapy</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>GCNIS</td>
<td>germ cell neoplasia \textit{in situ}</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GHD</td>
<td>growth hormone deficiency</td>
</tr>
<tr>
<td>GHRT</td>
<td>growth hormone replacement therapy</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotropin-releasing hormone</td>
</tr>
<tr>
<td>HSCT</td>
<td>haematological stem cell transplantation</td>
</tr>
<tr>
<td>LBD</td>
<td>low bone mineral density</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>NPV</td>
<td>negative predictive value</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PC-RPLND</td>
<td>post-chemotherapy retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>PPV</td>
<td>positive predictive value</td>
</tr>
<tr>
<td>PVB</td>
<td>cisplatin, vinblastine, bleomycin</td>
</tr>
<tr>
<td>RPLND</td>
<td>retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>SCT</td>
<td>standard chemotherapy</td>
</tr>
<tr>
<td>S-FSH</td>
<td>serum-FSH</td>
</tr>
<tr>
<td>SHBG</td>
<td>sex hormone-binding globulin</td>
</tr>
<tr>
<td>S-LH</td>
<td>serum LH</td>
</tr>
<tr>
<td>SO</td>
<td>surveillance only</td>
</tr>
<tr>
<td>S-testosterone</td>
<td>serum testosterone</td>
</tr>
<tr>
<td>SWENOTECA</td>
<td>Swedish and Norwegian Testicular Cancer Group</td>
</tr>
<tr>
<td>TBI</td>
<td>total body irradiation</td>
</tr>
<tr>
<td>TCS</td>
<td>testicular cancer survivors</td>
</tr>
<tr>
<td>TCS-A</td>
<td>testicular cancer survivors, cohort A</td>
</tr>
<tr>
<td>TCS-B</td>
<td>testicular cancer survivors, cohort B</td>
</tr>
<tr>
<td>TRT</td>
<td>testosterone replacement therapy</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid-stimulating hormone</td>
</tr>
</tbody>
</table>

Man har länge vetat att strålbehandling och cytostatikabehandling, som båda används vid behandling av testikelcancer, kan försämra fruktsamheten. En del män blir sterila under de första månaderna efter behandling för testikelcancer, men återfår sedan förmågan attilda spermier. Andra förblir sterila under många år, kanske livet ut. Om en grupp män får exakt samma cancerbehandling blir en del steril och andra inte, och man har hittills inte kunnat säga något till en enskild man om just hans risk att bli steril.

Män som behandlats för cancer tros också ha ökad risk för testosteronbrist. Testosteronbrist kan ge trötthet, minskad muskelmassa, försämrad potens och
Populärvetenskaplig sammanfattning (Summary in Swedish)

En del studier har visat att unga män som behandlats för cancer har ökad risk för nedsatt bentäthet, medan andra studier inte har visat någon ökad risk. Det har också varit oklart om bentätheten i så fall har påverkats av cancerbehandling, eller om den har påverkats av testosteronbrist. Eftersom både testosteronbrist och nedsatt bentäthet kan behandlas, är det viktigt att ta reda på om cancerbehandlande män har ökad risk att drabbas, och hos vilka canceröverlevare risken i så fall är störst.

För att undersöka risken för testosteronbrist och risken för nedsatt bentäthet hos manliga canceröverlevare har 92 män som behandlats för testikelcancer, 125 män som behandlats för barncancer och motsvarande antal män från den allmänna befolkningen deltagit i en studie. De har fått lämna blodprover för bestämning av bl.a. testosteron, och genomgått en röntgenundersökning för bestämning av bentätheten. Resultaten visade att risken för testosteronbrist var ungefär fördubblad hos de cancerbehandlade männen. För de som behandlats för barncancer var risken störst efter strålbehandling mot hjärnan och/eller testiklarna, eller efter strålbehandling mot andra delar av kroppen kombinerat med cytostatikabehandling. För de som behandlats för testikelcancer var risken störst efter fler än 4 omgångar cytostatikabehandling, med eller utan strålbehandling mot andra delar av kroppen än testiklarna. Det visade sig också att lätt nedsatt testosteronvärde gav ökad risk för nedsatt bentäthet, medan cancerbehandlingen inte påverkade bentätheten i någon större utsträckning.

Background

It is currently estimated that almost one in three people in Sweden will develop cancer before the age of 75\(^1\). For every person that is diagnosed with cancer, many more lives are affected - those of parents, children, spouses, friends and colleagues. Fortunately, the prognoses for many cancers have improved during recent decades, with increasing chances of survival.

It is important that life after cancer has as high a quality as possible, and that the long-term side-effects of cancer and its treatment are either prevented, or treated if they do occur. The aim of the work presented in this thesis was to improve our ability to predict some of the possible side-effects of cancer treatment affecting gonadal function and bone mineral density (BMD) in young male cancer survivors.

Childhood cancer, background and epidemiology

Before the 1950s, the probability of surviving childhood cancer was small; cure rates in the United States being less than 10\%\(^2\). However, survival rates following childhood cancer improved dramatically during the second half of the 20\(^{th}\) century (Figure 1). This was mainly due to the introduction of chemotherapy to treat childhood cancers such as leukaemia during the 1950s and 1960s, and the use of combinations of several chemotherapy drugs in the 1970s\(^3\). In the 1970s and 1980s, treatment for childhood cancer was intensified, with the introduction of combinations of chemotherapy, irradiation and surgery. Since 2000, the overall rate of survival following childhood cancer seems to have stabilized, although the 5-year survival following neuroblastoma and tumours of the central nervous system (CNS) have continued to improve. The 5-year survival following childhood cancer in Sweden now exceeds 80\%\(^4\). About 350 children and adolescents below the age of 18 are diagnosed with cancer in Sweden each year\(^5\). Leukaemias constitutes 30\% of cases, CNS tumours 28\% and solid tumours 42\%\(^4\).
Testicular cancer, background and epidemiology

The prognosis for testicular cancer has improved considerably since the 1960s, as can be seen in Figure 2. Up until the 1960s, the only forms of treatment for testicular cancer were surgery and radiation. Although patients with early stage disease could be cured, metastatic testicular cancer had a very poor prognosis, and mortality within 1 year was 90%. In the 1960s, advanced testicular cancer was treated with actinomycin-D-based chemotherapy. The combination of vinblastine and bleomycin was also introduced in the 1970s. Cisplatin was discovered in 1965, and revolutionized the treatment of testicular cancer. When tested in a phase 1 trial in the early 1970s, response, including several complete responses, was reported in 9 of 11 patients with refractory testicular cancer. The addition of cisplatin to vinblastine plus bleomycin (PVB) was first tested in 1974, and resulted in a 5-year survival rate of 64%. In the early 1980s, the combination of bleomycin, etoposide
and cisplatin (BEP) was shown to be superior to PVB, and BEP replaced PVB as the standard form of chemotherapy in 1987. Today, the prognosis for patients with testicular cancer is excellent, with mean 5-year survival of 97% in Europe.

Testicular cancer is a relatively rare cancer, accounting for approximately 0.7% of all male cancers globally. For reasons as yet unknown, there is a considerable geographical variation in incidence, the highest incidences being found in Northern and Western Europe, and the lowest in Asia and Africa. In Sweden, testicular cancer is the most common cancer in males aged 15-44 years, with an age-adjusted incidence of approximately 8/100,000 men in 2015.

Figure 2. Five-year survival over time for patients with testicular cancer in Sweden. (Data from NORDCAN.)
Cancer treatment in childhood cancer and testicular cancer.

Childhood cancer treatment

Childhood cancer treatment depends on diagnosis, the stage of the disease and the child’s age at diagnosis. The treatment consists mainly of chemotherapy, radiotherapy and surgery, alone or in combination.

The most common type of childhood leukaemia is acute lymphoblastic leukaemia (ALL, 80%) followed by acute myeloid leukaemia (AML). Patients with ALL are treated with intravenous, intrathecal and oral chemotherapy in addition to corticosteroids. One backbone of the treatment is high dose methotrexate, and the duration of treatment is 2.5 years. Acute myeloid leukaemia is treated with considerably more intense chemotherapy regimens for about 1 year, and some patients require high dose chemotherapy with allogeneic stem cell transplantation as primary treatment. Alkylating agents are used in cases of intermediate and high risk ALL.

Patients with Hodgkin’s lymphoma require chemotherapy including alkylating agents, with or without radiotherapy. Non-Hodgkin’s lymphomas are treated with intense chemotherapy including alkylating agents.

Brain tumours require neurosurgery with or without radiotherapy and/or chemotherapy, depending on the pathological diagnosis and the age of the child. In children younger than three years, radiotherapy should be avoided due to the high risk of neurological sequelae.

Rhabdomyosarcoma, Ewing’s sarcoma and osteosarcoma are the most common sarcomas in children and adolescents. Patients with Ewing’s sarcoma and osteosarcoma are treated with intense chemotherapy and surgery, with or without radiotherapy. Patients with rhabdomyosarcoma are treated with chemotherapy with or without surgery, and radiotherapy, depending on stage and response to chemotherapy.

Neuroblastoma (tumours originating from the sympathetic nervous system) and Wilms’ tumour (kidney nephroblastoma) mostly affect younger children. The majority of low and intermediate risk patients with these diagnoses are treated with low dose chemotherapy and surgery. In contrast, patients with high risk pathology or high stage of disease require intense chemotherapy, including high dose chemotherapy followed by autologous stem cell transplantation for neuroblastoma. Postoperative abdominal and/or pulmonary radiotherapy is administered to high risk patients and those with metastatic disease.
Children and adolescents experiencing relapse of any kind of paediatric cancer often require toxic treatment including alkylating agents and radiotherapy. Patients with relapsed leukaemia or lymphoma, as well as specific solid tumours or brain tumours, might undergo haematological stem cell transplantation (HSCT) after conditioning regimes with high dose chemotherapy, with or without or total body irradiation (TBI). (I. Øra, personal communication, March 2018.)

Testicular cancer treatment

In Sweden and Norway, testicular cancer is treated according to the SWENOTECA (Swedish and Norwegian Testicular Cancer Group) management protocols, currently SWENOTECA VIII for non-seminomas and SWENOTECA IX for seminomas. All testicular cancer patients undergo unilateral orchidectomy of the affected testicle.

In clinical stage I disease, a risk-adapted strategy is used. One cycle of adjuvant BEP is recommended for non-seminomas with a high risk of recurrence (i.e. vascular invasion of tumour cells), whereas surveillance or one cycle of adjuvant BEP are options for non-seminomas with a low risk of recurrence (i.e. no vascular invasion of tumour cells). For the treatment of clinical stage 1 seminomas with one or two risk factors (i.e. tumour >4 cm or tumour growth in the rete testis), one cycle of adjuvant carboplatin is recommended, whereas clinical stage 1 seminomas without risk factors can be managed by surveillance after orchidectomy.

Standard treatment for disseminated disease is chemotherapy, BEP, and treatment is guided by a prognostic index. One cycle of standard BEP or EP (etoposide, cisplatin) includes a cisplatin dose of 100 mg/m². For good prognosis disease (75 % of those with non-seminomas, >90 % of those with seminomas), the treatment is typically three cycles of BEP, whereas more advanced disease is treated with a minimum of four cycles of BEP. The treatment strategy for disseminated disease also entails an intensified multi-step treatment scheme in the case of poor treatment response, in all prognostic groups, and includes the addition of more intense chemotherapy, the most intense being tandem high dose chemotherapy with autologous stem cell support.

Radiotherapy to the para-aortic and ipsilateral iliac lymph nodes is an option for patients with seminomas with limited retroperitoneal lymph node involvement only (clinical stage IIA-IIB). Surgery is indicated for non-seminoma patients with residual disease post-chemotherapy, typically retroperitoneal lymph node dissection (RPLND).
Long-term side-effects of cancer treatment

Childhood cancer

Childhood cancer survivors (CCS) suffer from increased long-term morbidity and mortality, which increase many years after the completion of cancer treatment. In the large Childhood Cancer Survivor Study (CCSS) carried out in the United States, 18% of 5-year survivors of childhood cancer diagnosed between 1970 and 1986 had died 30 years after diagnosis. As time after diagnosis increased, death due to the recurrence or progression of the primary disease decreased, while treatment-related deaths due to secondary cancers, cardiac-related events or pulmonary events, increased. When this cohort was expanded to include 5-year survivors of childhood cancer diagnosed between 1970 and 1999, a recent analysis showed a gratifying reduction in all-cause and health-related mortality 15 years after diagnosis, compared to the previous study. The reduction in health-related mortality was attributed to reductions in secondary cancers and death from cardiac- or pulmonary-related events. Reduced late mortality was associated with reduced treatment exposure for survivors of ALL and Wilms’ tumour.

Childhood cancer survivors can be affected by a large variety of treatment-related long-term side-effects. In a publication from the CCSS, 62% of CCS had at least one chronic health condition, 28% of which had a severe or life-threatening condition, at a mean time of 17.5 years after cancer diagnosis. The adjusted relative risks compared to siblings were 3.3 for a chronic health condition and 8.2 for a severe or life-threatening condition. Thirty years after diagnosis, the cumulative incidence of chronic health conditions had increased to 73%, and to 42% for severe, disabling or life-threatening conditions. A high prevalence of adverse health outcomes was also found in a study on 1713 CCS included in the St Jude Lifetime Cohort Study, after a median follow-up of 32 years. Among CCS treated with radiotherapy to the lungs, busulfan, bleomycin, carbamustine/lomustine or thoracotomy, 65% had abnormal lung function. Fifty-six percent of CCS treated with anthracyclines or radiotherapy to the heart had cardiac abnormalities. Endocrine disorders were found in 62% of CCS treated with radiation of the hypothalamic-pituitary area, neck or reproductive system, or alkylating agents, while neurocognitive impairment was detected in 48% of CCS treated with cranial irradiation, neurosurgery or antimetabolite therapy.
Testicular cancer

Long-term toxicity after testicular cancer treatment includes both life-threatening toxicity (secondary malignancies and cardiovascular disorders) and non-life-threatening toxicity (e.g. neurotoxicity, ototoxicity, reduced fertility, hypogonadism, metabolic syndrome, pulmonary toxicity and renal toxicity)\(^\text{18,19}\). Testicular cancer survivors (TCS) have increased morbidity, even after more than 30 years of follow-up\(^\text{20}\).

In studies on TCS using data from population-based cancer registries, the ratio of the number of observed to the number of expected, solid second tumours was 1.55 for 10-year survivors\(^\text{21}\), and 1.65 for developing a secondary malignancy (including haematological malignancies) after a median follow-up of 8 years\(^\text{22}\). A significantly increased risk of secondary malignancies has been reported for TCS with post-orchidectomy treatment with cisplatin-based chemotherapy (CBC) only\(^\text{21,23,24}\), infradiaphragmatic radiotherapy only\(^\text{21,24,25}\), and combinations of chemotherapy and radiotherapy\(^\text{21,24}\), but not for TCS treated with orchidectomy alone\(^\text{23,24}\).

Cardiovascular disease (CVD) is a potential long-term risk in TCS. One study on 62 TCS treated with CBC reported a 7-fold increase in the risk of angina with proven myocardial ischaemia or myocardial infarction, compared to the general population\(^\text{26}\). Larger studies have also reported an increased risk of CVD in patients treated with CBC. In a study by van den Belt-Dusebout et al., PVB resulted in a 1.9-fold increase in the risk of myocardial infarction, and BEP in a 1.5-fold increase in the risk of CVD (95% confidence interval (CI) 1.0-2.2) a median of 18 years after treatment, compared to TCS treated with orchidectomy alone\(^\text{27}\). Haugnes et al. found a 5.7-fold increase in the risk of coronary artery disease compared to TCS treated with orchidectomy only, and a 3.1-fold higher risk of myocardial infarction in TCS treated with BEP at a median follow-up of 19 years compared with age-matched controls\(^\text{28}\). Testicular cancer survivors treated with mediastinal radiotherapy were also found to have a 3.7-fold increased risk of myocardial infarction compared to those treated with orchidectomy alone\(^\text{27}\).

The mechanisms of cardiovascular damage in TCS are unclear, but direct vascular injury arising from chemotherapy or radiotherapy has been suggested. Raynaud’s phenomenon has been detected in 37% of TCS treated with vinblastine and bleomycin ± cisplatin\(^\text{29}\). Increased prevalence of the metabolic syndrome has been seen in TCS treated with chemotherapy compared to the general population\(^\text{30}\). Recently, hypogonadal TCS have been found to have an increased odds ratio (OR) of developing metabolic syndrome, with an OR of 4.4 compared to age-matched controls, and an OR of 15 compared to eugonadal TCS, suggesting that hypogonadism may be a pathogenic link between testicular cancer, cancer therapy and the risk of CVD\(^\text{31}\).
The male reproductive system

Testicular function

The human testicles are responsible for spermatogenesis and most androgen production. Spermatogenesis, i.e. the production of gametes, takes place within the seminiferous tubules (Figure 3a), while androgen production takes place in the Leydig cells, located in the interstitial compartments between the seminiferous tubules (Figure 3b). (For details, see the sections “Spermatogenesis” and “Steroidogenesis” below.)
The hypothalamic-pituitary-gonadal axis

Spermatogenesis and androgen production are regulated by the gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which are secreted from the anterior pituitary gland (Figure 4). The biosynthesis and secretion of gonadotropins are stimulated by the pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, whereas continuous GnRH release (as in pharmacologically induced castration of prostate cancer patients) inhibits gonadotropin secretion. GnRH-secretion is regulated by kisspeptin. Kisspeptin also controls the onset of puberty, and participates in sex-steroid-mediated feedback in adults.

Figure 4. The regulatory pathways of the hypothalamic-pituitary-gonadal axis. Red dotted lines indicate negative feedback. GnRH = gonadotropin-releasing hormone; LH = luteinizing hormone; FSH = follicle-stimulating hormone; E2 = oestradiol.

Illustration of the brain on the left by Henry Gray (1918), Wikimedia commons. Illustration by Magdalena Bentmar-Holgersson.

LH acts through binding to the LH receptors on the Leydig cells, stimulating steroidogenesis. Testosterone and oestradiol, a metabolite of testosterone, exert a negative feedback on both the hypothalamic and pituitary level, reducing testosterone levels. FSH binds to the FSH receptors on the Sertoli cells, stimulating spermatogenesis. FSH secretion is controlled in a negative feedback loop by inhibin B secreted from the Sertoli cells following stimulation by FSH. In the adult male, inhibin B production depends on both FSH stimulation and
spermatogenetic status, and inhibin B levels show a strong positive correlation with testicular volume and sperm count 39.

Spermatogenesis

Spermatogenesis starts in the testes at puberty. It is a complex process in which one diploid stem cell (spermatogonium) gives rise to four haploid cells, through one cycle of mitosis and two cycles of meiosis (Figure 3a) 32. The Sertoli cells and the spermatogonia are found on the basement membrane of the seminiferous tubules. Sertoli cells are interconnected by tight junctions, forming the blood-testis barrier. The blood-testis barrier divides the seminiferous epithelium into 2 regions, with immature germ cells including the germ line stem cells in the basal region, and germ cells undergoing meiosis in the adluminal region. As the blood-testis barrier prevents substances in the circulation from reaching the adluminal region of the seminiferous tubules, spermatogenesis “above” the blood-testis barrier is dependent on the Sertoli cells for nutrition 40,41.

The Sertoli cells stop dividing at puberty 41,42. Spermatogenesis is regulated by testosterone and FSH. As germ cells lack receptors for FSH and testosterone, these hormones exert their effect by binding to receptors on the Sertoli cells 40,43. Testosterone is essential for spermatogenesis 44. The Sertoli cells secrete androgen-binding protein 42, with similar steroid-binding capacities to sex hormone-binding globulin (SHBG). Androgen-binding protein binds testosterone and maintains a high testosterone concentration in the seminiferous tubules and epididymis 45. Testicular testosterone concentrations are >80 times higher than the concentration in serum 46.

The synthesis of inhibin B depends on the interaction between the Sertoli cells and germ cells 47. Inhibin B is a marker of spermatogenesis, and its level is related to sperm count 39,48-52, whereas levels of inhibin B below the level of detection are associated with the absence or arrest of spermatogenesis 53. FSH is more often used than inhibin B in the assessment of males in infertile couples. FSH, but not inhibin B, is assessed in standard follow-up of testicular cancer survivors.

Azoospermia

Azoospermia is defined as the absence of spermatozoa in the ejaculate, after analysis of a centrifuged semen sample on 2 occasions 54. Azoospermia can be caused by the failure of spermatogenesis or obstruction of the excurrent ducts of the testes. Failure of spermatogenesis can result from cryptorchidism, endocrine disorders such as hypopituitarism or hyperprolactinaemia, varicocele, or acquired causes such as chemotherapy, testicular irradiation or orchitis. Failure of spermatogenesis can also be caused by genetic abnormalities, of which Klinefelter syndrome is the most common 55. Genetic abnormalities are found in 10-15% of azoospermic men 54.
Studies on the prevalence of azoospermia in the general population are sparse. Azoospermia has been reported in single semen samples in 1.6-2.5% of Danish men aged 20-35 years, living with a female partner who had no previous pregnancies, and neither partner had previous knowledge of fertility 48, and in 1.9% of seminal stains examined in sexual assault cases 56.

Steroidogenesis

Testosterone synthesis is initiated by the binding of LH to the LH receptors of the Leydig cells. Testosterone is synthesized from the substrate cholesterol. The testes produce more than 95% of all the circulating testosterone in the pubertal man, the remainder being produced mainly by the adrenal glands 40.

Androgen action and metabolism

The effects of testosterone are due to testosterone itself, and its metabolites, dihydrotestosterone (DHT) and oestradiol. Following synthesis, testosterone diffuses out of the Leydig cells and into the circulation. In the bloodstream, testosterone equilibrates between free and protein-bound hormone. Only 2% of testosterone is unbound, while 44% is bound to SHBG and 54% to albumin 45. The binding affinity of albumin is about 100 times lower than that of SHBG 45. Since albumen binding is weak, albumin-bound testosterone, like free testosterone, is available to the tissues 57.

Testosterone is the main male sex steroid, and testosterone receptors can be found in almost every tissue. Testosterone determines the differentiation of the sexual organs in the foetus, and the development towards male phenotype during puberty. In the adult male, testosterone has a variety of functions. It is required for spermatogenesis and sexual function (e.g. libido, potency), it increases BMD and muscle mass, stimulates erythropoiesis and affects the cognitive function 58.

Approximately 5% of the circulating testosterone undergoes reduction to DHT by the enzyme 5α-reductase 59. Testosterone and DHT both bind to the androgen receptor, but DHT binds with greater receptor affinity and also has a slower dissociation rate than testosterone 60, inducing a greater response in the target cell. 5α-reductase is found in the prostate, skin and hair follicles. DHT plays an essential role in the formation of the external genitalia during foetal development, and is the primary androgen in the prostate and hair follicles in the adult man 61.

Testosterone can also be converted to oestradiol in peripheral tissues, through a process called aromatization. Adipose tissue is one of the sites of aromatization, and obese men have increased serum oestradiol concentrations and low testosterone concentrations; these hormonal deviations being reversible with weight loss 62.
Oestradiol has several important functions in adult males, including closing the epiphyses at puberty, preserving bone mass, and contributing to normal libido and erectile function.

The testes also produce other androgens, including androstenedione, an important precursor in the production of extra-testicular oestrogens. Androstenedione can also result from the peripheral conversion of testosterone, or be produced by the adrenal glands. Androstenedione can be aromatized to oestrone in peripheral tissues, and oestrone can subsequently be reduced to oestradiol.

In males, approximately 20% of oestradiol is produced directly by the testes, 60% is derived from peripheral aromatization of circulating testosterone and the remainder is produced by peripheral conversion of oestrone. Hence, low serum levels of testosterone lead to low serum levels of oestradiol.

Hypogonadism

Definition

The Endocrine Society defines male hypogonadism as “…a clinical syndrome that results from failure of the testis to produce physiological levels of testosterone (androgen deficiency) and a normal number of spermatozoa due to disruption of one or more levels of the hypothalamic-pituitary-testicular axis” 67. In the definition given by the European Association of Urology, decreased sperm production is not mandatory, and male hypogonadism is defined as “…a clinical syndrome caused by androgen deficiency which may adversely affect multiple organ functions and quality of life” 68.

Hypogonadism can be further classified according to the level of hormonal disruption(s). Disturbances at the testicular level (primary hypogonadism) result in low testosterone levels, impaired spermatogenesis and elevated gonadotropin levels. Disturbances at the hypothalamic and/or pituitary level (secondary hypogonadism) result in low testosterone levels, impairment of spermatogenesis and low or inappropriately normal gonadotropin levels. Combined primary and secondary hypogonadism results in low testosterone levels, impaired spermatogenesis and normal or low gonadotropin levels, depending on whether primary or secondary hypogonadism predominates 67,68.

In recent years, an additional form of hypogonadism has been suggested. In the European Male Aging Study, 9.5% of the study subjects had elevated S-LH and normal S-testosterone levels, which led to the suggestion of compensated, or
subclinical, hypogonadism. This condition is thought to be analogous to subclinical hypothyroidism, where high thyroid-stimulating hormone (TSH) levels are seen together with normal thyroid hormone levels. 69

Symptoms

The symptoms of hypogonadism depend on the patient’s age when the condition develops. If hypogonadism develops before puberty, the symptoms are those of impaired puberty with small penis, testes and prostate, scant axillary and pubic hair, disproportionately long arms and legs (due to delayed epiphyseal closure), underdeveloped muscles, gynaecomastia and lack of voice maturation. 70,71 In postpubertal males, symptoms include progressive loss of muscle mass, reduced BMD, loss of libido, erectile dysfunction, oligospermia or azoospermia, poor ability to concentrate, decreased vitality and depressed mood. Occasionally, menopause-like hot flushes can occur with acute onset of hypogonadism. 70,72 As many of these symptoms are rather unspecific, they can be misinterpreted as “normal aging”, especially in elderly men. Low sexual desire is considered the symptom most commonly associated with male hypogonadism, while impotence has been considered the most common symptom causing the patient to seek medical advice. 73

Low levels of testosterone have been associated with CVD, 74 the metabolic syndrome 73 and diabetes mellitus type 2, 75 while testosterone deficiency has been associated with an increased risk of all-cause mortality, both in young and elderly men. 77 S-LH levels have also been found to be positively associated with all-cause mortality. 78 Whether there is a cause-effect relationship between hypogonadism and mortality, or whether a low testosterone level is an unspecific marker of poor health, remains to be elucidated.

Diagnosis

The European Association of Urology recommends that “Hypogonadism is diagnosed on the basis of persistent signs and symptoms related to androgen deficiency and assessment of consistently low testosterone levels (on at least two occasions) with a reliable method.” 68

Testosterone concentration follows a circadian rhythm, the highest levels being found in the morning, and an almost 50% lower concentration in the evening in younger men. 79-81 Serum testosterone also decreases rapidly after glucose intake. 82 Blood samples for the evaluation of testosterone levels should therefore be collected as fasting morning blood samples. Other factors affecting
testosterone levels include smoking; higher testosterone levels being found in smokers than in non-smokers, and stress; lower testosterone levels being found after severe somatic and/or psychological stress.

Testosterone replacement therapy

Testosterone replacement therapy (TRT) can be started in men with symptomatic androgen deficiency, the aim being to restore testosterone levels to the normal range, restore physiological androgen-dependent functions and improve quality of life (e.g. the sense of well-being, sexual function, muscle strength and BMD). Testosterone replacement therapy is contraindicated in patients with prostate cancer, male breast cancer, active desire of fertility, haematocrit >0.54 or severe chronic cardiac failure.

Cardiovascular disease is not currently considered an absolute contraindication for TRT, but there is concern that TRT might have adverse cardiovascular outcomes. One randomized controlled study on TRT in hypogonadal elderly frail men was discontinued due to an excess of cardiovascular events in the treatment arm. Two large observational studies have reported an increased risk of cardiovascular events with testosterone use. In an American study on male hypogonadal veterans who underwent coronary angiography, testosterone replacement therapy was found to be associated with increased risk of mortality, myocardial infarction or ischaemic stroke. Another study reported an increased risk of acute non-fatal myocardial infarction after the initiation of TRT in men aged 65 years or older, as well as in younger men with pre-existing heart disease. Testosterone levels before the start of treatment or indication for TRT were not known. Finally, in a meta-analysis of placebo-controlled randomized studies published in 2013, TRT was found to increase the risk of cardiovascular-related events (including a wide range of disorders).

In contrast, three meta-analyses published before 2013 revealed no increased risk of cardiovascular events, no increased risk of cardiovascular events or death and no significant difference in the rates of death, myocardial infarction, revascularization procedures or cardiac arrhythmias in subjects on TRT compared to subjects given a placebo or no TRT. One meta-analysis published in 2017 found that TRT improved quality of life, libido, depression and erectile function compared to placebo, and no significantly increased risk of cardiovascular mortality, myocardial infarction, stroke, prostate cancer or heart disease was seen compared to placebo. Also, two large observational studies reported a lower risk of cardiovascular death, and stroke and myocardial infarction, among hypogonadal men treated with TRT compared to untreated hypogonadal men.
In conclusion, the findings regarding TRT and CVD are conflicting. Testosterone replacement therapy should therefore be used with caution in patients with CVD, and after discussing the potential risks with the patient.

Bone mineral density

The World Health Organization (WHO) defines osteoporosis as “a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk” 96. There is no method of measuring overall bone strength, but BMD is often used as a proxy, as it accounts for approximately 70-80% of bone strength 97,98. Decreased BMD in adults is correlated to an increased risk of fracture 99. Osteoporotic fractures are associated with significant morbidity and mortality. In a Swedish study, over 1.5% of all deaths after the age of 50 years were causally related to a hip fracture 100.

Bone mineral density is commonly reported as areal density in g/cm². To provide relative measures, T-score or Z-score are used, with T-score being used to diagnose osteoporosis. The T-score is the number of standard deviations above or below the mean value for a young healthy adult of the same sex and ethnicity as the patient, and the Z-score is the number of standard deviations above or below the mean for the patient’s age, sex and ethnicity.

In the case of post-menopausal women, the WHO defines normal BMD as a T-score ≥-1, low bone mass (osteopenia) as a T-score between -1.0 and -2.5, and osteoporosis as a T-score ≤-2.5, compared to young healthy women 96. However, it is not clear how osteopenia and osteoporosis should be defined in men and children. According to The International Society for Clinical Densitometry, the same definition of osteoporosis can be applied to men from the age of 50 years. For premenopausal females and males younger than 50 years of age, Z-scores, not T-scores, are preferred 101. This is particularly important in children, since they have not yet reached peak bone mass.

Skeletal growth and peak bone mass

Before puberty, bone growth is largely dependent on growth hormone 102, and bone mass is acquired relatively slowly during childhood. After the onset of puberty and the adolescent growth spurt, bone mineral accretion is rapid and reaches a peak shortly after peak height gain 103. Sex steroids are essential for the completion of epiphyseal maturation and bone mineral accrual in the teenage years. The long-term
effect of pubertal timing on peak bone mass is uncertain. In a study by Gilsanz et al., the timing of puberty was found to have a significant impact on skeletal development; early onset of puberty resulting in higher bone mass at skeletal maturity in both boys and girls. The length of puberty, however, did not significantly influence bone accretion. On the other hand, Darelid et al. found a substantial catch-up in BMD, with no significant differences in BMD of the lumbar spine, femoral neck or total body in young men with early, middle or late puberty, when evaluated at 24 years of age.

Peak bone mass is defined as the amount of bone acquired when accrual ceases or levels off at some point after the completion of growth and development. The age of peak bone mass has been debated. According to a recent study based on longitudinal data, male peak bone mass is reached at about 18.5 years of age for the lumbar spine and total hip, and at about 20.5 years of age for the total body. About 60-80% of the variation in peak bone mass can be attributed to heritable factors; hence lifestyle factors and sex hormone levels can affect 20-40% of peak bone mass. There is strong evidence that calcium intake and physical activity have positive effects on BMD, especially during late childhood and the peripubertal years. There is also good evidence of a beneficial effect of vitamin D supplementation.

Bone status in childhood has been found to be a strong predictor of bone status in young adulthood, when peak bone mass is achieved. It has therefore been suggested that adult osteoporosis may be a consequence of impaired bone mass acquisition during childhood and sub-optimal peak bone mass.

Androgen impact on the adult male skeleton

Males do not show the same rapid loss of sex hormones as females after the menopause, however, the serum testosterone level declines by about 1-2% per year from the third decade onwards. Testosterone has both direct and indirect effects on bone quality, acting directly via the androgen receptor and indirectly via peripheral conversion to oestradiol. It is now believed that oestradiol is the most important sex steroid for bone homeostasis and fracture risk in men. Although testosterone has a direct effect on bone, its main influence on fracture risk may be due to its positive effects on muscle strength and physical performance, reducing the tendency to fall.

Severe hypogonadism in males leads to rapid bone loss, as seen in men treated with GnRH agonist due to prostate cancer. Mild to moderate hypogonadism is a risk factor for low bone mineral density (LBD) and osteoporosis in men older than 50 years. Less is known about the association between hypogonadism and BMD in younger men. Two studies carried out on men under the age of 50 have reported an
association between hypogonadism and LBD in men with sexual dysfunction or infertility \(^{119,120}\).

Testosterone replacement therapy and bone mineral density

The effect of TRT on BMD has been debated. Two meta-analyses published in 2005 and 2006 showed only a moderate increase in lumbar spine BMD, but no statistically significant effect on femoral neck BMD, after TRT for up to 36 months \(^{121,122}\). However both meta-analyses included studies on subjects with normal basal testosterone levels and subjects with concurrent diseases, and the follow-up period in many of the studies was only up to 12 months. Testosterone replacement therapy has subsequently been found to increase hip BMD \(^{123}\), or hip and lumbar spine BMD \(^{124,125}\) in hypogonadal men after treatment for 12 \(^{123,124}\) or 36 months \(^{125}\). The effect of TRT for periods longer than 36 months on BMD is not known, and no data have been reported on the relation between fracture risk and TRT.

According to The Endocrine Society’s Clinical Guidelines regarding osteoporosis in men, dual X-ray absorptiometry (DXA) is recommended for the assessment of BMD in hypogonadal men aged 50-69. For hypogonadal men at high risk of fracture treated with TRT, the addition of bisphosphonate or teriparatide is suggested, due to their proven antifracture efficiency. Testosterone replacement therapy is suggested for men with borderline high risk of fracture and symptomatic testosterone deficiency (S-testosterone <6.9 nmol/L), and men with high risk of fracture, S-testosterone <6.9 nmol/L and contraindications to approved pharmacological agents for osteoporosis \(^{126}\).

Cancer treatment and gonadal dysfunction

Cancer treatment can cause reduced fertility or androgen deficiency, depending on which cell type(s) are damaged. Chemotherapy and radiotherapy can cause both dose- and time-dependent impairment of testicular function. Gonadal function can also be negatively affected secondary to damage to other organs, e.g. neural damage resulting from surgery, or pituitary damage following surgery or cranial radiotherapy.
Surgery

Fertility
Sub-fertile men have an increased risk of developing testicular cancer. All men with testicular cancer undergo orchidectomy of the affected testicle. It is unclear whether unilateral orchidectomy affects fertility. In one study, decreased sperm concentration was found in 86% of testicular cancer patients, 5 months (median) after orchidectomy, and azoospermia developed in 9%. On the other hand, significant recovery of spermatogenesis was found in the majority of patients one year after unilateral orchidectomy, and the development of azoospermia only in isolated cases, in another study.

Retroperitoneal lymph node dissection is most often used in non-seminomas for staging in clinical stage IIA (primary RPLND), or in cases of residual abdominal mass ≥1 cm after chemotherapy, but rarely in the treatment of seminomas. Retroperitoneal lymph node dissection can cause retrograde ejaculation, but ejaculation can be preserved if surgery is performed with a nerve-sparing technique. In a recent review of 176 patients who underwent primary RPLND, 97% had antegrade ejaculation. Post-chemotherapy RPLND (PC-RPLND) is a more difficult operation due to fibrosis, but ejaculation can be preserved in up to 85% after modified unilateral PC-RPLND and in up to 25% after bilateral PC-RPLND.

Hypogonadism
Unilaterally orchidectomized testicular cancer patients have also been reported to have lower testosterone levels despite raised LH, compared to men unilaterally orchidectomized due to non-malignant diseases, indicating an underlying testicular defect in men with testicular cancer. Secondary hypogonadism can result from surgery in or near the pituitary, leading to gonadotropin deficiency. Fertility can be restored with gonadotropin substitution.

Radiotherapy

Fertility
The effect of radiotherapy depends on the target area, the irradiation dose and the number of fractions administered. Radiotherapy can be given directly to the testes, as in cases of germ cell neoplasia in situ (GCNIS), lymphoma or leukaemia with testicular involvement, testicular relapse of leukaemia or lymphoma, or as TBI as conditioning before HSCT. During the 1970s, prophylactic testicular irradiation was used in the treatment of ALL. The testes can also receive scattered irradiation from radiotherapy aimed at targets in the abdomen or pelvis.
The germinal epithelium is very sensitive to irradiation. Recovery of spermatogenesis requires surviving stem cells, and the probability of recovery is dependent on the dose and fractionation of irradiation. Testicular irradiation with doses of 1-3 Gy cause reversible azoospermia, doses of 3-6 Gy cause azoospermia that may be reversible but unlikely, while doses of ≥ 6 Gy cause azoospermia that is likely to be permanent. After single-dose testicular irradiation, the recovery of spermatogenesis takes up to 9-18 months after doses <1 Gy, 30 months after 2-3 Gy and >5 years (if at all) after doses >4 Gy. Total body irradiation with doses of 10-14 Gy is associated with a very high risk of long-term azoospermia. Fractioned small doses of testicular irradiation pose a greater risk than single large doses, and fractioned testicular irradiation with total doses >1.2 Gy can cause long-term azoospermia (> 40 months).

Sperm concentration was reported to decline 6-12 months after radiotherapy in TCS treated with 25.2 Gy in 14 fractions to the para-aortic and ipsilateral iliac lymph nodes and scattered irradiation dose to the remaining testicle estimated to be 0.04-0.43 Gy; pre-treatment levels were recovered 2-5 years after therapy. Similar results were found for TCS treated with a median dose of 26 Gy in 15-20 fractions to the lumbar-aortic lymph nodes. The lowest sperm concentrations were seen 6 months after treatment, with recovery to pre-treatment values 24 months after treatment. Although these studies showed recovery of sperm production after adjuvant radiotherapy, TCS treated with para-aortic and ipsilateral iliac fractioned irradiation with a median dose of 28 Gy were found to have a significantly increased risk of post-treatment infertility compared with TCS treated with chemotherapy.

Cranial irradiation can impair spermatogenesis by damaging the hypothalamic-pituitary-gonadal axis, resulting in lower levels of gonadotropins. (This is discussed in more detail below in the section “Cancer treatment and gonadal dysfunction, Radiotherapy”.) However, no statistically significant differences in probability of siring a pregnancy were seen for male CCS treated with 0-40 Gy or >40 Gy hypothalamic/pituitary radiation compared to CCS treated without hypothalamic/pituitary radiation.

Hypogonadism

The testosterone-producing Leydig cells are more resistant to radiotherapy than the germinal epithelium. The prepubertal testes are more vulnerable to radiation-induced Leydig cell damage than those in adult men.

The risk of hypogonadism following radiotherapy to the testicle(s) is dose-dependent. Testosterone production was found to be better preserved after 16 Gy in 8 fractions than after 20 Gy in 10 fractions to the remaining testis in unilaterally orchidectomized TCS, showing stable testosterone values after 16 Gy and an annual decrease of 2.4% after 20 Gy. Testicular cancer survivors treated with a median
dose of 30 Gy infradiaphragmatic radiotherapy had 2.7 and 3.3 higher odds of developing low testosterone levels than age-matched controls, at median follow-up times of 9.3 and 17.7 years, respectively. Testicular irradiation ≥12 Gy or TBI have been identified as probably leading to an increased risk of testosterone deficiency. However, it has been reported that Leydig cell function was preserved, with normal testosterone levels, even after irradiation doses as high as 30 Gy in 20 fractions to the remaining testicle in adult TCS.

Radiation to the hypothalamic-pituitary area can cause disturbances in pituitary function, the severity and frequency of which are correlated to the total irradiation dose and length of follow-up. In children, radiation doses <30 Gy cause isolated growth hormone deficiency (GHD) in about 30% of patients. Irradiation doses of 30-50 Gy cause GHD in 50-100%, long-term LH/FSH-deficiency in >20%, long-term TSH deficiency in 3-9%, and long-term adrenocorticotropic hormone (ACTH) deficiency in 3-6%. Following cranial irradiation of >60 Gy, or 30-50 Gy for pituitary tumours, it has been reported that 30-60% develop multiple hormonal deficiencies after 10 years. Precocious puberty can occur in boys after a radiation dose of 30-50 Gy. Radiation-induced hypothalamic-pituitary dysfunction is progressive and irreversible.

Chemotherapy

Fertility

Most chemotherapeutic agents can damage the proliferating germinal epithelium, resulting in transient or permanent oligospermia or azoospermia. The gonadal toxicity differs between chemotherapeutic drugs; alkylating agents and cisplatin being considered the most gonadotoxic in men. The toxic effect depends on the cumulative dose, and administering combinations of chemotherapeutic drugs has an additive effect on gonadal toxicity (Table 1).
Table 1. Effect of different chemotherapeutic agents on male fertility
(Adapted from Puschek et al. 147)

<table>
<thead>
<tr>
<th>Agent (cumulative dose)</th>
<th>Effect</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide (19 g/m²)</td>
<td>Azoospermia</td>
<td></td>
</tr>
<tr>
<td>Ifosfamide (>30 g/m²)</td>
<td>Azoospermia likely</td>
<td>Additive effect with cyclophosphamide</td>
</tr>
<tr>
<td>Procarbazine (4 g/m²)</td>
<td>Azoospermia</td>
<td></td>
</tr>
<tr>
<td>Chlorambucil (1.4 g/m²)</td>
<td>Azoospermia</td>
<td></td>
</tr>
<tr>
<td>Lomustine (500 mg/m²)</td>
<td>Azoospermia likely</td>
<td></td>
</tr>
<tr>
<td>Carmustine (1 g/m²)</td>
<td>Azoospermia likely</td>
<td></td>
</tr>
<tr>
<td>Busulfan (>600 mg/kg)</td>
<td>Azoospermia likely</td>
<td></td>
</tr>
<tr>
<td>Cisplatin (500 mg/m²)</td>
<td>Azoospermia</td>
<td></td>
</tr>
<tr>
<td>Carboplatin (>2 g/m²)</td>
<td>Azoospermia likely</td>
<td></td>
</tr>
<tr>
<td>Doxorubicin (770 mg/m²)</td>
<td>Temporary azoospermia when given alone</td>
<td>Azoospermia in combination with other chemotherapeutic agents</td>
</tr>
<tr>
<td>Cytarabine (1 g/m³)</td>
<td>Temporary azoospermia when given alone</td>
<td>Azoospermia in combination with other chemotherapeutic agents</td>
</tr>
<tr>
<td>Vinblastine (50 g/m³)</td>
<td>Temporary azoospermia when given alone</td>
<td>Azoospermia in combination with other chemotherapeutic agents</td>
</tr>
<tr>
<td>Vincristine (8 g/m²)</td>
<td>Temporary azoospermia when given alone</td>
<td>Azoospermia in combination with other chemotherapeutic agents</td>
</tr>
</tbody>
</table>

Alkylating agents affect spermatogenesis in male CCS in a dose-dependent manner 148. No lower limit for gonadotoxicity has been determined. It has been reported that cyclophosphamide at doses of <7.5 g/m² are associated with a decreased risk of abnormal sperm counts 149,150, while it was found in another study that normal spermatogenesis could be preserved after a cumulative cyclophosphamide dose as high as 16 g/m² 151. Chlormethine (also called mechlorethamine or mustine) and procarbazine also have dose-dependent effects on spermatogenesis 152. Conditioning before HSCT with busulfan and cyclophosphamide 153-155 or fludarabine and melphalan 155 has been associated with an increased risk of impaired
spermatogenesis, although FSH was measured as a marker of spermatogenesis in the latter study, and semen samples were not analysed.

The cyclophosphamide equivalent dose (CED) has been developed to quantify the exposure to many different alkylating agents. The algorithm used to calculate the CED is based on comparisons of the acute haematological toxicities of different alkylating agents \(^{156}\). The CED has been shown to correlate negatively with sperm concentration in male CCS. No threshold dose has been identified, but it has been found that impaired spermatogenesis is unlikely after treatment with CED < 4000 mg/m\(^2\). Substantial overlap was found between CED associated with normospermia, oligospermia and azoospermia \(^{157}\). No studies have yet been carried out to investigate the relation between CED and hypogonadism.

Cisplatin has a dose- and time-dependent effect on spermatogenesis. It has been reported that treatment with a cumulative dose of cisplatin ≤400 mg/m\(^2\) results in temporary impairment of spermatogenesis, with the recovery of sperm production within 4 years in the majority of patients. Longitudinal studies on TCS have shown no significant decrease in sperm concentration after 1-2 cycles of BEP or PVB \(^{138}\), and that post-treatment reduction in sperm counts returned to pre-treatment values 12 months after treatment following 1-2 cycles of BEP, and 24 months after 3-4 cycles of BEP \(^{158}\). In a study by Suzuki et al., sperm recovery defined as motile spermatozoa in the ejaculate was achieved in all patients receiving 1-3 cycles of BEP, 36 months after treatment, and in all receiving 4 cycles of BEP, 48 months after treatment. Among patients receiving 5-6 cycles of BEP, recovery was not seen until 36 months after treatment, and 5 out of 6 patients had regained sperm production after 60 months; the last patient remained azoospermic 84 months after treatment \(^{159}\).

A cumulative cisplatin dose of ≥600 mg/m\(^2\) is associated with a decrease in the probability of sperm production recovery. In a study on TCS treated with a median cumulative cisplatin dose of 583 mg/m\(^2\) (range 300-750 mg/m\(^2\)), very low median sperm concentrations and low median sperm counts were seen after chemotherapy, showing no difference between 3-8 years and 11-16 years after treatment, indicating permanent impairment of sperm production \(^{160}\). Another study on TCS reported significantly decreased sperm concentration in patients treated with cumulative doses of cisplatin ≥600 mg/m\(^2\) compared to doses <600 mg/m\(^2\), after median follow-up times of 59 months (range 31-103) and 79 months (range 61-103) \(^{161}\). One study on sarcoma survivors aged 16-43 years at diagnosis also identified a cumulative cisplatin dose of ≥600 mg/m\(^2\) as a risk factor for long-term impaired spermatogenesis \(^{162}\).

Carboplatin is less toxic to spermatogenesis than cisplatin. Treatment with one cycle of adjuvant carboplatin in testicular cancer patients was reported to cause no change in sperm concentration 1 or 2 years after treatment \(^{163}\), and the probability of TCS
recovering spermatogenesis was found to be higher after treatment with carboplatin-based chemotherapy than with CBC 164. However, replacing cisplatin with carboplatin in EP or BEP results in poorer treatment outcomes 165,166.

It has been debated whether pre-pubertal status offers protection against chemotherapy-induced gonadal injury or not. Age at chemotherapy has been reported to affect spermatogenesis, showing less vulnerability in pre-pubertal subjects 167. Furthermore, male CCS aged 0-4 years at diagnosis were found to be more likely to sire a pregnancy than those aged 15-20 years at diagnosis, whereas no difference was seen between those aged 5-9, and 10-14 years at diagnosis 141. In contrast, pre-pubertal status was found not to be protective in studies on post-treatment increased FSH levels 168 or sperm concentration 152 after chemotherapy for Hodgkin’s disease. Kenney et al. found no significant association between pubertal status and spermatogenesis after treatment with alkylating agents 149, and Green et al. found no relation between age at diagnosis and risk of azoospermia or oligospermia after treatment with alkylating agents 157. Today, prepubertal status is considered not to offer protection against chemotherapy-induced gonadal injury 136.

Hypogonadism

Leydig cells are more resistant to chemotherapy than Sertoli cells. Hence, cancer survivors can exhibit normal testosterone production despite the presence of treatment-induced azoospermia or oligospermia.

Alkylating agents have been associated with hypogonadism after treatment with high cumulative doses. Leydig cell insufficiency, resulting in elevated LH levels and normal testosterone levels, and increased LH response to GnRH stimulation, has been reported after treatment with cumulative cyclophosphamide doses with a median of 20.5 g/m2 149. Ifosfamide is less gonadotoxic than cyclophosphamide. Male CCS treated with >60 g/m2 ifosfamide have been reported to have higher LH levels than those treated with <60 g/m2 ifosfamide, although the LH levels in both groups were within normal limits, and no differences were seen in testosterone levels 169. In another study on male CCS treated with ifosfamide at a median dose of 54 g/m2, 98 out of 100 had normal testosterone levels and 86 out of 100 had normal LH levels a median of 11 years after treatment 170.

Cumulative doses of cyclophosphamide in the regimens used in 2010 were 3.2-4.8 g/m2 for Hodgkin’s disease, 4.8-16.8 g/m2 for rhabdomyosarcoma, and 8.4 g/m2 cyclophosphamide and 63 g/m2 ifosfamide in combination for Ewing’s sarcoma 141. This implies that hypogonadism caused by treatment with alkylating agents alone is probably rare.

Hypogonadism has also been associated with treatment for testicular cancer. No significant difference was found in testosterone levels between TCS receiving cisplatin at cumulative doses ≤400 mg/m2, and TCS treated with orchidectomy.
alone, whereas cumulative doses of cisplatin ≥400 mg/m² resulted in lower testosterone levels, a median of 74 and 75 months after treatment. In a study by Sprauten et al., who compared TCS treated with orchidectomy alone, or combined with infradiaphragmatic radiotherapy or chemotherapy with a median cumulative cisplatin-dose of 760 mg, all groups showed an increased risk of low testosterone levels at median follow-up times of 9 and 18 years, compared to age-matched controls.

Azoospermia in testicular cancer survivors

It is not yet possible to identify those individuals who will suffer from long-term azoospermia after testicular cancer treatment. Certain cancer treatments carry a higher risk of reduced fertility, as described above, and side-effects are also modulated by individual vulnerability to cancer treatment.

Previous studies have provided inconclusive results regarding semen parameters as potential predictive factors of reduced fertility after testicular cancer treatment. Higher probabilities of recovering sperm production have been found in two studies on patients with normal pre-treatment sperm counts, and pre-treatment total sperm counts ≥39x10⁶. In contrast, other studies have reported that the recovery of spermatogenesis was not related to pre-treatment sperm count, or pre-treatment sperm concentration.

Cryptorchidism is a risk factor for testicular cancer, and a history of cryptorchidism has also been reported to be a risk factor for self-reported post-treatment infertility in TCS. However, since no semen samples were analysed in the latter study, it remains unclear whether these infertile patients had oligospermia or azoospermia. It has also been reported that highly increased levels of FSH prior to post-orchidectomy treatment were correlated with low post-treatment spermatogenesis in TCS.

No previous studies have been able to identify risk factors with sufficiently high sensitivity and/or specificity to predict long-term infertility in individual TCS. Bearing in mind its association to FSH and functioning spermatogenesis, inhibin B appears to be a potential predictive factor for azoospermia in TCS.

Hypogonadism in young male cancer survivors

Previous studies addressing Leydig cell function in male CCS have focused on comparing testosterone levels between patients and controls, rather than the assessment of risk factors for hypogonadism. Many studies reporting on the frequency of hypogonadism after cancer treatment also lack control groups.
or have controls that can be suspected of not representing the general population. Among the studies on CCS with control groups, Romerius et al. used male partners of pregnant women as controls \(^{179}\), while Greenfield et al. used controls recruited by advertisement in the community and from general practitioners’ surgeries \(^{175}\). Among the studies on TCS with control groups, the study by Sprauten et al. included population-based controls \(^{144}\), while 200 male blue-collar workers at a smelting plant were included as controls in a study by Nord et al. \(^{180}\). Hence, further studies are required to investigate the prevalence of, and risk factors for, hypogonadism in young male CCS, compared to the general population.

Treatment for impaired fertility after cancer treatment

Cancer survivors rendered hypogonadal after cancer treatment can be treated with TRT. Testosterone replacement therapy can negatively affect spermatogenesis by suppression of the hypothalamic-pituitary-gonadal axis. Spermatogenesis can recover spontaneously after cessation of TRT, but this may take several months to several years. If spermatogenesis does not recover after discontinuation of TRT, patients can be treated with gonadotrophins in order to compensate for FSH/LH deficiency. Gonadotropins can also be added to TRT, if the patient is unwilling to discontinue TRT \(^{181}\).

In cases of retrograde ejaculation, treatment with α-sympathomimetics can be tried to restore antegrade ejaculation, or spermatozoa can be retrieved from the urine for use in assisted reproductive techniques \(^{182}\).

It is not known for how long after chemotherapy azoospermia can be considered as potentially reversible. Recovery of sperm production has been reported 4 and 5 years after treatment with 5-6 cycles of BEP \(^{158}\), and more than 10 years after therapy in adult males treated for Hodgkin’s disease \(^{183}\). However, very late recovery of sperm production may be of less clinical importance due to the limited reproductive window of a couple \(^{184}\).

All post-pubertal, and even selected pubertal, male cancer patients should be offered semen cryopreservation before cancer treatment. In cases of post-treatment azoospermia due to testicular failure, without cryopreserved semen, testicular biopsy and subsequent intracytoplasmic sperm injection, if viable sperms are retrieved, is the last opportunity to achieve biological paternity.
Cancer treatment and bone mineral density

Radiotherapy

Radiotherapy can have local effects on bone. Radiation necrosis and pathologic fractures can occur after doses >50 Gy\(^1\). Radiotherapy can probably also have a local effect on bone after fractionated irradiation at a lower total dose. Two retrospective studies on women treated with radiotherapy have reported a high frequency of fractures near the field of irradiation. One study on women treated with curative-intent radiotherapy for cervical cancer found pelvic fractures in 9.7% of patients on post-treatment CT (computed tomography) or MRI (magnetic resonance imaging), almost half of them asymptomatic\(^2\). One large study on women \(\geq 65\) years reported a higher cumulative incidence of pelvic fractures, including hip fractures, in women treated with pelvic radiotherapy than in women with the same diagnosis not treated with radiotherapy. The hazard ratios for fractures were 3.16 for radiotherapy vs. no radiotherapy in women treated for anal cancer, 1.66 in women treated for cervical cancer, and 1.65 in women treated for rectal cancer, all statistically significant\(^3\). However, none of the studies gave any information on BMD, and it is therefore not known whether the fractures were associated with a local decrease in BMD.

A recent retrospective study reported a decrease in vertebral body BMD measured on CT in patients with abdominal cancers treated with radiotherapy, given in combination with chemotherapy in the majority of patients. No changes in vertebral body BMD were reported in patients with abdominal cancers after treatment with chemotherapy only. Irradiated patients were treated with a median of 50.4 Gy fractionated irradiation, and the reduction in BMD was found to be proportional to the radiation dose deposited to the vertebral body. Four of 42 patients had an asymptomatic vertebral compression fracture in the field of irradiation, compared to no fractures in the six patients treated with chemotherapy only, and it seems plausible that the loss in BMD may have contributed to the development of these vertebral compression fractures\(^4\).

Radiotherapy of the hypothalamic-pituitary axis can also have an indirect effect on BMD by inducing GHD and secondary hypogonadism, as described in the section “Cancer treatment and gonadal dysfunction, Radiotherapy” above. Adults with childhood onset GHD have in some, but not all, studies been shown to have lower BMD than controls, and adults with untreated GHD with adult onset have decreased BMD\(^5\). Bone mineral density increases after more than 1 year of growth hormone replacement therapy (GHRT) in adults with GHD\(^6\). In a study on adult CCS treated with cranial radiotherapy, evaluated a mean of 27 years after cancer therapy, untreated LH/FSH-deficiency was found to be associated with low BMD (OR 2.42,
95% CI 1.10-5.30, p=0.03). Untreated GHD was not associated with low BMD in this cohort, although the association was borderline significant (OR 1.78, 95% CI 0.99-3.18, p=0.05) \(^{191}\).

Chemotherapy

Long-term treatment with oral glucocorticoids is a known risk factor for osteoporosis. Glucocorticoid–induced bone loss should be suspected, and steps taken to prevent it, after treatment with prednisone equivalents of \(\geq 5\) mg/day for \(\geq 3\) months \(^{192}\). Long-term glucocorticoids are used in the treatment of childhood haematological malignancies. Increased fracture rates and higher incidences of skeletal complications during the first few years after diagnosis have been reported in children treated for ALL; most complications occurring during maintenance therapy \(^{193}\). However, it is not known whether glucocorticoid treatment in childhood causes reduced BMD or increased risk of fracture in adulthood. Cumulative methotrexate doses of \(>40\) g/m\(^2\), as used in the treatment of highly malignant sarcomas or high-risk ALL, have been associated with a high risk of low BMD in adulthood \(^{194,195}\). Alkylating agents have also been stated to be risk factors for osteoporosis by causing hypogonadism \(^{196}\).

Bone mineral density in childhood cancer survivors

Children with ALL already have reduced BMD at diagnosis, which can decrease further during therapy \(^{197,198}\). It is unclear whether this reduction in BMD persists during adulthood. Recovery of BMD in adult survivors of ALL has been reported in a study by Gurney et al., where the Z-scores of 67% of subjects with previous BMD Z-scores \(\leq -2\) improved by \(\geq 1\) category, a median of 8.5 years later \(^{199}\).

In the large St Jude Lifetime Cohort Study, 39.3% of adult CCS (male and female together) had Z-scores \(< -1\) on DXA (total body or lumbar spine), higher frequencies being observed among those treated with corticosteroids (45.0%), methotrexate (45.5%) and radiation to the hypothalamic-pituitary area (54.3%) \(^{17}\).

Hypogonadism has been reported to be a risk factor for low BMD in CCS \(^{136,196,200}\). Studies on the association between hypogonadism and BMD in CCS often include both male and female CCS in the studied cohort \(^{200-203}\) or lack controls \(^{200,202,204}\), making it difficult to draw any conclusions regarding the effect of hypogonadism on BMD in adult male hypogonadal CCS. Studies on pre-pubertal or young adult CCS have revealed a correlation between hormonal levels and bone mass in a cohort of male and female CCS \(^{201}\), hypogonadism and increased risk of LBD in male CCS \(^{203}\), and gonadal dysfunction and LBD in a cohort of male and female CCS \(^{200}\).
However, findings in pre-pubertal or young adult subjects of both sexes are not directly applicable to an adult male population.

Two studies have focused on the association between gonadal function and BMD in adult male CCS. In both these studies, the CCS had mild hypogonadism with low or low normal testosterone levels. Holmes et al. reported a positive correlation between serum testosterone levels and BMD in the lumbar spine and femoral neck in 29 men with azoospermia treated for Hodgkin’s disease. Howell et al. reported lower femoral neck BMD in CCS treated for haematological malignancy exhibiting raised LH levels and low or low normal testosterone levels, compared to equally treated CCS exhibiting normal LH and testosterone levels.

Bone mineral density in testicular cancer survivors

Findings regarding the relation between treatment modality and hypogonadism in TCS are conflicting. Murugaesu et al. found no increased risk of osteoporosis in TSC treated with orchidectomy only or orchidectomy followed by ≥3 cycles of CBC, 5-28 years after treatment. In a prospective study of newly diagnosed testicular cancer patients, Willemse et al. reported normal BMD in clinical stage I patients up to 5 years after treatment. Those with metastatic disease given ≥3 cycles of CBC exhibited a significant decrease in BMD one year after treatment, which was unrelated to gonadal status and the dose of cisplatin or corticosteroids given. In a follow-up study, Willemse et al. reported TCS to have an increased prevalence of mild to moderate vertebral fractures, but no association was found between BMD, cumulative doses of cisplatin or dexamethasone, or gonadal status.

Lower BMD in TCS compared to controls was reported by Foresta et al., despite no biochemical signs of testosterone deficiency in the patient group. In a large study on 1249 TCS, Ondrusova et al. reported that 43-51% of the TCS had osteopenia/osteoporosis. No increased risk of osteopenia/osteoporosis was seen in patients treated with unilateral orchidectomy and radiotherapy, or 2-4 cycles of chemotherapy, compared to patients treated with unilateral orchidectomy alone. Both low testosterone and high LH levels were seen more often in TCS with low BMD than in those with normal BMD, but the BMD in eugonadal and hypogonadal TCS was not compared.

One study has addressed the possible effect of adjuvant radiotherapy on BMD in TCS. In a study including 30 TCS treated with orchidectomy and radiotherapy (30 Gy in 15 fractions) of the para-aortic and ipsilateral iliac lymph nodes for clinical stage I seminoma, no significant difference in BMD was seen between the irradiated and non-irradiated hip a median of 28 months after radiotherapy.
In conclusion, there is a need for studies comparing BMD in young male cancer survivors to that in the general population, and exploring the potential association between hypogonadism and BMD in this patient category.
Current Recommendations for Long-Term Follow-up of Gonadal Function and Bone Mineral Density after Childhood or Testicular Cancer

Childhood cancer survivors

The first national guidelines for long-term follow-up after childhood cancer were published in Sweden, on-line, in April 2016. These guidelines concern all patients treated for cancer before 18 years of age, and cover side-effects after surgery, radiotherapy and chemotherapy, e.g. neurological sequelae, cardiac toxicity, pulmonary toxicity, endocrinologic disorders and female and male gonadal function.

In these guidelines, testicular irradiation at doses above 12 Gy or TBI are identified as risk factors for testosterone insufficiency, and irradiation doses above 30 Gy to the hypothalamic-pituitary area are identified as risk factors for decreased production of LH and FSH. It is recommended that male CCS with normal hormonal levels previously treated with irradiation doses exceeding 30 Gy to the hypothalamic-pituitary area or testicular irradiation should be informed about the subsequent risk of, and symptoms resulting from, testosterone deficiency, and encouraged to seek medical help if they have symptoms indicating testosterone deficiency.

Ifosfamide, vincristine, methotrexate, cisplatin, anthracyclines and purine analogues are identified as having potentially negative effects on BMD. Long-term corticosteroid treatment for graft-versus-host disease after allogenic bone marrow transplant, hypogonadism, immobilisation, nutritional defects and heredity factors predisposing to osteoporosis have also been identified as potentially leading to reduced BMD. DXA is recommended on clinical suspicion of osteoporosis, for example severe back pain, repeated fractures or fractures after minimal trauma.
Testicular cancer survivors

In Sweden and Norway, TCS are followed up according to the recommendations of SWENOTECA 212. Patients with non-seminoma clinical stage I are followed up until 5 years after the end of treatment, with regular controls of tumour markers and radiological examinations to detect cancer recurrence, and controls of hormonal levels (testosterone, SHBG, LH and FSH), metabolic screening (lipids, fasting glucose and HbA1c) and blood pressure. The same controls are carried out up until 10 years after the end of treatment for patients with metastatic non-seminoma and all stages of seminoma. There are no recommendations to evaluate BMD.
Aims of this Work

The overall aim of the work presented in this thesis was to improve follow-up and counselling of young male cancer survivors, by investigating the prevalence, and evaluating potential risk factors, of gonadal dysfunction and decreased bone mineral density.

The specific aims were:

- to assess the frequency of long-term post-treatment azoospermia in TCS, relate the risk to the type of cancer treatment, and evaluate inhibin B and previous cryptorchidism as potential predictive markers of azoospermia (Paper I);

- to investigate the risk of biochemical hypogonadism in TCS and male CCS, compared to men from the general population, and to evaluate cancer diagnosis and type of cancer treatment as potential risk factors (Paper II);

- to assess potential differences in BMD and the risk of low bone mineral density in TCS (Paper III) and male CCS (Paper IV), compared to men from the general population, and to elucidate possible associations with biochemical hypogonadism, cancer diagnosis and type of cancer treatment.
AIMS OF THIS WORK
Subjects and Methods

A summary of the subjects and methods is given in this chapter. Further details concerning the cohorts studied and the methods used can be found in the respective papers and the supplementary information to Papers I, II and IV.

Subjects

Two cohorts of TCS were studied: TCS cohort A (TCS-A, Paper I) and TCS cohort B (TCS-B, Papers II & III). The TCS-B cohort was based on re-invitation of part of the cohort from which TCS-A was derived. A cohort of CCS was also studied (Papers II & IV), and two control groups: one for TCS-B (Papers II & III) and the other for CCS (Papers II & IV). An overview of the cohorts studied is presented in Figure 5.

Figure 5. Overview of the cohorts studied in the work presented in this thesis. CCS = childhood cancer survivors; TCS = testicular cancer survivors; TCS-B = testicular cancer survivors cohort B; TCS-A = testicular cancer survivors cohort A; BMD = bone mineral density
All the subjects provided written informed consent at the time of inclusion in the respective studies. Ethical approval was obtained from the regional ethical review boards of Lund University and Karolinska Institute (TCS-A, Paper I), or Lund University (TCS-B, CCS and controls, Papers II-IV).

Childhood cancer survivors

The cohort of CCS was derived from 427 consecutive male CCS identified through the Swedish Cancer Registry, diagnosed with childhood cancer between 1970 and 2002, living in the region of Skåne, southern Sweden at diagnosis, and previously invited to participate in a study on reproductive function. The following inclusion criteria were applied to this cohort:

- all forms of extra-cranial malignant neoplasm or any CNS neoplasm before 18 years of age,
- >18 years old and alive as of 1st December 2009,
- >3 years since last cancer treatment.

Eleven men were deceased and 10 could not be located. One patient treated for testicular cancer, and included in both invited cohorts of CCS and TCS, was transferred to TCS-B. The remaining 405 men were contacted by letter, and 146 agreed to participate in the study. Six subsequently dropped out of the study, one was excluded due to management with surveillance only (diagnosed with optic glioma), six were excluded due to non-malignant disease (carcinoid of the appendix) and eight were excluded due to second malignancy or relapse within 3 years of inclusion, leaving 125 subjects (31% of those invited).

Testicular cancer survivors

TCS-A

The study described in Paper I was based on data from a cohort of TCS included in a previous study on reproductive function and hypogonadism after treatment for testicular cancer, called the Fertility Study. The study started in 2001 in Lund, and in 2003 in Stockholm, and all men aged 18-50 years, diagnosed with testicular cancer <5 years prior to inclusion were eligible. Patients delivered semen samples after orchidectomy, but before further treatment (T0), and 6 (T6), 12 (T12), 24 (T24), 36 (T36) or 60 (T60) months after completion of testicular cancer treatment. Patients could enter the study at any time from T0 to T60, and were asked to provide ejaculates at the remaining times. Inclusion ceased in October 2006. A total of 464 men were eligible for the Fertility Study. Seventy-five men declined to participate and 52 men...
were excluded due to mental co-morbidity, linguistic difficulties, bilateral testicular cancer or physical disability, leaving 337 participants in the Fertility Study.

Five subjects with extragonadal tumours were excluded. The following exclusion criteria were applied to the remaining 332 TCS

- azoospermia resulting from causes other than chemotherapy or radiotherapy used in testicular cancer treatment (e.g. previous vasectomy, azoospermia prior to testicular cancer or bilateral orchidectomy), or receiving radiotherapy to the remaining testicle due to GCNIS,

- relapsing disease or development of GCNIS in the remaining testicle during the study period,

- no assessable semen sample at T_{36} or T_{60} (e.g. TRT, retrograde ejaculation or no ejaculate delivered at T_{36} or T_{60}).

A total of 115 TCS were excluded, leaving 217 TCS constituting cohort TCS-A.

In order to enable the analysis of predictive factors for sperm production at T_{36} or T_{60} (T_{36-60}) in men with sperm production at T_0, two subjects with azoospermia at T_0 and 98 subjects without ejaculate at T_0 were excluded, leaving 117 TCS with longitudinal data.

TCS-B

For the TCS cohort reported on in Papers II & III, called TCS-B, the 165 TCS (including three TCS with extragonadal tumours) included in the above-mentioned Fertility Study and treated at Lund University Hospital were re-invited. Three were deceased and 1 had emigrated. The remaining 161 men were contacted by letter, and 96 agreed to participate. Two subsequently dropped out of the study, and 2 were excluded due to prostate cancer or prolactinoma diagnosed shortly after inclusion, leaving 92 subjects (57% of those invited).

Controls

An age-matched control from the general population was identified for each CCS and each subject in TCS-B. Exclusion criteria were

- previous diagnosis of tumour in the CNS or any malignant disease other than basal cell carcinoma,

- Klinefelters syndrome (47, XXY).

Controls were identified and invited to participate as follows. For each cancer survivor included in the study, a list of men matched by date of birth and living in the region of Skåne was extracted from the Swedish Population Register. Only men
living in the western part of Skåne were considered as potential controls, for practical reasons. Each of the cancer survivor was identified as the index case on the list. The man directly above the index case was invited to participate by letter. If he declined, or no reply was received within 14 days, the man directly below the index case was contacted. If he also declined, or no reply was received within 14 days, the man directly above the first invited man was invited, and so on, until a potential control agreed to participate in the study.

Of 977 invited potential controls, 240 men (25%) agreed to participate. Of these, 14 were excluded due to exclusion/drop out of the corresponding cancer survivor, 2 due to current or previous malignancy, 1 due to Klinefelters syndrome, 1 due to lack of sample material, 1 dropped out of the study and 4 were duplicates of recruited controls.

Representativeness of study participants

TCS-A

The 217 subjects in TCS-A did not differ in mean age compared to the 242 TCS excluded or declining participation (32.6 and 33.4 years, respectively). The proportion of patients with stage I disease was higher among participants than non-participants, and consequently the proportion of subjects receiving adjuvant chemotherapy was somewhat higher among the participants, whereas the opposite was true for those receiving the most extensive treatment (Figure 6).
Figure 6. Distribution of testicular cancer stages: (a) in TCS-A, n=217 and (b) among eligible TCS not included in the Fertility Study, plus TCS included in the Fertility Study not included in TCS-A, n=242. Distribution of treatment received after unilateral orchidectomy: (c) in TCS-A, n=217 and (d) among eligible TCS not included in the Fertility Study, plus TCS included in the Fertility Study not included in TCS-A, n=242. SO = surveillance only; ACT = adjuvant chemotherapy, 1-2 cycles of cisplatin-based chemotherapy (CBC) or carboplatin; SCT = standard dose chemotherapy, 3-4 cycles of CBC; RT = adjuvant radiotherapy to para-aortic and ipsilateral iliac lymph nodes; ETC = extensive treatment with chemotherapy, >4 cycles of CBC or ≥4 cycles of CBC + radiotherapy to targets other than the remaining testicle.
The 117 patients for whom longitudinal data were available, were, on average, three years younger than the 100 patients without longitudinal data (31.1 and 34.4 years, respectively). There were no differences between the two groups regarding stages of disease. Treatment with 1-2 cycles of chemotherapy was more frequently seen among the patients with longitudinal data (41% vs. 26%), whereas surveillance was less frequent (2.6% vs. 20%).

TCS-B

Subjects in TCS-B were compared to TCS treated in Lund and excluded from, or declining to participate in, the Fertility Study, plus invited TCS excluded from, or declining to participate in, the current study, in total n= 141. Fewer patients had stage IV testicular cancer among those studied, than among the non-participants, whereas no major difference was seen in the distribution of treatment received after orchidectomy (Figure 7).
SUBJECTS AND METHODS

Figure 7. Distribution of testicular cancer stages: (a) in TCS-B, n=92 and (b) among TCS treated in Lund and excluded from, or declining participation in, the Fertility Study, plus TCS excluded from, or declining participation in, the current study, n=141. Distribution of treatment received after unilateral orchidectomy: (c) in TCS-B, n=92 and (d) among TCS treated in Lund and excluded from, or declining participation in, the Fertility Study, plus TCS excluded from, or declining participation in, the current study, n=141. SO = surveillance only; ACT = adjuvant chemotherapy, 1-2 cycles of cisplatin-based chemotherapy (CBC) or carboplatin; SCT = standard dose chemotherapy, 3-4 cycles of CBC; RT = adjuvant radiotherapy to para-aortic and ipsilateral iliac lymph nodes; ETC = extensive treatment with chemotherapy, >4 cycles of CBC or ≥4 cycles of CBC + radiotherapy to targets other than the remaining testicle.
Data on the number of biological children of the participants and non-participants were extracted from the Swedish Multi-Generation Register in order to evaluate possible selection bias based on fertility. The distribution of TCS having 0, 1, 2 or ≥3 children was 12%, 37%, 47% and 4% among participants, and 14%, 36%, 33% and 17% among non-participants.

Childhood cancer survivors

In order to investigate whether the CCS cohort was representative of childhood cancer patients in Sweden, the diagnosis distribution in the CCS cohort was compared to the diagnosis distribution of male cancer patients under 19 years of age at diagnosis in Sweden in 2009 (the year the study started). Some underrepresentation of patients with brain tumours and some overrepresentation of patients with other malignancies were seen (Figure 8).

![Figure 8](http://www-dep.iarc.fr/NORDCAN/SW/frame.asp)
Data on the number of biological children of participants and non-participants were extracted from the Swedish Multi-Generation Register to evaluate possible selection bias based on fertility. The distribution of CCS having 0, 1, 2 or ≥3 children was 52%, 14%, 29% and 5.3% among participants, and 65%, 14%, 17% and 5.1% among non-participants.

Controls

Data on height, weight, body mass index (BMI) and proportion of smokers among the controls for TCS-B and CCS, and corresponding data for men in similar age categories from the general population in Sweden are presented in Table 2.

Table 2. Characteristics of the 217 controls (mean age 38.4 years, range 24.1-58.8 years), and men from the general population in Sweden 2010-2011

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Men from general population 2010-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>181.6 (±0.9)</td>
<td>180.5 (±0.5)*</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>83.4 (±1.7)</td>
<td>85.2 (±1.2)#</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25.2 (±0.5)</td>
<td>26.1 (±0.3)#</td>
</tr>
<tr>
<td>Smoking, current (%)</td>
<td>11.9 (±4.4)†</td>
<td>11.6 (±2.7)*</td>
</tr>
</tbody>
</table>

* Data on height, weight and body mass index are for men 30-39 years.
† Data missing for 7 controls.
* Data on smoking are for men 35-44 years.
Height, weight and body mass index are presented as means (95% confidence interval). Smoking is presented as percent (95% confidence interval).

The distribution of controls having 0, 1, 2 or ≥3 children was 12%, 42%, 35% and 11% among participants, and 21%, 46%, 23% and 10% among non-participants.

General characteristics of TCS-B, CCS and their respective controls are presented in Table 3.
Table 3. General characteristics of testicular cancer survivors cohort B (TSC-B), childhood cancer survivors (CCS), and their respective controls

<table>
<thead>
<tr>
<th></th>
<th>TCS-B (n=92)</th>
<th>Controls for TCS-B (n=92)</th>
<th>CCS (n=125)</th>
<th>Controls for CCS (n=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at inclusion (y)</td>
<td>40.3 (7.4)</td>
<td>41.2 (7.3)</td>
<td>33.7 (30.2-40.1)</td>
<td>34.4 (30.5-40.6)</td>
</tr>
<tr>
<td>Length of follow-up (y)</td>
<td>9.2 (2.7)</td>
<td>NA</td>
<td>24.3 (7.1)</td>
<td>NA</td>
</tr>
<tr>
<td>Age at diagnosis (y)</td>
<td>30.8 (7.2)</td>
<td>NA</td>
<td>9.6 (5.4-15.0)</td>
<td>NA</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.84 (0.06)</td>
<td>1.82 (0.08)</td>
<td>1.80 (1.75-1.86)</td>
<td>1.82 (1.78-1.85)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>90.3 (14)</td>
<td>85.0 (12.6)</td>
<td>82.1 (72.0-91.5)</td>
<td>81.4 (73.3-88.6)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.8 (3.9)</td>
<td>25.5 (3.3)</td>
<td>25.1 (22.8-27.6)</td>
<td>24.7 (22.6-26.9)</td>
</tr>
<tr>
<td>Smoking, current*, n (%)</td>
<td>21 (24)</td>
<td>8 (9.1)</td>
<td>10 (8.2)</td>
<td>17 (14)</td>
</tr>
</tbody>
</table>

Age at inclusion, length of follow-up, age at diagnosis, height, weight and body mass index for TCS-B and their controls are presented as means (SD).

Age at inclusion, age at diagnosis, height, weight and body mass index for CCS and their controls are reported as medians (interquartile range) due to non-normal distribution.

NA = not applicable.

* Data on smoking missing for 4 TCS-B, 4 controls for TCS-B, 3 CCS and 3 controls for CCS

Cancer treatment

Testicular cancer survivors

All TCS underwent unilateral orchidectomy, including the 3 TCS with an extragonadal tumour (due to initial suspicion of testicular tumour in 2 subjects, one subject had primary extragonadal disease and subsequently developed a unilateral testicular tumour). One of the subjects in TCS-B had had a bilateral orchidectomy, and one TCS had received radiotherapy to the remaining testicle due to GCNIS. These 2 subjects were excluded from the analyses of treatment effects regarding OR for hypogonadism for therapeutic subgroups (Paper II) and BMD for therapeutic subgroups (Paper III).

Treatment was given according to the SWENOTECA protocols applied at the time of diagnosis (March 1996-March 2006). Patients with extragonadal tumours received the same treatment as for testicular cancer clinical stage IIB-IV. Briefly, treatment for clinical stage I seminoma was adjuvant radiotherapy, adjuvant...
chemotherapy or surveillance after orchidectomy. Adjuvant radiotherapy consisted of 25.2 Gy administered in 14 fractions to the infradiaphragmal para-aortic and ipsilateral iliacal lymph nodes. The scattered dose to the remaining testis in patients treated in Lund was estimated retrospectively in 7 randomly selected men and found to be 0.04-0.43 Gy. Adjuvant chemotherapy consisted of one cycle of carboplatin. Patients with clinical stage IIB-IV seminomas were treated with the BEP regimen (bleomycin 30,000 IU on days 1, 5 and 15 to a maximum dose of 3x10^5 IU, etoposide 100 mg/m^2 on days 1-5 and cisplatin 20 mg/m^2 on days 1-5, every third week) or EP (BEP minus bleomycin). Patients with clinical stage I non-seminomas without vascular invasion of tumour cells were offered adjuvant chemotherapy or surveillance. Patients with clinical stage I non-seminomas with vascular invasion of tumour cells were recommended adjuvant chemotherapy. Standard chemotherapy for non-seminomas was the BEP regimen; 1-2 cycles in the adjuvant setting and 3-4 cycles for metastatic disease.

The Royal Marsden Hospital staging system was used for staging.

Subgroups of testicular cancer survivors according to cancer treatment, diagnosis and gonadal status

Testicular cancer survivors were grouped according to cancer treatment after unilateral orchidectomy (Papers I-III).

- Surveillance only (SO): no further treatment after unilateral orchidectomy
- Adjuvant chemotherapy (ACT): 1-2 cycles of CBC or carboplatin
- Standard dose chemotherapy (SCT): 3-4 cycles of CBC
- Adjuvant radiotherapy administered to the paraaortic and ipsilateral iliac lymph nodes
- Extensive treatment with chemotherapy (ETC): >4 cycles of CBC or ≥4 cycles of CBC + radiotherapy of targets other than the remaining testicle;
- Other (see Papers II & III)

Adjuvant radiotherapy was given with 2 parallel-opposed anterior-posterior and posterior-anterior equally weighted fields. The anatomic localisation of the irradiation fields is shown in Figure 9.
Figure 9. Target of irradiation in adjuvant radiotherapy to the infradiaphragmal para-aortic and ipsilateral iliacal lymph nodes. (Illustration from SWENOTECA V 214. Printed with permission.)

Diagnostic subgroups (Paper II): Patients were categorized as seminoma or non-seminoma.

Gonadal status (Paper III): Patients were categorized as hypogonadal or eugonadal. (See “Definition of hypogonadism” below.)

Childhood cancer survivors
Childhood cancer survivors were treated with surgery, chemotherapy and radiotherapy, alone or in various combinations, based on cancer diagnosis and treatment protocols valid at the time. (For details on cancer treatment received, e.g. CED, irradiation targets etc., see supplementary information to Paper II.)
Subjects and Methods

Subgroups of childhood cancer survivors according to cancer treatment, diagnosis and gonadal status

Therapeutic subgroups of CCS were identified (Paper II).

- Brain surgery, excluding radiotherapy to any target, excluding chemotherapy.
- Surgery other than brain surgery, excluding radiotherapy to any target, excluding chemotherapy.
- Chemotherapy, excluding radiotherapy to any target, in some cases combined with surgery. A subcategory of patients within this therapeutic subgroup, treated with alkylating agents to a CED of >4000 mg/m² was defined.
- Radiotherapy to the brain, excluding chemotherapy. All subjects also underwent brain surgery.
- Radiotherapy to the brain combined with chemotherapy, excluding cases receiving radiotherapy to the testes. In some cases combined with brain surgery, or surgery other than brain surgery.
- Radiotherapy to the testes, given as TBI or in combination with cranial irradiation. In all cases combined with chemotherapy.
- Radiotherapy to targets other than the testes and/or brain, excluding chemotherapy. In some cases combined with surgery other than brain surgery.
- Radiotherapy to targets other than the testes and/or brain, combined with chemotherapy. In some cases combined with surgery other than brain surgery.

Therapeutic subgroups were created with the intention of comparing the effect of (brain) surgery, radiotherapy to different targets and chemotherapy, alone and in combination. A CED cut-off of >4000 mg/m² was chosen, as treatment with alkylating agents to a CED <4000 mg/m² is unlikely to impair spermatogenesis. 157

In the study described in Paper IV, all CCS receiving radiotherapy to the brain ± chemotherapy and ± radiotherapy to the testes, were combined into one category called “cranial irradiation”. Similarly, all CCS receiving radiotherapy to targets other than the brain and/or testes ± chemotherapy, were combined into one category called “radiotherapy other than brain and/or testes”. This was done as the impact of chemotherapy on BMD was expected to be less pronounced than that of radiotherapy.
SUBJECTS AND METHODS

Diagnostic subgroups for CCS (Papers II & IV, for details see supplementary information to Paper II).

- Leukaemia (ALL and AML)
- Intracranial tumour (brain tumour, pituitary craniopharyngioma and tumour of the pineal gland)
- Lymphoma (Hodgkin’s lymphoma and non-Hodgkin’s lymphoma)
- Testicular cancer
- Wilms’ tumour
- Bone tumour (osteosarcoma, Ewing’s sarcoma and chondrosarcoma)
- Other (epipharyngeal cancer, nasopharyngeal cancer, carcinoid of the lung, malignant melanoma, neuroblastoma, ganglioneuroma, pheochromocytoma, teratoma, rhabdomyosarcoma, bladder cancer, retinoblastoma, spinal teratoma, thyroid cancer, parathyroid adenoma, anaplastic cancer and Langerhans cell histiocytosis)

The distribution of CCS according to diagnostic and therapeutic subgroups is presented in Table 4.
Table 4. Distribution of childhood cancer survivors in subgroups according to diagnosis and treatment.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Brain surgery<sup>a</sup></th>
<th>Surgery other than brain surgery<sup>a</sup></th>
<th>CT<sup>b</sup></th>
<th>RT to brain<sup>c</sup></th>
<th>RT to brain + CT<sup>d</sup></th>
<th>RT to testes<sup>e</sup></th>
<th>RT other<sup>f</sup></th>
<th>RT other + CT<sup>g</sup></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukaemia</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>11</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>Intracranial tumour</td>
<td>15</td>
<td>-</td>
<td>11</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Testicular cancer</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Wilms’ tumour</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bone tumour</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>-</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>20</td>
<td>29</td>
<td>12</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

^a Excluding chemotherapy and excluding radiotherapy to any target.
CT = chemotherapy; RT = radiotherapy
^b Excluding radiotherapy to any target. In 11 cases combined with surgery other than brain surgery. 16 subjects received alkylating agents with a median CED of 4855 mg/m².
^c Excluding CT, including 2 hypophysectomised cases. In all cases combined with brain surgery. Median irradiation dose 54 Gy.
^d Excluding all cases receiving RT to testes. In 2 cases combined with brain surgery, and in 3 cases surgery other than brain surgery. Median irradiation dose 24 Gy. 14 subjects received alkylating agents with a median CED of 5000 mg/m².
^e One case received TBI followed by allogeneic bone marrow transplantation (BMT), one case received RT to the testes combined with TBI followed by autologous BMT, and three cases received RT to the testes combined with RT to the cranium. Median irradiation dose to cranium 24 Gy, and to testes 20 Gy. In all cases combined with CT. 3 subjects received alkylating agents with a median CED of 4800 mg/m².
^f RT to targets other than testes and/or brain, excluding cases receiving CT. In 4 cases combined with surgery other than brain surgery.
^g RT to targets other than testes and/or brain. In 18 cases combined with surgery other than brain surgery. 12 subjects received alkylating agents with a median CED of 9593 mg/m². One subject received high dose chemotherapy followed by autologous BMT.
Subjects in the TCS-B and CCS cohorts and their control groups were included in the study by researchers at the Reproductive Medicine Centre, Malmö. After signing an informed consent form, a structured interview was conducted by a research investigator regarding medical history, current medication, health status and smoking habits. A stadiometer was used for height measurements to the nearest 0.1 cm, and an electric scale for weight to the nearest 0.1 kg. The BMI was determined (kg/m²) (Papers II-IV). No information was collected on fractures (Papers III-IV).
Bone mineral density

The subjects in the TCS-B and CCS cohorts, and their control groups, underwent DXA to assess BMD using Lunar Prodigy (GE Healthcare Lunar, Madison, Wisconsin, USA), software versions 2.15-7.70 for the majority of participants, details described below. DXA was used as it is considered the “gold standard” for BMD assessment and the diagnosis of osteoporosis. Measurements were made of the femoral neck, total hip and lumbar spine, levels L1-L4, with total hip consisting of three regions measured on the proximal femur; femoral neck, trochanteric region and inter-trochanteric region (called neck, troch and inter-troch in Figure 10).

![Figure 10](https://courses.washington.edu/bonephys/). Print with permission.

DXA measurements were performed by the same research technicians throughout the study period. Stability and accuracy were monitored using a manufacturer-supplied phantom three times per week. The precision coefficients (CV%) for DXA have been reported previously: 0.9% for the femoral neck, 0.5% for the total hip and 0.7% for the lumbar spine L1-L4.
During the study period, instrument failure obliged us to change the DXA equipment for the examination of 73 subjects. A cross-calibration was performed, and a formula obtained to adjust the values obtained from the new machine to those obtained from the original one. No inherent bias was found, and very good correspondence was found between measurements made with the two devices. (For details, see Paper III and supplementary information to Paper IV.)

Blood samples

During the inclusion of the TCS-B and CCS cohorts and their controls, the methods used for the analysis of testosterone, SHBG, LH and FSH used at the Department of Clinical Chemistry in Malmö changed. A description of the former and new methods, and the internal validation performed to compare and convert values, is presented in the supplementary information to Paper II.

Inhibin B analysis

Inhibin B was assessed in subjects from the TCS-A cohort. Blood sampling was performed between 8 a.m. and 3 p.m. Blood samples from the subjects in Lund were analysed at the Department of Clinical Chemistry, Skåne University Hospital, Malmö. Samples collected from subjects in Stockholm were analysed at the Department of Clinical Chemistry, Sahlgrenska University Hospital, Göteborg. Inhibin B was measured with the OBI inhibin B ELISA from DSL (Oxford, UK) at both laboratories. The detection limit was 15 ng/L, and total CV’s ranged from 15.3% at a concentration of 28 ng/L to 7.0% at a concentration of 339 ng/L. The normal range of inhibin B in postpubertal men at the two laboratories was 50-330 ng/L (Paper I).

Hormone assays

Fasting venous blood samples were drawn from subjects in the TCS-B and CCS cohorts and their controls between 8.00 a.m. and 10.00 a.m. Serum values of testosterone, LH, FSH and SHBG were measured. All analyses were performed using immuno-based methods. During inclusion in these studies (Papers II-IV), the methods of analysis of these hormones changed. Descriptions of the former and new methods, and the internal validation used for conversion, are presented in the supplementary information to Paper II.

Free testosterone was calculated as recommended by Vermeulen et al. 220.
Definition of azoospermia

Long-term azoospermia was defined as the absence of spermatozoa in the ejaculate 3 or 5 years after cancer treatment (Paper I). Azoospermia was diagnosed as follows: 2 drops (6 μg each) taken from the semen sample were put on a slide under 22 mm x 22 mm coverslips and examined at x40 magnification. If no spermatozoa were seen, the semen sample was centrifuged at 6000 rpm for 10 minutes, and the supernatant was decanted. The seminal pellet was resuspended in approximately 50 μL of the seminal plasma. Forty μL of the suspended seminal pellet was then placed on a slide under a 24 mm x 50 mm coverslip, and examined with phase-contrast optics at x200 magnification. The entire coverslip was scanned systematically. If no spermatozoa were seen, the patient was considered azoospermic.

Definition of hypogonadism

A strictly biochemical definition of hypogonadism was used (Papers II-IV). Hypogonadism was defined as S-testosterone <10 nmol/L and/or S-LH >10 IU/L, or ongoing TRT. In the study described in Paper II, hypogonadal subjects were also categorized as having primary hypogonadism (S-testosterone <10 nmol/L, S-LH and S-FSH both >10 IU/L with S-FSH > S-LH), secondary hypogonadism (S-testosterone <10 nmol/L, S-LH and S-FSH both ≤10 IU/L) 221, compensated hypogonadism (S-testosterone ≥10 nmol/L, S-LH >10 IU/L) 69 or ongoing TRT. Subjects with S-testosterone <10 nmol/L, S-LH ≤10 IU/L and S-FSH >10 IU/L were defined as having primary hypogonadism, as elevated FSH suggests testicular and not pituitary failure.

Definition of low bone mineral density

Z-scores, a comparison of an individual’s BMD with that of a healthy reference population (NHANES III) of the same sex, age and weight and expressed as standard deviations, were obtained from the machine. By applying one standard deviation as the normal range, LBD was defined as a Z-score ≤-1.0. Z-score was used because of the relatively low age of the subjects.
Statistical methods

All statistical analyses were performed using SPSS version 20.0 (SPSS Inc., Chicago, IL, USA), except for two-tailed Fisher’s exact test and calculations of the frequency of azoospermia including 95% confidence intervals in Paper I, where an online calculator was used (www.graphpad.com). P-values <0.05 were considered statistically significant. Descriptive data are presented as mean values and standard deviations when the data are normally distributed, and medians and inter-quartile ranges when they are non-normally distributed. Categorical variables are expressed as numbers and percentages.

Frequency and predictive factors of long-term azoospermia

The results obtained from semen samples collected at T36 and T60 were combined (T36-60) in order to obtain sufficient numbers of individuals. If semen samples from both T36 and T60 were available, the results from T36 were used, as more patients delivered semen samples only at T36 than only at T60. The mean risk of long-term azoospermia in subjects in TCS-A (including 95% confidence intervals) in relation to the treatment given was calculated as the fraction of men without spermatozoa in the ejaculate at T36-60, for all patients and for patients with longitudinal data, respectively (Paper I). Patients under surveillance only after orchidectomy were used as controls for the respective therapy groups. Two-tailed Fisher’s exact test was used for comparisons between different treatment groups.

Receiver operating characteristic curve analyses were performed with previous cryptorchidism and inhibin B levels at T0, T6, T12 and T24 tested as potential predictors of developing azoospermia at T36. Cut-off levels of inhibin B were chosen to give 100% sensitivity and maximal specificity in predicting azoospermia.

The positive predictive value (PPV) and negative predictive value (NPV) were calculated for inhibin B levels at T0, T6, T12 and T24 in relation to the risk of azoospermia at T36. Positive predictive value was calculated as the proportion of patients with inhibin B levels below the cut-off with azoospermia at T36, and NPV as the proportion of patients with inhibin B levels above the cut-off having spermatozoa in the ejaculate at T36.

Hormonal levels and risk factors for hypogonadism

The mean difference (95% CI) in S-testosterone, free testosterone, S-LH, S-SHBG and S-FSH, between controls and TCS-B as well as CCS, was calculated after the exclusion of patients on TRT (Paper II). A univariate linear model was used, which
was adjusted for age and smoking, as these factors are known to affect testosterone levels \(^{69,222}\).

The proportion of subjects with hypogonadism was also calculated, including those on TRT. Binary logistic regression with adjustment for age and smoking was used to assess ORs for hypogonadism in cancer survivors compared to controls. Odds ratios were calculated for hypogonadism in CCS and TCS-B, for all cancer survivors, diagnostic subgroups and therapeutic subgroups. As a lack of, or removal of, the pituitary gland inevitably leads to hypogonadism, two hypophysectomized CCS were excluded from the calculations of the ORs for hypogonadism for different therapeutic subgroups, but were included in calculations of the ORs for hypogonadism for all CCS, as well as for the diagnostic subgroups. Correspondingly, two patients in the TCS-B cohort were excluded from the calculations of the ORs for hypogonadism for therapeutic subgroups (one receiving radiotherapy to the remaining testicle due to GCNIS, and one bilaterally orchidectomized), but both were included in calculations of the ORs for all TCS as well as for the diagnostic subgroups.

Risk factors for low bone mineral density

Total hip and lumbar spine L1-4 BMD were compared for cancer survivors and controls, using linear regression models with adjustment for age, BMI and current smoking.

In the study described in Paper III, analyses of total hip and lumbar spine L-L4 BMD were performed for

- all TCS vs. controls,
- hypogonadal TCS (all hypogonadal, and those receiving and not receiving TRT, respectively) vs. eugonadal TCS,
- therapeutic subgroups of TCS (see above) vs. controls.

The two TCS receiving testicular irradiation were excluded from this analysis due to the small group size. Similar comparisons were made by calculating the ORs for LBD for total hip and lumbar spine L1-L4, using binary logistic regression. One TCS declined DXA, and his control was excluded from the BMD analyses.

In order to investigate possible local effects of scattered irradiation arising from adjuvant radiotherapy in TCS on BMD, BMD and Z-scores for the irradiated and non-irradiated hip were compared using the Wilcoxon test for paired data.
In the study described in Paper IV, analyses of total hip and lumbar spine L1-L4 BMD were performed for

- all CCS vs. controls,
- untreated hypogonadal CCS and CCS receiving TRT, respectively, vs. eugonadal CCS,
- therapeutic subgroups of CCS (see above) vs. controls,
- CCS receiving chemotherapy, excluding radiotherapy, and treated with alkylating agents, CCS receiving chemotherapy, excluding radiotherapy, and treated with methotrexate, and CCS receiving chemotherapy, excluding radiotherapy, and also treated with glucocorticoids, separately, vs. controls,
- diagnostic subgroups of CCS (see above) vs. controls.

There was considerable overlap in the subgroups of CCS receiving chemotherapy, excluding radiotherapy, and treated with alkylating agents, methotrexate or glucocorticoids, where 4 subjects were receiving 1 drug, 12 were receiving 2 drugs and 8 were receiving 3 drugs, hence, these subgroups were tested separately vs. controls.

A unilateral regression model was used, with adjustment for age, BMI and current smoking, for analyses of total hip and lumbar spine L1-L4 BMD. Similar comparisons were made by calculating ORs for LBD for total hip and lumbar spine L1-L4, using binary logistic regression.
Results

Azoospermia in testicular cancer survivors

The mean age (SD) of the TCS at the start of the study was 32.6 (7.2) years in TCS-A and 31.1 (6.1) years in the subgroup of 117 TCS with longitudinal data.

Treatment modality and risk of azoospermia

Long-term azoospermia was found in 7.8% of TCS-A and in 7.7% of the subgroup of TCS with longitudinal data (Tables 5 and 6).

When comparing TCS receiving ACT, SCT, adjuvant radiotherapy or ETC after orchidectomy, to TCS receiving SO after orchidectomy, treatment with ETC was associated with a statically significantly increased risk of azoospermia in the total patient cohort (63% vs. 4.4%, p=0.0018, Table 5). A similar frequency of azoospermia was found in TCS with longitudinal data receiving ETC (67% vs. 0%, p=0.17, Table 6). None of the other treatment categories were statistically significantly associated with azoospermia, neither in the TCS-A cohort nor in the TCS with longitudinal data.
Table 5. Azoospermia in subjects in testicular cancer survivors cohort A, 36-60 months post-treatment, according to type of treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Azoo. (n)</th>
<th>Azoo. (%)</th>
<th>95 % CI</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>23</td>
<td>1</td>
<td>4.4</td>
<td>0.0-23</td>
<td>-</td>
</tr>
<tr>
<td>ACT</td>
<td>74</td>
<td>1</td>
<td>1.4</td>
<td>0.0-8.0</td>
<td>0.42</td>
</tr>
<tr>
<td>SCT</td>
<td>50</td>
<td>5</td>
<td>10</td>
<td>3.9-22</td>
<td>0.66</td>
</tr>
<tr>
<td>RT</td>
<td>62</td>
<td>5</td>
<td>8.1</td>
<td>3.1-18</td>
<td>1.0</td>
</tr>
<tr>
<td>ETC</td>
<td>8</td>
<td>5</td>
<td>63</td>
<td>30-87</td>
<td>0.0018</td>
</tr>
<tr>
<td>Total</td>
<td>217</td>
<td>17</td>
<td>7.8</td>
<td>4.9-12</td>
<td>-</td>
</tr>
</tbody>
</table>

N = Number of patients in each subgroup
Azoo. = Azoospermia
CI = confidence interval
* Compared to patients with no further treatment after orchidectomy
SO = Surveillance only (no further treatment after orchidectomy)
ACT = Adjunct chemotherapy; 1-2 cycles of cisplatin-based chemotherapy (CBC) or carboplatin
SCT = Standard dose chemotherapy; 3-4 cycles of CBC
RT = Adjunct radiotherapy administered to the paraaortic and ipsilateral iliac lymph nodes
ETC = extensive treatment with chemotherapy; >4 cycles of CBC or ≥4 cycles of CBC + radiotherapy at targets other than the remaining testicle

Table 6. Azoospermia 36-60 months post-treatment in relation to treatment, in testicular cancer survivors with spermatozoa in the ejaculate after orchidectomy but before further treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Azoo. (n)</th>
<th>Azoo. (%)</th>
<th>95 % CI</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.0-62</td>
<td>-</td>
</tr>
<tr>
<td>ACT</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0.0-8.9</td>
<td>1.0</td>
</tr>
<tr>
<td>SCT</td>
<td>31</td>
<td>4</td>
<td>13</td>
<td>4.5-29</td>
<td>1.0</td>
</tr>
<tr>
<td>RT</td>
<td>29</td>
<td>1</td>
<td>3.5</td>
<td>0.0-19</td>
<td>1.0</td>
</tr>
<tr>
<td>ETC</td>
<td>6</td>
<td>4</td>
<td>67</td>
<td>30-91</td>
<td>0.17</td>
</tr>
<tr>
<td>Total</td>
<td>117</td>
<td>9</td>
<td>7.7</td>
<td>3.9-14</td>
<td>-</td>
</tr>
</tbody>
</table>

N = Number of patients in each subgroup
Azoo. = Azoospermia
CI = confidence interval
* Compared to patients with no further treatment after orchidectomy
SO = Surveillance only (no further treatment after orchidectomy)
ACT = Adjunct chemotherapy; 1-2 cycles of cisplatin-based chemotherapy (CBC) or carboplatin
SCT = Standard dose chemotherapy; 3-4 cycles of CBC
RT = Adjunct radiotherapy administered to the paraaortic and ipsilateral iliac lymph nodes
ETC = extensive treatment with chemotherapy; >4 cycles of CBC or ≥4 cycles of CBC + radiotherapy at targets other than the remaining testicle
Inhibin B and cryptorchidism as predictors of azoospermia

Inhibin B concentrations in serum at T₀, T₆, T₁₂ and T₂₄ all predicted azoospermia at T₃₆ with 100% sensitivity, but with different specificities, PPVs and cut-off levels (Table 7). Inhibin B at T₁₂ was found to be the best predictor of long-term azoospermia, as it resulted in the highest PPV and maximal specificity for azoospermia at T₃₆. All TCS with spermatozoa in the ejaculate after orchidectomy but before further treatment, and an inhibin B level >56 ng/L 12 months after cancer treatment, had spermatozoa in the ejaculate 36 months after treatment.

Table 7. Inhibin B level as a predictor of azoospermia in testicular cancer survivors 36 months after treatment

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Azoo. (n)</th>
<th>Inhibin B cut-off, ng/L</th>
<th>Sens., %</th>
<th>Spec., %</th>
<th>AUC</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀</td>
<td>43</td>
<td>3</td>
<td>112.00</td>
<td>100</td>
<td>40.0</td>
<td>0.750</td>
<td>0.11</td>
<td>1.00</td>
</tr>
<tr>
<td>T₆</td>
<td>51</td>
<td>7</td>
<td>49.65</td>
<td>100</td>
<td>70.5</td>
<td>0.883</td>
<td>0.35</td>
<td>1.00</td>
</tr>
<tr>
<td>T₁₂</td>
<td>62</td>
<td>8</td>
<td>55.90</td>
<td>100</td>
<td>77.8</td>
<td>0.911</td>
<td>0.40</td>
<td>1.00</td>
</tr>
<tr>
<td>T₂₄</td>
<td>77</td>
<td>8</td>
<td>97.75</td>
<td>100</td>
<td>56.5</td>
<td>0.899</td>
<td>0.21</td>
<td>1.00</td>
</tr>
</tbody>
</table>

N = Number of patients in each subgroup
Azoo. = Azoospermia 36 months after treatment
Sens. = Sensitivity
Spec. = Specificity
AUC = Area under the curve
PPV = Positive predictive value: proportion of patients with inhibin B below cut-off presenting with azoospermia at T₃₆
NPV = Negative predictive value: proportion of patients with inhibin B above cut-off having spermatozoa in the ejaculate at T₃₆

Previous cryptorchidism proved non-significant regarding the risk of azoospermia at T₃₆ (data not shown).
Hypogonadism and bone mineral density in young male cancer survivors

The characteristics of TCS-B and CCS, divided into subgroups according to gonadal status, and their respective controls are given in Tables 8 and 9.

Table 8. Characteristics of testicular cancer survivors, all and divided into subgroups based on gonadal status*, and age-matched controls

<table>
<thead>
<tr>
<th></th>
<th>Testicular cancer survivors</th>
<th>Eugonadal untreated†</th>
<th>Hypogonadal untreated†</th>
<th>Testosterone replacement therapy</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>92</td>
<td>58</td>
<td>23</td>
<td>9</td>
<td>92</td>
</tr>
<tr>
<td>Age at diagnosis (y)</td>
<td>30.8 (7.2)</td>
<td>30.0 (7.0)</td>
<td>32.7 (8.2)</td>
<td>31.4 (5.9)</td>
<td>NA</td>
</tr>
<tr>
<td>Age at inclusion (y)</td>
<td>40.3 (7.4)</td>
<td>39.7 (7.6)</td>
<td>41.1 (7.5)</td>
<td>42.0 (6.2)</td>
<td>41.2 (7.3)</td>
</tr>
<tr>
<td>Length of follow-up (y)</td>
<td>9.2 (2.7)</td>
<td>9.4 (2.8)</td>
<td>8.2 (2.4)</td>
<td>10.2 (2.2)</td>
<td>NA</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.84 (0.06)</td>
<td>1.83 (0.06)</td>
<td>1.84 (0.06)</td>
<td>1.86 (0.07)</td>
<td>1.82 (0.08)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>90.3 (14.0)</td>
<td>86.6 (10.6)</td>
<td>96.6 (19.4)</td>
<td>97.2 (10.9)</td>
<td>85.0 (12.6)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.8 (3.9)</td>
<td>25.8 (2.7)</td>
<td>28.5 (5.5)</td>
<td>28.4 (4.1)</td>
<td>25.5 (3.3)</td>
</tr>
<tr>
<td>Smoking, current</td>
<td>21 (23)</td>
<td>11 (19)</td>
<td>8 (35)</td>
<td>2 (22)</td>
<td>8 (9.1)</td>
</tr>
<tr>
<td>S-testosterone (nmol/L)</td>
<td>13.0 (10.5-15.0)</td>
<td>13.8 (11.9-15.7)</td>
<td>9.3 (8.2-11.7)</td>
<td>15.0 (10.6-18.8)</td>
<td>13.3 (10.9-17.0)</td>
</tr>
<tr>
<td>S-LH (IU/L)‡</td>
<td>5.1 (3.7-7.0)</td>
<td>4.9 (3.5-6.1)</td>
<td>6.8 (4.1-12.4)</td>
<td>NA</td>
<td>3.3 (2.1-4.2)</td>
</tr>
</tbody>
</table>

* Hormone data missing for 2 testicular cancer survivors
† Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH>10 IU/L
‡ 5 cases (5.5% of testicular cancer survivors) presented with isolated high S-LH
Age at diagnosis, age at inclusion, length of follow-up, height, weight and body mass index are reported as means (SD)
Smoking is presented as number (%)
S-testosterone and S-LH are reported as medians (interquartile range) due to non-normal distribution
‡ 9 testicular cancer survivors on testosterone replacement therapy excluded
NA = Not applicable
<table>
<thead>
<tr>
<th></th>
<th>Childhood cancer survivors</th>
<th>Eugonadal</th>
<th>Hypogonadal untreated†</th>
<th>Testosterone replacement therapy</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>125</td>
<td>93</td>
<td>18</td>
<td>13</td>
<td>125</td>
</tr>
<tr>
<td>Age at diagnosis (y)</td>
<td>9.6 (5.4-15.0)</td>
<td>9.6 (5.3-16.0)</td>
<td>9.6 (5.4-14.4)</td>
<td>8.9 (6.5-15)</td>
<td>NA</td>
</tr>
<tr>
<td>Age at inclusion (y)</td>
<td>33.7 (30.2-40.1)</td>
<td>33.7 (29.8-40.0)</td>
<td>32.9 (29.6-31.4)</td>
<td>35.7 (33.1-39.1)</td>
<td>34.4</td>
</tr>
<tr>
<td>Length of follow-up (y)</td>
<td>24.3 (7.1)</td>
<td>24.4 (7.4)</td>
<td>24.4 (5.8)</td>
<td>23.2 (7.7)</td>
<td>NA</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.80 (1.75-1.86)</td>
<td>1.81 (1.77-1.85)</td>
<td>1.81 (1.76-1.84)</td>
<td>1.78 (1.73-1.88)</td>
<td>1.82</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>82.1 (72.0-91.5)</td>
<td>80.7 (71.1-87.1)</td>
<td>84.3 (75.2-102.4)</td>
<td>91.7 (77.4-108.4)</td>
<td>81.4</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.1 (22.8-27.6)</td>
<td>24.8 (22.6-26.8)</td>
<td>26.1 (24.5-31.0)</td>
<td>30.3 (26.8-31.3)</td>
<td>24.7</td>
</tr>
<tr>
<td>Smoking, current</td>
<td>10 (8.2)</td>
<td>9 (10)</td>
<td>-</td>
<td>1 (7.7)</td>
<td>17 (14)</td>
</tr>
<tr>
<td>S-testosterone (nmol/L)</td>
<td>14.1 (11.5-17.3)</td>
<td>14.8 (13.2-18.1)</td>
<td>9.0 (8.0-9.4)</td>
<td>14.4 (9.5-17.0)</td>
<td>14.7</td>
</tr>
<tr>
<td>S-LH (IU/L)‡</td>
<td>4.0 (2.5-5.6)</td>
<td>4.0 (2.7-5.7)</td>
<td>4.0 (1.9-5.3)</td>
<td>NA</td>
<td>3.1</td>
</tr>
</tbody>
</table>

* Hormone data missing for 1 childhood cancer survivor
Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH >10 IU/L
† 2 cases (1.6% of childhood cancer survivors) presented with isolated high S-LH
BMI = body mass index
Age at diagnosis, age at inclusion, height, weight, BMI, S-testosterone and S-LH are reported as medians (interquartile range) due to non-normal distribution
Length of follow-up is reported as means (SD)
Smoking is presented as number (%)‡ 13 childhood cancer survivors on testosterone replacement therapy excluded
NA = Not applicable
Many CCS were taking medication that may affect BMD (immunosuppressive oral glucocorticoids, TRT, and calcium + vitamin D), or medication indicating pituitary failure (GHRT, glucocorticoid replacement and TRT), or had untreated hypogonadism. The distribution of medications and untreated hypogonadism is illustrated in Figure 11.

Figure 11. Distribution of medications and untreated hypogonadism among childhood cancer survivors: growth hormone replacement therapy, testosterone replacement therapy, glucocorticoid replacement, immunosuppressive oral glucocorticoids, calcium + vitamin D, or S-testosterone <10 nmol/L and/or S-LH >10 IU/L.

Hormonal levels in cancer survivors and controls

Childhood cancer survivors

Childhood cancer survivors exhibited higher S-LH levels than controls (mean difference 1.1 IU/L, 95% CI: 0.55; 1.6 IU/L, p<0.001). No difference was seen between the mean levels of S-testosterone and free testosterone.

Testicular cancer survivors

Testicular cancer survivors exhibited higher S-LH levels (mean ratio 1.6 IU/L, 95% CI: 1.4; 1.9 IU/L, p<0.001) and lower free testosterone levels (mean difference -0.023 nmol/L, 95% CI: -0.044; -0.002 nmol/L, p=0.034) than their controls. No difference was seen between the mean levels of S-testosterone (Paper II).
Hypogonadism in cancer survivors and controls

Childhood cancer survivors

Twenty-six percent of CCS and 14% of their controls were classified as hypogonadal. Frequencies of CCS and controls with primary, secondary or compensated hypogonadism, or TRT, are presented in Figure 12.

![Figure 12](image-url). The frequencies of childhood cancer survivors (CCS) and controls (contr.) with primary hypogonadism (HG), secondary HG, compensated (comp.) HG or testosterone replacement therapy (TRT).
The OR for hypogonadism in CCS compared to controls was 2.1 (95% CI: 1.1; 4.1, p=0.025). The ORs for CCS, and diagnostic subgroups of CCS, are presented in Figure 13 and Paper II.

![Figure 13](image-url)
Figure 13. Odds ratios (95% CI) for hypogonadism in childhood cancer survivors (CCS), and diagnostic subgroups of CCS, compared to controls. Adjusted for age at inclusion and current smoking.

In CCS treated for leukaemia, intracranial tumour or lymphoma, the ORs for hypogonadism in subjects treated with or without radiotherapy were calculated (Figure 14). No hypogonadal subjects were found among CCS treated for lymphoma without radiotherapy. The OR for hypogonadism was increased in CCS with intracranial tumour treated with radiotherapy, but the OR became non-significant after the exclusion of 2 hypophysectomized cases (OR 2.7, 95% CI: 0.63; 12, p=0.18).
Figure 14. Odds ratios (95% CI) for hypogonadism in childhood cancer survivors (CCS), and CCS treated for leukemia, intracranial tumour or lymphoma, with or without radiotherapy (RT), compared to controls. No hypogonadal subjects were found among CCS treated for lymphoma without radiotherapy. Adjusted for age at inclusion and current smoking.
The ORs for hypogonadism in CCS, and therapeutic subgroups of CCS, are presented in Figure 15 and Paper II.

Figure 15. Odds ratios (95% CI) for hypogonadism in childhood cancer survivors (CCS), and therapeutic subgroups of CCS, compared to controls. Surgery other = surgery other than brain surgery; CT = chemotherapy; RT = radiotherapy; RT other = RT to targets other than brain and/or testes. Adjusted for age at inclusion and current smoking.
Testicular cancer survivors

Thirty-six percent of TCS-B and 19% of their controls were classified as hypogonadal. Frequencies of TCS-B and controls with primary, secondary or compensated hypogonadism, or TRT, are presented in Figure 16 and Paper II.

![Figure 16](image-url)

Figure 16. The frequencies of testicular cancer survivors (TCS) and controls (contr.) with primary hypogonadism (HG), secondary HG, compensated (comp.) HG or testosterone replacement therapy (TRT).
The OR for hypogonadism in TCS-B compared to controls was 2.3 (95% CI: 1.1; 4.7, p=0.021). The ORs for hypogonadism in TCS-B, and therapeutic subgroups of TCS-B, are presented in Figure 17 and Paper II. The OR for hypogonadism was not increased for the remaining group of TCS after the exclusion of the ETC subgroup (OR: 1.9, 95% CI: 0.90; 4.0, p=0.093).

Figure 17. Odds ratios (95% CI) for hypogonadism in testicular cancer survivors (TCS), and therapeutic subgroups of TCS, compared to controls.

SO = Surveillance only

1-2 CT = 1-2 cycles of adjuvant cisplatin-based chemotherapy (CBC) or carboplatin

3-4 CT = 3-4 cycles of adjuvant CBC

RT = Adjuvant radiotherapy administered to the paraaortic and ipsilateral iliac lymph nodes

ETC = extensive treatment with chemotherapy; ≥4 cycles of CBC or ≥4 cycles of CBC + radiotherapy at targets other than the remaining testicle

Adjusted for age at inclusion and current smoking
Bone mineral density in cancer survivors and controls

Background characteristics regarding BMD in TCS and CCS are presented in Tables 10 and 11.

Table 10. Bone mineral density (BMD) in testicular cancer survivors, all and divided into subgroups based on gonadal status*, and age-matched controls

<table>
<thead>
<tr>
<th></th>
<th>Testicular cancer survivors</th>
<th>Eugonadal</th>
<th>Hypogonadal untreated†</th>
<th>Testosterone replacement therapy</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>91</td>
<td>58</td>
<td>22</td>
<td>9</td>
<td>91</td>
</tr>
<tr>
<td>BMD (g/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hip</td>
<td>1.073</td>
<td>1.082</td>
<td>1.066</td>
<td>1.044</td>
<td>1.082</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.120)</td>
<td>(0.167)</td>
<td>(0.084)</td>
<td>(0.125)</td>
</tr>
<tr>
<td>LS</td>
<td>1.248</td>
<td>1.268</td>
<td>1.207</td>
<td>1.206</td>
<td>1.206</td>
</tr>
<tr>
<td>L1-L4</td>
<td>(0.162)</td>
<td>(0.152)</td>
<td>(0.198)</td>
<td>(0.125)</td>
<td>(0.159)</td>
</tr>
<tr>
<td>Z-score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hip</td>
<td>-0.12 (0.93)</td>
<td>-0.02 (0.86)</td>
<td>-0.20 (1.18)</td>
<td>-0.45 (0.71)</td>
<td>0.04 (0.87)</td>
</tr>
<tr>
<td>LS</td>
<td>-0.03 (1.29)</td>
<td>0.19 (1.20)</td>
<td>-0.43 (1.48)</td>
<td>-0.57 (1.20)</td>
<td>-0.23 (1.24)</td>
</tr>
<tr>
<td>L1-L4</td>
<td>(1.29)</td>
<td>(1.20)</td>
<td>(1.48)</td>
<td>(1.20)</td>
<td>(1.24)</td>
</tr>
<tr>
<td>LBD (Z-score < -1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hip</td>
<td>17 (19)</td>
<td>8 (14)</td>
<td>6 (27)</td>
<td>2 (22)</td>
<td>11 (12)</td>
</tr>
<tr>
<td>LS</td>
<td>19 (21)</td>
<td>8 (14)</td>
<td>9 (41)</td>
<td>2 (22)</td>
<td>24 (26)</td>
</tr>
<tr>
<td>L1-L4</td>
<td>(21)</td>
<td>(14)</td>
<td>(41)</td>
<td>(22)</td>
<td>(26)</td>
</tr>
</tbody>
</table>

BMD data missing for 1 testicular cancer survivor, and corresponding control excluded
* Hormone data missing for 2 testicular cancer survivors, of which one with LBD total hip
Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH >10 IU/L
† 5 cases (5.5% of testicular cancer survivors) had isolated high S-LH
BMD and Z-score are reported as means (SD)
LS = lumbar spine
LBD = low BMD
LBD is reported as number (%)
Table 11. Bone mineral density (BMD) in childhood cancer survivors, all and divided into subgroups based on gonadal status*, and age-matched controls

<table>
<thead>
<tr>
<th></th>
<th>Childhood cancer survivors</th>
<th>Eugonadal</th>
<th>Hypogonadal untreated†</th>
<th>TRT</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>125</td>
<td>93</td>
<td>18</td>
<td>13</td>
<td>125</td>
</tr>
<tr>
<td>BMD (g/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hip§</td>
<td>1.060 (0.150)</td>
<td>1.070 (0.139)</td>
<td>0.98 (0.174)</td>
<td>1.068 (0.165)</td>
<td>1.065 (0.156)</td>
</tr>
<tr>
<td>LS</td>
<td>1.198 (0.148)</td>
<td>1.202 (0.129)</td>
<td>1.143 (0.203)</td>
<td>1.225 (0.164)</td>
<td>1.184 (0.139)</td>
</tr>
<tr>
<td>L1-L4¶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hip§</td>
<td>-0.17 (1.06)</td>
<td>-0.05 (1.0)</td>
<td>-0.8 (1.2)</td>
<td>-0.2 (0.92)</td>
<td>-0.13 (1.09)</td>
</tr>
<tr>
<td>LS</td>
<td>-0.25 (1.11)</td>
<td>-0.16 (0.98)</td>
<td>-0.84 (1.5)</td>
<td>-0.26 (1.1)</td>
<td>-0.36 (1.10)</td>
</tr>
<tr>
<td>L1-4¶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z-score < -1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hip§</td>
<td>26 (21)</td>
<td>15 (16)</td>
<td>7 (39)</td>
<td>4 (31)</td>
<td>27 (22)</td>
</tr>
<tr>
<td>LS</td>
<td>27 (22)</td>
<td>18 (20)</td>
<td>5 (28)</td>
<td>4 (31)</td>
<td>35 (28)</td>
</tr>
<tr>
<td>L1-4¶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Hormone data missing for 1 childhood cancer survivor
Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH >10 IU/L
† 2 cases (1.6% of childhood cancer survivors) had isolated high S-LH
TRT = testosterone replacement therapy
BMD and Z-score are reported as means (SD)
§ Mean of right and left side, except for 2 childhood cancer survivors and 1 control with unilateral values.
LS = lumbar spine
¶ Data missing for 1 childhood cancer survivor and 1 control
LBD = low BMD
LBD is reported as number (%)
Total cohorts of cancer survivors

Data on BMD in the total hip and lumbar spine L1-L4, and the ORs for LBD at the total hip and lumbar spine L1-L4, in TCS compared to controls, are presented in Table 12. All estimates were robust for the exclusion of men on oral corticosteroids or TRT (Paper III).

Table 12. Mean differences in bone mineral density (BMD) and odds ratios (ORs) for low BMD (LBD, defined as Z-score < -1): testicular cancer survivors (TCS) vs. controls. Adjusted for age, body mass index and current smoking*

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD, (g/cm²)*</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>p</th>
<th>OR for LBD (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hip</td>
<td>TCS</td>
<td>90</td>
<td>1.072 (0.130)</td>
<td>17 (19)</td>
<td>-0.027 (-0.062; 0.009)</td>
<td>0.14</td>
<td>1.6 (0.69; 3.8)</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>87</td>
<td>1.081 (0.126)</td>
<td>11 (12)</td>
<td></td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>LS L1-L4</td>
<td>TCS</td>
<td>90</td>
<td>1.248 (0.163)</td>
<td>19 (21)</td>
<td>0.027 (-0.021; 0.075)</td>
<td>0.27</td>
<td>0.64 (0.31; 1.3)</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>87</td>
<td>1.205 (0.162)</td>
<td>24 (26)</td>
<td></td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
</tbody>
</table>

* Smoking data missing for 1 testicular cancer survivor and 4 controls

N = Number participating in analyses

Unadjusted mean (SD)

Ref = Reference group

LS = lumbar spine
Bone mineral density in the total hip and lumbar spine L1-L4, and ORs for LBD at the total hip and lumbar spine L1-L4, in CCS compared to controls, are presented in Table 13. All results were robust for the exclusion of cases on TRT, GHRT, immunosuppressive oral glucocorticoids or treatment with calcium + vitamin D (Paper IV), and did not change significantly when one CCS on calcium + vitamin D treatment without GHRT was included in the estimation (supplementary information to Paper IV).

Table 13. Mean differences in bone mineral density (BMD) and odds ratios (ORs) of a low BMD (LBD, defined as Z-score < -1) in childhood cancer survivors (CCS) and controls. Adjusted for age, body mass index and current smoking.

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD (g/cm²)#</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>P</th>
<th>OR for LBD (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hip</td>
<td>CCS</td>
<td>122</td>
<td>1.060 (0.151)</td>
<td>26 (21)</td>
<td>-0.014 (-0.052; 0.023)</td>
<td>0.44</td>
<td>0.95 (0.51; 1.8)</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>122</td>
<td>1.065 (0.158)</td>
<td>27 (22)</td>
<td>Ref</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>LS L1-L4</td>
<td>CCS</td>
<td>121</td>
<td>1.199 (0.150)</td>
<td>27 (22)</td>
<td>0.006 (-0.030; 0.041)</td>
<td>0.76</td>
<td>0.70 (0.38; 1.3)</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>121</td>
<td>1.186 (0.141)</td>
<td>35 (29)</td>
<td>Ref</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
</tbody>
</table>

* Smoking data missing for 3 CCS and 3 controls.
N = Number participating in analyses
Unadjusted mean (SD)
Ref = Reference group
LS = lumbar spine
Data on lumbar spine L1-L4 missing for 1 childhood cancer survivor and 1 control.
Hypogonadal vs. eugonadal cancer survivors

Both untreated hypogonadal TCS and TCS on TRT exhibited statistically significantly lower total hip BMD than eugonadal TCS. Statistical significance was reached for lumbar spine L1-L4 BMD in TCS with untreated hypogonadism but not in TCS on TRT (Table 14). Correspondingly, the ORs for total hip LBD were increased in both treated and untreated hypogonadal TCS, but reached borderline statistical significance only in the latter subgroup. Hypogonadal untreated TCS had statistically significantly increased OR for lumbar spine L1-L4 LBD, whereas TCS on TRT did not (Table 14, Figure 18).

Table 14. Mean differences in bone mineral density (BMD) and odds ratios (ORs) for low BMD (LBD, defined as Z-score < -1) in testicular cancer survivors: untreated hypogonadal (HG) and hypogonadal on testosterone replacement therapy (TRT) vs. eugonadal. Adjusted for age, body mass index and current smoking*.

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD (g/cm²)*</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>p</th>
<th>OR for LBD (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HG</td>
<td>22</td>
<td>1.066 (0.167)</td>
<td>6 (27)</td>
<td>-0.063 (-0.122; -0.004)</td>
<td>0.04</td>
<td>3.7 (1.0; 14)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>TRT</td>
<td>9</td>
<td>1.044 (0.084)</td>
<td>2 (22)</td>
<td>-0.085 (-0.168; -0.003)</td>
<td>0.04</td>
<td>3.1 (0.48; 20)</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Eugonadal</td>
<td>56</td>
<td>1.081 (0.121)</td>
<td>7 (13)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>HG</td>
<td>22</td>
<td>1.207 (0.198)</td>
<td>9 (41)</td>
<td>-0.097 (-0.179; -0.014)</td>
<td>0.02</td>
<td>4.1 (1.3; 13)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>TRT</td>
<td>9</td>
<td>1.206 (0.125)</td>
<td>2 (22)</td>
<td>-0.092 (-0.206; 0.023)</td>
<td>0.12</td>
<td>1.7 (0.28; 9.9)</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Eugonadal</td>
<td>56</td>
<td>1.268 (0.154)</td>
<td>8 (13)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
</tbody>
</table>

* Smoking or hormone data missing for 3 TCS, and one testicular cancer survivor on oral corticosteroids excluded from the analysis.

N = Number participating in analyses

* Unadjusted mean (SD)

Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH >10 IU/L

Ref = Reference group

LS = Lumbar spine
Untreated hypogonadal CCS exhibited statistically significantly lower total hip and lumbar spine L1-L4 BMD than eugonadal CCS. Childhood cancer survivors with untreated hypogonadism also had a significantly increased OR for total hip LBD, but not for lumbar spine L1-L4 LBD. No statistically significant difference was found in BMD or the OR for LBD between CCS receiving TRT and eugonadal CCS (Table 15, Figure 19). All estimates were robust for the exclusion of patients on immunosuppressive oral glucocorticoids or treatment with calcium + vitamin D, and adjustment for GHRT (Paper IV), and for the exclusion of the 2 cases with isolated high LH (supplementary information to Paper IV).
Table 15. Mean differences in bone mineral density (BMD) and odds ratios (ORs) for low BMD (LBD, defined as Z-score < -1) in childhood cancer survivors: untreated hypogonadal and hypogonadal on testosterone replacement therapy (TRT) vs. eugonadal. Adjusted for age, body mass index and current smoking*

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD (g/cm²)#</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>p</th>
<th>OR for LBD (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypogonadal untreated</td>
<td>18</td>
<td>0.985 (0.174)</td>
<td>7 (39)</td>
<td>-0.139 (-0.210; -0.067)</td>
<td><0.001</td>
<td>4.3 (1.3; 14)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>TRT</td>
<td>13</td>
<td>1.068 (0.165)</td>
<td>4 (31)</td>
<td>-0.063 (-0.145; 0.019)</td>
<td>0.13</td>
<td>3.1 (0.76; 13)</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Eugonadal</td>
<td>90</td>
<td>1.072 (0.140)</td>
<td>15 (17)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>Hypogonadal untreated</td>
<td>18</td>
<td>1.143 (0.203)</td>
<td>5 (28)</td>
<td>-0.102 (-0.174; -0.030)</td>
<td>0.006</td>
<td>1.7 (0.51; 5.8)</td>
<td>0.38</td>
</tr>
<tr>
<td>LS L1-L4</td>
<td>TRT</td>
<td>13</td>
<td>1.225 (0.164)</td>
<td>4 (31)</td>
<td>-0.032 (-0.115; 0.051)</td>
<td>0.44</td>
<td>2.0 (0.51; 8.1)</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Eugonadal</td>
<td>89</td>
<td>1.203 (0.131)</td>
<td>18 (20)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
</tbody>
</table>

* Smoking or hormone data missing for 4 CCS, and data on LS L1-L4 missing for 1 childhood cancer survivor
N = Number participating in analyses
Unadjusted mean (SD)
Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH >10 IU/L
TH = total hip
Ref = Reference group
LS = Lumbar spine
Figure 19. Odds ratios of low bone mineral density in hypogonadal untreated childhood cancer survivors (CCS) and CCS on testosterone replacement therapy (TRT), after exclusion of 3 CCS on immunosuppressive oral corticosteroids and 2 CCS on calcium + vitamin D treatment, with adjustment for growth hormone replacement. Eugonadal CCS served as the reference group. Untreated hypogonadism was defined as S-testosterone < 10 nmol/L and/or S-LH >10 IU/L.
Cancer treatment for hypogonadal untreated CCS and CCS on TRT is presented in Table 16.

Table 16. Cancer treatment for hypogonadal untreated childhood cancer survivors (CCS) and CCS on testosterone replacement therapy.

<table>
<thead>
<tr>
<th></th>
<th>Brain surgery<sup>a</sup></th>
<th>Surgery other than brain surgery<sup>a</sup></th>
<th>CT<sup>b</sup></th>
<th>Cranial irradiation<sup>c</sup></th>
<th>RT other than brain and/or testes<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogonadal untreated</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4<sup>e</sup></td>
<td>7</td>
</tr>
<tr>
<td>Testosterone replacement therapy</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>9<sup>f</sup></td>
<td>2</td>
</tr>
</tbody>
</table>

RT = radiotherapy
CT = chemotherapy
^a Excluding RT to any target, excluding CT
^b Excluding RT to any target. In 1 case combined with surgery other than brain surgery.
^c Median irradiation dose 25 Gy. 1 case received TBI followed by bone marrow transplantation. Another 3 cases also received RT to testes, to a median irradiation dose of 24 Gy. In 7 cases combined with chemotherapy, and in the remaining 6 cases combined with brain surgery.
^d Combined with chemotherapy in 8 cases. One case received high dose chemotherapy followed by bone marrow transplantation. In 6 cases combined with surgery other than brain surgery. Hypogonadal untreated = S-testosterone < 10 nmol/L and/or S-LH > 10 IU/L
^e Median irradiation dose 33 Gy
^f Median irradiation dose 25 Gy

Therapeutic subgroups of cancer survivors vs. controls

Data on BMD in the total hip and lumbar spine L1-L4, and the ORs for LBD at the total hip and lumbar spine L1-L4, in therapeutic subgroups of TCS compared to controls are presented in Table 17.
Table 17. Mean differences in bone mineral density (BMD) and odds ratios (ORs) for low BMD (LBD, defined as Z-score < -1), in testicular cancer survivors: therapeutic subgroups vs. controls. Adjusted for age, body mass index and current smoking*.

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD, (g/cm²)#</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>p</th>
<th>OR for LBD (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hip</td>
<td>SO</td>
<td>11</td>
<td>1.127 (0.119)</td>
<td>-</td>
<td>0.026 (-0.048; 0.100)</td>
<td>0.49</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ACT</td>
<td>28</td>
<td>1.084 (0.145)</td>
<td>6 (21)</td>
<td>-0.017 (-0.068; 0.034)</td>
<td>0.51</td>
<td>1.8 (0.58; 5.7)</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>SCT</td>
<td>23</td>
<td>1.022 (0.079)</td>
<td>5 (22)</td>
<td>-0.051 (-0.105; 0.003)</td>
<td>0.066</td>
<td>1.7 (0.50; 5.5)</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>21</td>
<td>1.089 (0.158)</td>
<td>4 (19)</td>
<td>-0.034 (-0.093; 0.024)</td>
<td>0.25</td>
<td>2.2 (0.57; 8.5)</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>ETC</td>
<td>5</td>
<td>1.012 (0.071)</td>
<td>2 (40)</td>
<td>-0.098 (-0.203; 0.008)</td>
<td>0.070</td>
<td>5.3 (0.76; 37)</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>87</td>
<td>1.081 (0.126)</td>
<td>11 (12)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>SO</td>
<td>11</td>
<td>1.275 (0.137)</td>
<td>1 (9.1)</td>
<td>0.046 (-0.056; 0.147)</td>
<td>0.38</td>
<td>0.24 (0.028; 2.0)</td>
<td>0.19</td>
</tr>
<tr>
<td>L1-L4</td>
<td>ACT</td>
<td>28</td>
<td>1.241 (0.173)</td>
<td>7 (25)</td>
<td>0.015 (-0.055; 0.084)</td>
<td>0.67</td>
<td>0.81 (0.29; 2.2)</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>SCT</td>
<td>23</td>
<td>1.233 (0.121)</td>
<td>3 (13)</td>
<td>0.027 (-0.047; 0.101)</td>
<td>0.47</td>
<td>0.40 (0.11; 1.5)</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>21</td>
<td>1.276 (0.213)</td>
<td>5 (24)</td>
<td>0.047 (-0.033; 0.127)</td>
<td>0.24</td>
<td>0.65 (0.20; 2.1)</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>ETC</td>
<td>5</td>
<td>1.139 (0.060)</td>
<td>3 (60)</td>
<td>-0.089 (-0.233; 0.056)</td>
<td>0.23</td>
<td>3.6 (0.55; 23)</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>87</td>
<td>1.205 (0.162)</td>
<td>24 (26)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
</tbody>
</table>
RESULTS

* Smoking or hormone data missing for 3 TCS and 4 controls, and 2 TCS receiving other type of treatment
N = Number participating in analyses
Unadjusted mean (SD)
SO = Surveillance only (no further treatment after orchidectomy)
n.d. = not determined because of no subjects with Z-score < -1 in this treatment group
ACT = Adjuvant chemotherapy; 1-2 cycles of cisplatin-based chemotherapy (CBC) or carboplatin
SCT = Standard dose chemotherapy; 3-4 cycles of CBC
RT = Adjuvant radiotherapy administered to the paraaortic and ipsilateral iliac lymph nodes. Irradiation dose was 25.2 Gray (Gy) in 14 fractions for all but one patient, who received 24 Gy in 16 fractions
ETC = extensive treatment with chemotherapy; >4 cycles of CBC or ≥4 cycles of CBC + radiotherapy at targets other than the remaining testicle
Ref = Reference group

For the two groups of TCS receiving ≥3 cycles of CBC, there was a borderline statistically significant decrease in total hip BMD. These associations were not robust for adjustment for hypogonadism (p=0.17 and p=0.65 after adjustment, respectively). Similarly, the OR for total hip LBD in TCS receiving ETC was 4.1, p=0.25 after adjustment for hypogonadism (Paper III). Absolute BMD and Z-scores for total hip did not differ between the irradiated and the non-irradiated hip in TCS treated with adjuvant radiotherapy (both p-values: 0.37; data not shown).
RESULTS

Childhood cancer survivors treated with cranial irradiation ± chemotherapy exhibited significantly lower total hip and lumbar spine BMD than their controls, but showed no corresponding increase in the OR for LBD (Table 18). These estimates were robust for the exclusion of patients on immunosuppressive oral glucocorticoids or treatment with calcium + vitamin D, and adjustment for hypogonadism and GHRT (Paper IV).

Table 18. Mean differences in bone mineral density (BMD) and odds ratios (ORs) for low BMD (LBD, defined as Z-score < -1), in childhood cancer survivors: therapeutic subgroups vs. controls. Adjusted for age, body mass index and current smoking*

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD, (g/cm²)</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>p</th>
<th>OR for LBD (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hip</td>
<td>Brain surgery</td>
<td>14</td>
<td>1.099 (0.110)</td>
<td>2 (14)</td>
<td>0.025 (-0.056; 0.106)</td>
<td>0.54</td>
<td>0.61 (0.13; 2.9)</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Surgery other than brain surgery</td>
<td>19</td>
<td>1.051 (0.155)</td>
<td>6 (32)</td>
<td>-0.022 (-0.093; 0.048)</td>
<td>0.53</td>
<td>1.6 (0.55; 4.8)</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>CT§</td>
<td>29</td>
<td>1.102 (0.140)</td>
<td>4 (14)</td>
<td>0.011 (-0.049; 0.072)</td>
<td>0.72</td>
<td>0.57 (0.18; 1.8)</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Cranial irradiation¤</td>
<td>33</td>
<td>1.012 (0.166)</td>
<td>10 (30)</td>
<td>-0.076 (-0.133; -0.019)</td>
<td>0.009</td>
<td>1.6 (0.67; 3.9)</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>RT other than brain and/or testes†</td>
<td>27</td>
<td>1.057 (0.147)</td>
<td>4 (15)</td>
<td>0.015 (-0.046; 0.077)</td>
<td>0.62</td>
<td>0.56 (0.17; 1.8)</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>122</td>
<td>1.065 (0.158)</td>
<td>27 (22)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Lumbar spine L1-L4</td>
<td>Brain surgery‡</td>
<td>Surgery other than brain surgery‡</td>
<td>CT§</td>
<td>Cranial irradiation§</td>
<td>RT other than brain and/or testes§</td>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>19</td>
<td>28</td>
<td>33</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.199 (0.094)</td>
<td>1.215 (0.134)</td>
<td>1.228 (0.116)</td>
<td>1.228 (0.176)</td>
<td>1.230 (0.161)</td>
<td>1.186 (0.141)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (21)</td>
<td>6 (32)</td>
<td>2 (7.1)</td>
<td>13 (39)</td>
<td>3 (11)</td>
<td>35 (29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.004 (-0.071; 0.079)</td>
<td>0.028 (-0.038; 0.095)</td>
<td>0.017 (-0.041; 0.074)</td>
<td>-0.071 (-0.124; -0.018)</td>
<td>0.068 (0.010; 0.125)</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>0.40</td>
<td>0.57</td>
<td>0.009</td>
<td>0.021</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.56 (0.14; 2.2)</td>
<td>0.92 (0.31; 2.8)</td>
<td>0.25 (0.06; 1.2)</td>
<td>2.1 (0.90; 4.9)</td>
<td>0.21 (0.06; 0.79)</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.88</td>
<td>0.076</td>
<td>0.088</td>
<td>0.021</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Smoking or hormone data missing for 4 CCS and 3 controls, and data on lumbar spine L1-L4 missing for 1 childhood cancer survivor and 1 control.
Number participating in analyses
Unadjusted mean (SD)
RT = radiotherapy
CT=chemotherapy
‡ Excluding RT to any target, excluding CT
§ Excluding RT to any target. In 11 cases combined with surgery other than brain surgery.
§§ Median irradiation dose 30 Gy. 2 cases received total TBI followed by bone marrow transplantation. Another 3 cases also received RT to testes, to a median irradiation dose to of 20 Gy. In 21 cases combined with chemotherapy. In 14 cases combined with brain surgery, and in 3 cases combined with surgery other than brain surgery.
† In 22 cases combined with chemotherapy. One case received high dose chemotherapy followed by bone marrow transplantation. In 22 cases combined with surgery other than brain surgery.
Ref = Reference group
In CCS treated with chemotherapy without radiotherapy, no significant difference was found in total hip or lumbar spine L1-L4 BMD, or the OR for total hip or lumbar spine L1-L4 LBD, in those receiving alkylating agents, methotrexate or glucocorticoids compared to controls, before or after adjustment for hypogonadism and GHRT (supplementary information to Paper IV).

Treatment with radiotherapy to targets other than the brain and/or testes ± chemotherapy resulted in increased lumbar spine L1-L4 BMD before, but not after, the exclusion of patients on immunosuppressive oral glucocorticoids or treatment with calcium + vitamin D, and adjustment for hypogonadism and GHRT. This was also expressed as a statistically significantly decreased OR for lumbar spine L1-L4 LBD compared to controls, which was robust for the exclusion of cases on immunosuppressive oral glucocorticoids or treatment with calcium + vitamin D, and adjustment for hypogonadism and GHRT (Paper IV).

Diagnostic subgroups of cancer survivors vs. controls

No statistically significant differences were found in total hip or lumbar spine L1-L4 BMD in the diagnostic subgroups of CCS compared to controls (Table 19). However, CCS treated for lymphoma showed a reduced OR for lumbar spine L1-L4 LBD (OR=0.092; 95% CI: 0.011; 0.76; p=0.027). All estimates were robust for the exclusion of patients on immunosuppressive oral glucocorticoids or treatment with calcium + vitamin D, and adjustment for hypogonadism and GHRT (supplementary information to Paper IV).
Table 19. Mean differences in bone mineral density (BMD) and odds ratios (ORs) of low BMD (LBD, defined as Z-score < -1), in childhood cancer survivors: diagnostic subgroups vs. controls. Adjusted for age, body mass index and current smoking.

<table>
<thead>
<tr>
<th>Area</th>
<th>Group</th>
<th>N</th>
<th>BMD (g/cm²)</th>
<th>LBD, n (%)</th>
<th>Mean difference (95% CI), g/cm²</th>
<th>p</th>
<th>OR for LBD (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Hip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leukaemia</td>
<td>27</td>
<td>1.065 (0.148)</td>
<td>6 (22)</td>
<td>-0.029 (-0.092; 0.033)</td>
<td>0.36</td>
<td>1.1 (0.40; 3.2)</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Intracranial tumour</td>
<td>27</td>
<td>1.051 (0.176)</td>
<td>6 (22)</td>
<td>-0.030 (-0.092; 0.031)</td>
<td>0.33</td>
<td>1.0 (0.38; 2.9)</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Lymphoma</td>
<td>20</td>
<td>1.088 (0.124)</td>
<td>2 (10)</td>
<td>0.034 (-0.036; 0.104)</td>
<td>0.33</td>
<td>0.34 (0.072; 1.6)</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Testicular cancer</td>
<td>6</td>
<td>0.993 (0.099)</td>
<td>3 (50)</td>
<td>-0.090 (-0.211; 0.031)</td>
<td>0.15</td>
<td>3.6 (0.67; 19)</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Wilms’ tumour (nephroblastoma)</td>
<td>8</td>
<td>1.069 (0.151)</td>
<td>1 (13)</td>
<td>-0.001 (-0.106; 0.104)</td>
<td>0.99</td>
<td>0.56 (0.065; 4.8)</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Bone tumour</td>
<td>6</td>
<td>1.090 (0.108)</td>
<td>-</td>
<td>0.039 (-0.082; 0.160)</td>
<td>0.53</td>
<td>n.d.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Other tumours</td>
<td>28</td>
<td>1.050 (0.170)</td>
<td>8 (29)</td>
<td>-0.022 (-0.083; 0.039)</td>
<td>0.47</td>
<td>1.4 (0.53; 3.5)</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>122</td>
<td>1.065 (0.158)</td>
<td>27 (22)</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>Lumbar spine L1-L4</th>
<th>Leukaemia</th>
<th>Intracranial tumour</th>
<th>Lymphoma</th>
<th>Testicular cancer</th>
<th>Wilms’ tumour (nephroblastoma)</th>
<th>Bone tumour</th>
<th>Other tumours</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26</td>
<td>27</td>
<td>20</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>28</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>1.189 (0.132)</td>
<td>1.152 (0.181)</td>
<td>1.234 (0.150)</td>
<td>1.155 (0.054)</td>
<td>1.212 (0.213)</td>
<td>1.269 (0.138)</td>
<td>1.218 (0.122)</td>
<td>1.186 (0.141)</td>
</tr>
<tr>
<td></td>
<td>7 (27)</td>
<td>9 (33)</td>
<td>1 (5)</td>
<td>1 (17)</td>
<td>2 (25)</td>
<td>1 (17)</td>
<td>6 (21)</td>
<td>35 (29)</td>
</tr>
<tr>
<td></td>
<td>-0.026 (-0.086; 0.033)</td>
<td>-0.047 (-0.105; 0.010)</td>
<td>0.059 (-0.006; 0.124)</td>
<td>-0.046 (-0.159; 0.067)</td>
<td>0.021 (-0.078; 0.119)</td>
<td>0.099 (-0.014; 0.212)</td>
<td>0.030 (-0.027; 0.087)</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>0.11</td>
<td>0.075</td>
<td>0.42</td>
<td>0.68</td>
<td>0.09</td>
<td>0.30</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>1.3 (0.48; 3.6)</td>
<td>1.3 (0.52; 3.4)</td>
<td>0.092 (0.011; 0.76)</td>
<td>0.59 (0.07; 5.4)</td>
<td>0.88 (0.16; 4.8)</td>
<td>0.35 (0.04; 3.3)</td>
<td>0.55 (0.20; 1.5)</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>0.56</td>
<td>0.027</td>
<td>0.64</td>
<td>0.88</td>
<td>0.36</td>
<td>0.26</td>
<td>Ref</td>
</tr>
</tbody>
</table>

* Smoking or hormone data missing for 4 CCS and 3 controls, and data on lumbar spine L1-L4 missing for 1 childhood cancer survivor and 1 control

N = Number participating in analyses

* Unadjusted mean (SD)

n.d. – not determined because of no subjects with Z-score < -1 in this treatment group.
Discussion

Azoospermia in testicular cancer survivors

Treatment modality and risk of azoospermia

The risk of azoospermia was significantly increased in TCS treated with ETC in the total cohort. A similar frequency of azoospermia was seen in patients with longitudinal data receiving ETC, the lack of statistical significance probably being due to the small number of patients included in the analysis. This finding is supported by previous studies, showing an increased frequency of azoospermia following treatment with CBC equivalent to >4 cycles of standard chemotherapy \(^{161,223,224}\).

The finding of no increased risk of azoospermia in men treated with ≤4 cycles of CBC is also consistent with previous studies \(^{225,226}\). However, Brydoy et al. found an increased risk of impaired spermatogenesis, expressed as higher FSH levels, lower inhibin B levels and lower sperm counts, in TCS receiving ≤ 4 cycles of CBC or carboplatin compared to TCS subjected to surveillance only after unilateral orchidectomy \(^{224}\). This inconsistency may be due to the different outcomes considered in the two studies: azoospermia vs. sperm counts. It should also be noted that the study performed by Brydoy et al. included a larger number of patients, and therefore had higher statistical power. In addition, 10% of TCS receiving ≤ 4 cycles of CBC or carboplatin had also received radiotherapy, and the negative impact on sperm production may be partially due to the more extensive treatment.

Inhibin B as predictor of azoospermia

Inhibin B values obtained 6, 12 and 24 months after treatment were predictive of the risk of azoospermia 3 years after treatment, the inhibin B level 12 months after treatment being the best predictor.
It has been reported previously that the level of inhibin B is correlated to azoospermia in cancer survivors. In a study on CCS, a similar cut-off level of inhibin B, 50 ng/L, was found to be predictive of azoospermia after a mean follow-up period of 19 years \(^{227}\). In a Norwegian study on TCS, low or undetectable levels of inhibin B were reported to be associated with azoospermia at a median of 11 years follow-up \(^{224}\). Azoospermia was seen despite inhibin B values >80 ng/L in five men in the Norwegian study, which is in contrast to the present findings. However, no information was available on pre-treatment sperm production in these Norwegian men, whereas the longitudinal analysis in the present work was carried out on men with confirmed sperm production before cancer treatment. It cannot be excluded that azoospermic TCS with normal inhibin B levels had obstructive azoospermia, as inhibin B levels in men with obstructive azoospermia are similar to those in fertile men \(^{228}\). The Norwegian study also included older men, in whom the causes of azoospermia may differ from those in younger men.

Cryptorchidism as predictor of azoospermia

In the present work, cryptorchidism was reported by 6.9% of TCS-A, and by 5.1% of subjects for whom longitudinal data were available. Cryptorchidism has previously been reported in 11-12% of men with TC \(^{140,173,229}\), and the lower frequency of cryptorchidism in our longitudinal cohort might explain why cryptorchidism was not predictive of long-term azoospermia in the present work.

Relevance of 36 months after therapy as the endpoint for azoospermia

Thirty-six months after therapy was used as the end-point for predictive factors of azoospermia in the present work. The mean age of fathers in Sweden at the birth of their first child was 32 years in 2015 \(^{230}\). As 75% of patients with testicular cancer are between 29 and 43 years of age at diagnosis \(^{231}\), it is reasonable to assume that many TCS may want to start a family during the first few years after cancer treatment. In a Dutch study of male cancer survivors with a median age of 27 years at semen cryopreservation, semen was used for artificial reproductive techniques after a mean of 57 months (range 15-130 months) \(^{232}\). In a Czech study on TCS with a mean age of 28.5 years at semen cryopreservation, the use of cryopreserved semen was reported after a median of 18 months (range 7-70 months) \(^{233}\). The time elapsed from the end of cancer treatment to the use of cryopreserved semen varied considerably, but some cancer survivors used their cryopreserved semen within one year. Three years after testicular cancer treatment was therefore deemed to be a clinically relevant endpoint for the assessment of potential fertility.
Strengths and weaknesses of the study

Weaknesses include the timing of blood sample collection and the categorization of TCS as azoospermic based on only one semen sample. Blood samples were collected between 8.00 a.m. and 3 p.m. Inhibin B has a diurnal variation, with a maximum value in the morning and a minimum in the late afternoon. The median decrease from the highest to the lowest level has been reported to be 37% \(^{234}\). The categorization of TCS as azoospermic was based on one semen sample due to practical reasons. Sperm count varies significantly within each subject \(^{235}\), and in the clinical setting, the diagnosis of azoospermia requires the absence of spermatozoa in at least 2 separate centrifuged ejaculates \(^{54}\). It can be assumed that these shortcomings tend to reduce the calculated predictive value of Inhibin B measurements. Another limitation is the relatively low number of azoospermic subjects at each time-point evaluated.

The strengths of the study are the relatively large number of TCS included, and the longitudinal analyses performed on subjects with confirmed sperm production after orchidectomy but before further treatment.

Hypogonadism and bone mineral density in young male cancer survivors

Hypogonadism in young male cancer survivors

Childhood cancer survivors

Hypogonadism in CCS was found to be associated with both testicular and cranial irradiation, as well as with the combination of chemotherapy and radiotherapy to targets other than the cranium or testes.

The present study indicates a distinct link between cranial and/or testicular irradiation and subsequent risk of hypogonadism, as illustrated by the increased risk of hypogonadism in leukaemia survivors treated with, but not without, radiotherapy. For CCS receiving cranial irradiation, the median dose was 54 Gy for subjects receiving radiotherapy only, and 24 Gy for subjects receiving cranial irradiation combined with chemotherapy. Radiation to the hypothalamic-pituitary area with doses ≥18 Gy has been reported to be a risk factor for secondary hypogonadism \(^{17}\). The difference in irradiation dose is probably the reason why CCS treated with cranial irradiation alone showed an increased OR for hypogonadism, while no increase in risk was observed in CCS receiving cranial irradiation plus chemotherapy.
The risk of hypogonadism was also increased in patients treated with radiotherapy, with targets other than the cranium or testes, combined with chemotherapy. This increased risk may be the result of scattered irradiation to the testes, the risk probably being greater in smaller children than in adults.

Testicular cancer survivors

Among TCS, the risk of hypogonadism was highly increased in those given more than 4 cycles of CBC (in 2 cases combined with non-testicular irradiation), while no other treatment subgroup showed a statistically significantly elevated risk.

The finding of an increased risk of biochemical hypogonadism only in TCS treated with >4 cycles of CBC ± radiotherapy is supported by Gerl et al. 171. In the latter study, 20% of patients treated with cisplatin >400 mg/m² (corresponding to >4 cycles of standard CBC) had low testosterone levels, compared to 4 out of 5 hypogonadal patients in our ETC subgroup. However, patients treated with cisplatin >400 mg/m² in the study by Gerl et al. received a median of 6 cycles of chemotherapy, whereas subjects in our ETC subgroup received 8 or 9 cycles. *In vitro* studies have shown that cisplatin impairs testosterone production in a dose-dependent manner; the impairment of Leydig cell function being mediated through increased production of reactive oxygen species 236.

The ORs for hypogonadism were of approximately the same magnitude for the other therapeutic subgroups (~2), but not statistically significantly different from controls, possibly due to limited sample sizes. In contrast, Nord et al. found slightly higher (3.6-4.4) and statistically significant ORs for TCS treated with radiotherapy only and those receiving cisplatin ≤850 mg, compared to controls, probably due to the higher statistical power 180. Furthermore, the frequency of hypogonadism among controls in their study was 5%, making statistical significance easier to attain. A statistically significant increase in the risk of testosterone deficiency in TCS treated with orchidectomy plus ≤4 cycles of CBC, infradiaphragmatic radiotherapy or more extensive treatment, compared to TCS treated with orchidectomy alone, was also reported in a recent meta-analysis 237. The higher number of subjects included in this meta-analysis explains the higher statistical power.

Bone mineral density in young male cancer survivors

Hypogonadal vs. eugonadal cancer survivors

One of the main findings of this work was the association between untreated hypogonadism and lower BMD and increased risk of LBD in cancer survivors compared to controls.
The finding of an association between hypogonadism and LBD in TCS is supported by a study carried out by Ondrusova et al., in which low testosterone and high LH levels were seen more frequently in TCS with low BMD, compared to TCS with normal BMD. However, they did not compare BMD in eugonadal and hypogonadal TCS.

Lower total hip BMD was also found in TCS on TRT in the present study. Testicular function is already decreased in men with testicular cancer before cancer diagnosis. It cannot be excluded that BMD in TCS is affected by long-standing hypogonadism before cancer diagnosis, and not fully compensated by a number of years of TRT.

To the best of our knowledge, only two studies have been performed on the association between gonadal function and BMD in adult male CCS. Both studies indicate, in line with our findings, that mild hypogonadism can negatively affect BMD.

In a placebo-controlled clinical trial by Finkelstein et al., endogenous gonadal steroid production was suppressed by goserelin acetate in healthy men aged 20-50 years. The subjects were than randomized to different doses of TRT ± anastrozole, which suppresses the conversion of androgens to oestrogens. The authors concluded that oestrogens were the primary regulators of bone homeostasis in men, and that bone loss was unlikely when testosterone levels were above 6.9 nmol/L and/or oestradiol levels above 36.7 pmol/L. The duration of hormonal suppression in their study was 16 weeks. However, it cannot be excluded that bone loss may occur when testosterone levels are above 6.9 nmol/L for more than 16 weeks.

The Endocrine Society’s Clinical Guidelines regarding osteoporosis in men suggests DXA in hypogonadal men aged 50-69, and TRT for men with borderline high risk of fracture and symptomatic testosterone deficiency (defined as S-testosterone <6.9 nmol/L), or men with high fracture risk, S-testosterone <6.9 nmol/L, and contraindications to approved pharmacological agents for osteoporosis. Over 75% of our untreated hypogonadal TCS and CCS had S-testosterone levels above 6.9 nmol/L, suggesting that BMD is also affected in younger hypogonadal men with only moderately lowered S-testosterone levels.

Therapeutic subgroups of cancer survivors
Adjuvant irradiation of the retroperitoneal lymph nodes had no impact on the lumbar spine L1-L4 BMD compared to controls, and no difference was seen in total hip BMD between the irradiated and the non-irradiated hip in TCS treated with adjuvant radiotherapy. This is supported by a previous study, in which no difference was found in hip BMD between the irradiated and the non-irradiated side in TCS at long-term follow-up after adjuvant radiotherapy. However, our findings do not
exclude an increased risk of fracture in areas subject to direct or scattered irradiation. As no data on BMD were given in previous studies on radiation-induced fractures, it is not known whether these fractures were associated with a local decrease in BMD.

Childhood cancer survivors treated with radiotherapy to the brain had significantly lower BMD both in the hip and lumbar spine L1-L4 compared to controls, but no increased OR for LBD. Cranial irradiation has previously been reported to be associated with LBD in CCS. Cranial irradiation in children is a risk factor for later pituitary malfunction, such as secondary hypogonadism and GHD. Adults with untreated adult-onset GHD have decreased BMD, and adults with childhood-onset GHD have been shown in some studies to have lower BMD than controls. Growth hormone replacement therapy increases BMD in adults with GHD after more than 1 year of treatment.

As cranial irradiation can cause both GHD and secondary hypogonadism, it could be argued that the reduced BMD found in our hypogonadal subjects was in fact due to radiation-induced GHD. In our analysis on CCS based on gonadal status, GHRT was used as a proxy for GHD, as the study was not designed to evaluate growth hormone status (e.g., no provocative testing for GHD was performed). It is therefore possible that the real impact of GHD could not be adjusted for, due to potential undiagnosed and untreated GHD in our CCS cohort. However, the median height was almost identical in untreated hypogonadal CCS and Swedish men from the general population, indicating no symptomatic childhood-onset GHD.

Diagnostic subgroups of cancer survivors

The decreased risk of lumbar spine L1-L4 LBD in CCS treated for lymphoma was a surprising finding. Reduced BMD already at diagnosis, with a further decrease during cancer therapy, has been reported in children with ALL. Reduced BMD has also been found in survivors of ALL after median follow-up periods of 8 and 11.5 years. In contrast, recovery of BMD was reported in a longitudinal study on ALL survivors, where 67% of the subjects with previous BMD Z-scores ≤-2 showed improvements in their Z-score by ≥1 category after a median follow-up of 8.5 years. As our CCS were evaluated a mean of 24 years after cancer treatment, our results could hypothetically reflect some recovery of BMD. Alternatively, the lower LBD risk observed could be a chance finding.

Representativeness of the study participants

The participation rate among CCS was 31%. The CCS invited to take part in the study were living in the region of Skåne at the time of their cancer diagnosis, but due to the long follow-up period, many of them may have moved to other parts of...
Sweden, and were thus unwilling or unable to participate in the study for practical reasons. Furthermore, these men had been asked to take part in other clinical studies previously, and may have been unwilling to participate in yet another study, and to be reminded, again, about a life-threatening disease earlier in their life.

Regarding the controls, 25% of those invited participated in the study. Sixteen percent of these controls presented with biochemical hypogonadism, and it is plausible that men with symptoms of hypogonadism might be more prone to participate in such a study. However, the frequency of biochemical hypogonadism has been reported to be 24% in men aged 30-79 years and 14% in men aged 40-49 years in large epidemiological studies. There is, therefore, no reason to believe that biochemical hypogonadism was overrepresented in the control group, compared to the general population.

Finally, comparison of the number of children among participants and non-participants indicated no selection bias due to reproductive problems among CCS, TCS or controls.

Strengths and weaknesses of the studies

Weaknesses in the studies presented in Papers II-IV include the definition of participants as hypo- or eugonadal based on single measurements of testosterone levels, lack of data on the length of TRT, possible selection bias due to incomplete participation, and lack of information on risk factors for osteoporosis.

Patients were defined as hypo- or eugonadal based on single measurements of S-testosterone and S-LH for practical reasons. While testosterone levels show intra-individual variation, single measurements of testosterone can provide reliable data, at least in middle-aged and elderly men. The diagnosis of hypogonadism should be based on low morning testosterone on at least two occasions together with symptoms of androgen deficiency in the clinical setting. Therefore, the proportion of subjects with biochemical hypogonadism in our studies does not exactly reflect the proportion of cancer survivors requiring TRT.

Another weakness of these studies is the lack of data on the duration of TRT. The effect of TRT for longer than 36 months on BMD has not been evaluated in clinical studies. Thus, it cannot be excluded that long-time TRT restores normal levels of BMD. Furthermore, the low participation rate among the controls might have led to selection bias, with potential overrepresentation of controls with a family history of osteoporosis or previous fractures. If present, such a selection bias would tend to decrease the difference in BMD between patients and controls. However, the within-patient group comparisons such as hypogonadal vs. eugonadal, are not dependent on the selection of controls.
Finally, an additional limitation is the lack of information regarding lifestyle factors other than smoking, such as physical activity and dietary intake of calcium and vitamin D, which are known to affect BMD \(^97\).

The strengths of these studies are the inclusion of age-matched controls from the general population, and the measurement of testosterone levels between 8 and 10 a.m. Testosterone concentrations follow a circadian rhythm; the highest levels being seen in the morning \(^79\text{-}^81\) and in the fasting state \(^82\). Hence, testosterone levels should be determined in fasting morning blood samples, as was done in the current studies.

Regarding studies on hypogonadism in male cancer survivors, there is only one study on TCS that included controls from the general population \(^144\). The inclusion of age-matched controls from the general population in the present work enabled more valid conclusions to be drawn regarding hypogonadism and the bone mineral status of young male cancer survivors, compared to the general population.
Summary and Conclusions

The overall aim of the work presented in this thesis was to improve the follow-up and counselling of young male cancer survivors, by investigating the prevalence and evaluating potential risk factors of gonadal dysfunction and decreased bone mineral density. In this work, inhibin B was identified as a marker of post-treatment azoospermia in testicular cancer survivors, and hypogonadism was found to be a risk factor for reduced bone mineral density in young male cancer survivors.

- The level of inhibin B 12 months after completion of testicular cancer treatment can be used to identify men at risk of azoospermia up to 3 years after treatment, provided these results can be confirmed in additional studies.

- Biochemical hypogonadism was present in 36% of testicular cancer survivors and 26% of childhood cancer survivors after mean follow-up times of 9 and 24 years, respectively, with odds ratios being statistically significantly increased compared to controls from the general population. This finding highlights the need for long-term follow-up for young male cancer survivors.

- Untreated biochemical hypogonadism was associated with decreased bone mineral density and increased risk of low bone mineral density in both testicular cancer survivors and childhood cancer survivors, already at moderately lowered testosterone levels. Prevention of osteoporosis should be considered an important part in future follow-up of young male cancer survivors, and the assessment of bone mineral density should be considered already at moderately reduced testosterone levels.
SUMMARY AND CONCLUSIONS
Future Perspectives

The finding that inhibin B is a predictor of long-term azoospermia after cancer treatment must be confirmed in future studies involving larger study populations, with confirmed sperm production before cancer treatment. Such studies will hopefully provide a more exactly defined cut-off value for inhibin B, and the answer to the question of whether treatment-induced azoospermia can arise despite high post-treatment inhibin B levels.

High frequencies of hypogonadism were found in young male cancer survivors at long-term follow-up. Additional longitudinal studies of male cancer survivors are needed to investigate how long after cancer treatment hypogonadism develops, and whether hypogonadism persists, or if Leydig cell function is recovered after cancer treatment. Such longitudinal studies could also reveal whether cancer survivors with compensated hypogonadism subsequently develop primary hypogonadism.

An important finding of this work was the association between untreated hypogonadism and increased risk of low bone mineral density in young males. As little is known about the skeletal effects of hypogonadism in young men, a randomized placebo-controlled trial should be carried out to evaluate testosterone replacement therapy in young hypogonadal males, with bone mineral density as one of the endpoints. Such a trial would render further information on the role of testosterone, and the effect of testosterone replacement therapy, on bone mineral density in young males. Furthermore, longitudinal studies on bone mineral density in male cancer survivors are desirable to further evaluate possible changes in bone mineral density during the years after cancer treatment.
Acknowledgements

As the British poet John Donne wrote: “No man is an island, entire of itself, but a piece of the continent, part of the main”. I would like to express my sincere gratitude to everyone who has helped me during these years, but I would especially like to thank:

My main supervisor, Aleksander Giwercman, for being a great source of inspiration, for his energy, enthusiasm and excellent scientific guidance, and for always asking me difficult questions, making me think that extra bit harder.

My co-supervisors, Kristina Åkesson, Ingrid Øra and Olof Ståhl, for their generous guidance, constructive comments and for giving me new perspectives on my data.

Our research coordinator, Irene Leijonhufvud, for all the time and effort she invested in the inclusion of study subjects, for her enthusiasm and joy regardless of the circumstances, and for the compassion she shows everyone around her. It has been a privilege to work with you!

Our former research nurses at the Reproductive Medicine Centre, Matilda Enquist, Gunilla H Lundberg and Barbro Tedin, for their help with the inclusion of study subjects.

My co-authors, Yvonne Lundberg Giwercman, Katarina Link, Jacob Eberhard, Eva Cavallin-Ståhl, Gabriella Cohn-Cedermark, Stefan Arver and Lisa Egund, for constructive co-operation and for helping me improve our papers.

All my friends and co-workers in the Reproductive Medicine Research Group, past and present: Carolina, Johannes, Magdalena, Linus, Calle, Jonatan, Ida L, Hannah, Christel, Leon, Dorota, Yahia, Alexandra, Amelie, Ida B, Hamideh, Maria, Matilda, Alexandra, Anna, Nishtman, Louise, Gunilla and Patrik. Thank you for creating such a friendly and stimulating atmosphere! Carolina, I have really appreciated having you as a research partner and friend these years. Magdalena, thank you for all your help, your kindness and your patience with all my questions regarding computers and statistics. Calle and Linus, thanks for all your technical support, and for unravelling the mysteries of SPSS.

Statistician Anna Åkesson for her statistical advice, and Tomas Wiebe for help with the collection of clinical data on the childhood cancer survivor cohort.
All the **study participants**, cancer survivors and controls, for taking part in these studies, and making this work possible. You are the reason for this research.

Previous and present Heads of the Skåne Oncology Department; **Carsten Rose, Sara Kinhult, Mona Ridderheim, Nils Wilking, Jan Astemark** and **Silke Engelholm**, for giving me the opportunity to combine research and clinical work.

My clinical supervisor Dr **Mats Jerkeman** for his calmness, empathy and common sense, and for his great support during these years.

All my wonderful **colleagues at the Department of Oncology**, for making it a great place to work.

My parents, **Ingemar and Catharina**, for always believing in me, encouraging me and telling me I could be anything I wanted.

My parents-in-law, **Bertil and Wivian**, for their love, care and support, both moral and practical, before and during the writing of this thesis.

My siblings, **Gunhild, Erik, Olof** and **Martin**, for being such great and interesting people, and for always being there when I needed them.

All my dear **friends**, living both near and far away, for making life so much better and more interesting. I am fortunate to have you in my life!

Patrik, for your love, support and optimism, but most of all, for making me so happy.

Hanna, Signe and **Märta**, my darling daughters, for making everything worthwhile.

*

The research projects described in this thesis were supported by grants from the Swedish Cancer Society (CAN 2012/661), the Swedish Childhood Cancer Society (PROJ10/030 and PROJ12/049), the Swedish Governmental Research Fund (ALF), King Gustaf V’s Jubilee Fund for Cancer Research, Stockholm (grants 44052 and 74061), Skåne University Hospital Funds: the Malmö University Hospital Cancer Fund, Gunnar Nilssons Cancer Fund and the Research Fund of the Region of Scania.

10. NORDCAN, The Association of the Nordic Cancer Registries. Incidence of testicular cancer in the nordic countries. Data available at: http://www-dep.iarc.fr/NORDCAN/SW/table2.asp?cancer=271&period=2015&sex=1&type=0&age_from=1&age_to=18&sort=2®istry=1&submit=%A0%A0Utf%F6r%A0%A0
11. NORDCAN, The Association of the Nordic Cancer Registries. Five-year survival after testicular cancer in Sweden. Data available at: http://www-dep.iarc.fr/NORDCAN/SW/Graph24l.asp?cancer=271&male=1&country%5B%5D=752&prevalence=5&orientation=2&grid=1&line=2&submit=%A0%A0%A0Utf%F6r%A0%A0%A0

REFERENCES

32. OpenStax CNX, Anatomy & Physiology of the Male Reproductive System. Available at https://cnx.org/contents/FPtK1zrmh@8.24:Nw1tEY4R@6/Anatomy-and-Physiology-of-the-

84. Field, A.E., Colditz, G.A., Willett, W.C., Longcope, C. & McKinlay, J.B. The relation of smoking, age, relative weight, and dietary intake to serum

REFERENCES

REFERENCES

140. SWENOTECA, Swedish and Norwegian Testicular Cancer Group. Follow-up nonseminoma CS1 surveillance, Follow-up seminoma CS1 BEP x 1, Follow-up nonseminoma metastatic, Follow-up seminoma all patients. (https://www.swenotecar.org/follow-up).

REFERENCES

232. van Casteren, N.J., van Santbrink, E.J., van Inzen, W., Romijn, J.C. & Dohle, G.R. Use rate and assisted reproduction technologies outcome of

Original publications