Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate in Tumor and Brain Development

Thelin, Martin

2012

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate in Tumor and Brain Development

Martin Thelin

Doctoral dissertation
Bye due permission of the Faculty of Medicine, Lund University, Sweden to be publicly defended in Rune Grubb lecture hall, BMC, Lund on Friday 28th of September 2012, at 13.00

Faculty Opponent
Professor Liliana Schaefer
Institute of General Pharmacology and Toxicology, Goethe-University of Frankfurt/Main
Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate in Tumor and brain development

Abstract

Cell behavior, such as migration and proliferation, especially during cancer development, are balanced by the surrounding environment. Complex polysaccharides called glycosaminoglycans (GAGs) are part of this environment and they are known to modulate tumor development. One of these GAGs, dermatan/chondroitin sulfate (CS/DS), is attached to proteins either bound to the cell surface or secreted in the extracellular space. CS/DS is a long linear polysaccharide consisting of alternating disaccharide units (i.e. N-acetylgalactosamine and glucuronic acid/iduronic acid). CS/DS is a very dynamic structure, as it can be greatly modified by epimerization and sulfation. Epimerization is catalyzed by two enzymes, DS-epimerase 1 (DS-epi1) and 2 (DS-epi2), resulting in the formation of iduronic acid (IdoA). The aim of this thesis was to investigate the role of iduronic acid in cancer and brain development.

The first part of this thesis gives a general review of the biosynthesis of CS/DS, tumorigenesis and finally intertwines these fields. It also comprises the role of CS/DS in neuritogenesis. The present investigation section presents the potential role of DS-epimerase 1 in tumor biology with emphasis on migration of tumor cells. Downregulation of DS-epi1 in a esophageal cancer cell line results in reduced invasion and migration. This effect was found to be partially mediated by presentation of hepatocyte growth factor to the MET receptor by IdoA. Furthermore, DS-epi1-silenced cells had malfunctioning disassembly of adhesion complexes and abnormal cytoskeleton architecture. During brain development, DS-epi2 is known to be highly expressed. We generated a DS-epi2-deficient mice, which displayed no anatomical, histological or morphological abnormalities in brain.

In summary, this thesis have identified new functions for IdoA in tumor development, which maybe of potential use in generation of novel therapeutics.

Key words: DS-epimerase 1, DS-epimerase 2, iduronic acid, chondroitin sulfate, dermatan sulfate, hepatocyte growth factor, MET receptor, cancer, esophagus squamous cell carcinoma

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
1652-8220

Recipient’s notes
Number of pages: 140

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature:

Date: 2012-08-15
Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate in Tumor and Brain Development

Martin Thelin

From:
Department of Experimental Medical Science
To Katrin
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of publications</td>
<td>8</td>
</tr>
<tr>
<td>Paper not included in the thesis</td>
<td>9</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Background</td>
<td>12</td>
</tr>
<tr>
<td>Chondroitin/dermatan sulfate</td>
<td>13</td>
</tr>
<tr>
<td>CS/DS biosynthesis and structure</td>
<td>13</td>
</tr>
<tr>
<td>Polymerization</td>
<td>13</td>
</tr>
<tr>
<td>Epimerization</td>
<td>13</td>
</tr>
<tr>
<td>Sulfation</td>
<td>16</td>
</tr>
<tr>
<td>Composition of CS/DS structures</td>
<td>16</td>
</tr>
<tr>
<td>Tumor development</td>
<td>18</td>
</tr>
<tr>
<td>Tumor stroma</td>
<td>19</td>
</tr>
<tr>
<td>Interaction of tumor and stromal cells</td>
<td>19</td>
</tr>
<tr>
<td>Tumor-modulating growth factors</td>
<td>20</td>
</tr>
<tr>
<td>Cell migration</td>
<td>21</td>
</tr>
<tr>
<td>Metastasis</td>
<td>22</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the esophagus</td>
<td>23</td>
</tr>
</tbody>
</table>
Biological functions of CS/DS

CS/DS structures in cancer 25
CS/DS proteoglycans in cancer 27
CS/DS structures in neuritogenesis 32
CS/DS proteoglycans in neuritogenesis 32

The present investigation 34

Aim 34
Methodology 35
Paper I 36
Paper II 37
Paper III 38
Ongoing studies 39

General discussion 42

DS-epimerase 1 in cancer development 42
Therapeutic implications in cancer 44
IdoA biosynthesis 45
Biological functions of IdoA in the brain 46
IdoA in migration and adhesion 47

Future perspectives 50

Populärvetenskaplig sammanfattning 52

Acknowledgements 54

References 56
List of publications

Paper I

Paper II

Paper III
Bartolini B*, Thelin MA*, van Kuppevelt TH, Malmström A, Maccarana M.
The role of dermatan sulfate in migration of aortic smooth muscle cells. Manuscript.

*equal contribution
Malmström A, Bartolini B, Thelin MA, Pacheco B, and Maccarana M

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAG</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>CS/DS</td>
<td>chondroitin/dermatan sulfate</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronic acid</td>
</tr>
<tr>
<td>PGs</td>
<td>proteoglycans</td>
</tr>
<tr>
<td>ST</td>
<td>sulfotransferase</td>
</tr>
<tr>
<td>Xyl</td>
<td>xylose</td>
</tr>
<tr>
<td>Gal</td>
<td>galactose</td>
</tr>
<tr>
<td>GalNAc</td>
<td>N-acetylgalactosamine</td>
</tr>
<tr>
<td>GlcA</td>
<td>D-glucuronic acid</td>
</tr>
<tr>
<td>IdoA</td>
<td>L-iduronic acid</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>FGF</td>
<td>fibroblast growth factor</td>
</tr>
<tr>
<td>HGF</td>
<td>hepatocyte growth factor</td>
</tr>
<tr>
<td>TGF-beta</td>
<td>transforming growth factor-beta</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinases</td>
</tr>
<tr>
<td>CAFs</td>
<td>cancer-associated fibroblasts</td>
</tr>
<tr>
<td>AoSMC</td>
<td>aortic smooth muscle cells</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>ESCC</td>
<td>esophageal squamous cell carcinoma</td>
</tr>
<tr>
<td>DS-epi1</td>
<td>dermatan sulfate epimerase 1</td>
</tr>
<tr>
<td>DS-epi2</td>
<td>dermatan sulfate epimerase 2</td>
</tr>
<tr>
<td>D4ST-1</td>
<td>dermatan 4-O-sulfotransferase 1</td>
</tr>
<tr>
<td>C4ST-1</td>
<td>chondroitin 4-O-sulfotransferase 1</td>
</tr>
</tbody>
</table>
Introduction

In order to develop novel therapeutics, we need to understand the biological processes. Cell behavior such as migration and proliferation are critical processes during cancer development and are balanced by the surrounding environment. Complex polysaccharides called glycosaminoglycans (GAGs) are part of this environment and they are known to modulate tumor development, for example by growth factor sequestering, by functioning as co-receptors as well as mediating cell adhesion during migration and invasion.

One of these GAGs; dermatan/chondroitin sulfate (CS/DS), is attached to proteins either bound to the cell surface or secreted in the extracellular space. CS/DS is a long linear polysaccharide consisting of alternating disaccharide units (i.e. N-acetylgalactosamine and glucuronic acid/iduronic acid). CS/DS is highly variable owing to its modifications, namely epimerization and sulfation. During biological processes such as tumor and brain development, both the amount and the degree of sulfation and epimerization of CS/DS is altered.

The aim of this thesis was to understand the role of one of these modifications, i.e. the epimerization, in cancer biology and brain development. Epimerization is catalyzed by two enzymes, DS-epimerase 1 and 2. The first part of this thesis gives a general review of the biosynthesis of chondroitin/dermatan sulfate, tumorigenesis and finally intertwines these fields. It also comprises the role of chondroitin/dermatan sulfate in neuritogenesis. The second part of the thesis, present investigation, presents the potential role of DS-epimerase 1 in cell migration and tumor biology. Furthermore, it reports of the involvement of DS-epimerase 2 in brain development. These findings bring the DS-epimerases into a new biological focus.
Background

Traditionally, the extracellular matrix (ECM) has been viewed as a matrix that supports and organizes a tissue. During the last decades, new functions have emerged, where the ECM has been shown to have a number of regulatory functions that influence cell behavior. For example, ECM influences proliferation, migration, and differentiation. These functions are mediated by the effects of the ECM on cell-surface receptors, such as presentation and sequestering of growth factors. Complex polysaccharides often participate in these events, mainly due to their growth factor binding abilities. Hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), fibroblast growth factors (FGFs), midkine, pleiotrophin, and Wnt are all influenced by these intricate polysaccharides. A number of differently composed polysaccharides, glycosaminoglycans (GAGs), have been described, i.e. dermatan/chondroitin sulfate (CS/DS), heparan sulfate (HS), keratan sulfate (KS), and hyaluronic acid (HA). CS/DS, HS, and KS are covalently attached to core proteins, forming proteoglycans (PGs). HA, on the other hand, is a large molecule (10^2–10^4 kDa) devoid of core proteins. HS and CS/DS contain the same protein linkage region and they both exist on secreted and cell membrane-bound PGs. Interestingly, some PGs can carry both HS and CS/DS, such as syndecans and CD44.

Almost a century ago, a specialized form of heparan sulfate, heparin, was characterized. It is an anticoagulant drug, which underscores the biological importance of GAGs. A number of animal studies have shown that heparin inhibits cancer development, and clinical trials on lung cancer are ongoing. HS and HA are extensively studied GAGs with known key regulatory functions in a number of pathological conditions, including tumorigenesis and inflammation. HS-PGs such as syndecans, glypicans, and perlecan have been shown to modulate angiogenesis, proliferation, and metastasis, which are essential events in tumor progression. CS/DS, on the other hand, have been less investigated although the functions of CS/DS often overlap with those of HS. CS/DS-PGs are generally considered to be an extracellular growth factor binding reservoir whereas HS-PGs mediate the biological functions. However, novel regulatory functions of CS/DS and CS/DS-PGs are emerging.
Chondroitin/dermatan sulfate

CS/DS biosynthesis and structure

Chondroitin sulfate (CS) is a long polysaccharide consisting of repeating disaccharide units, i.e. D-glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) attached to a serine in core proteins. CS chains contain enormous amounts of biological information. They can be greatly modified by epimerization and sulfation (1). In total, eleven enzymes participate in the polymerization whereas ten enzymes are involved in CS chain modifications.

In dermatan sulfate (DS), GlcA is converted to L-iduronic acid (IdoA) by two DS-epimerases. Thus, after conversion of GlcA to IdoA, the polysaccharide is named DS. The content of IdoA varies greatly in the polysaccharide chain, from a couple of percent to being the predominant residue. The presence of IdoA has been overlooked in many cases, and the polysaccharide is therefore often named CS in the literature (Table I). In this thesis, no distinction between CS and DS will be made; instead, it will be termed CS/DS.

Polymerization

The formation of the CS/DS chain starts after formation of the linkage region, which is composed of GlcA-Gal-Gal-Xyl attached to a serine residue of the core protein. As the linkage region is identical in HS and CS/DS, the introduction of the first GalNAc determines that a CS/DS chain will be synthesized. Six CS/DS polymerases have been identified, and they are ubiquitously expressed in humans. The importance of CS/DS was demonstrated in C.elegans, as knockdown of CS/DS polymerases resulted in defect cell division (2).

Epimerization

DS-epimerase 1 (DS-epi1) and DS-epimerase 2 (DS-epi2) catalyze the formation of IdoA by repositioning the C5 carboxyl group in space. This generates the stereoisomeric isoforms of GlcA i.e. IdoA. DS-epi1 and DS-epi2 are both ubiquitously expressed and have structural features in common. They are encoded by two different genes. DS-epi1 and DS-epi2 are located on chromosomes 6 and 18, respectively. DS-epi1 contains two domains whereas DS-epi2 carries an additional, third domain (figure 1).
Figure 1. DS-epimerases and IdoA conversion. A, Structure domain of DS-epi1 and DS-epi2. B, structure of GlcA- and IdoA disaccharides.

The epimerase domain is located at the N-terminus while the functions of the C-terminal domain (DS-epi1) and central domain (DS-epi2) are unknown. Interestingly, the primary sequence of the C-terminal domain of DS-epi2 resembles that of O-sulfotransferases, including the binding site of the sulfate donor (i.e. 3’-phosphoadenosine 5’-phosphosulfate). By structural modeling and site-directed mutagenesis of DS-epi1, a possible catalytic mechanism has been put forward. This starts with removal of a proton by a histidine, followed by cleavage of the GlcA-GalNAc linkage. Thereafter, a histidine located on the opposite side of the sugar functions as a general acid and protonates the intermediate sugar, and the final step involves re-formation of the glycosidic linkage (3).

The epimerase reaction is reversible, with an equilibrium of 9:1 (GlcA versus IdoA) in in vitro conditions when the biosynthetic complex has been detergent-solubilized (4). Interestingly, in vivo CS/DS chains can contain a higher proportion of IdoA, which is explained by the strong relationship between 4-O-sulfation and IdoA (4). It has been proposed that 4-O-sulfation of the GalNAc flanking IdoA prevents back-epimerization. In support of this theory, transient downregulation of dermatan 4-O-sulfotransferase 1 (D4ST-1) results in reduced IdoA content (5).

In the CS/DS chain, IdoA can be differently distributed. IdoA can either be situated in blocks (stretches of ≥ 12 residues), in alternating IdoA/GlcA structures, or in isolated IdoA units flanked by GlcA residues (Figure 2).
The biological function of IdoA has been studied in a loss-of-function model. DS-epi1-deficient mice were smaller than WT mice and in addition, DS-epi1-/- mice presented a changed skin architecture with larger skin collagen fibrils as compared with WT littermates (6). Interestingly, human genetic defects of a biosynthetic enzyme, D4ST-1, results in a type of Ehlers-Danlos syndrome and these patients have aberrant assembly of the collagen fibrils (7). The impaired collagen assembly is most likely a result of reduced IdoA-content in decorin present in these patients (8).

TGF-beta (transforming growth factor-beta) activated fibroblasts demonstrated reduced levels of epimerase activity, an effect that was further reduced by the combinatory effect of TGF-beta, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) (9). In another study, PDGF promoted migration of fibroblasts. The mechanism was proposed to involve upregulation of IdoA in the proteoglycan CD44 (10).

Different proteoglycans produced by the same cell can vary greatly in their IdoA content. Decorin and biglycan, for instance, have been found to contain blocks of IdoA whereas versican only has isolated IdoA residues. One study suggested that the core protein regulates the activity of the DS-epimerases. This was demonstrated by generation of chimeric proteins of decorin and CSF, a part-time proteoglycan. The chimeric decorin contained less IdoA compared to the unmodified decorin (11). This suggests that core proteins carry information, influencing epimerization.

Figure 2. IdoA distribution in CS/DS. IdoA is present in clusters, IdoA-blocks, or as interspersed units i.e. alternating IdoA and GlcA units.
Sulfation

The sulfation of CS/DS is catalyzed by sulfotransferases using 3’-phosphoadenosine 5’-phosphosulfate (PAPS) as the sulfate donor. These modifications occur at three positions in the disaccharide; GalNAc is sulfated at position C4 and C6 while GlcA/IdoA is sulfated at position C2 (12) (figure 3).

The O-sulfotransferases (O-ST) acting on CS/DS chains have eight members that fall into three categorizes, 4-O-STs, 6-O-STs, and 2-O-STs. 4-O-STs consist of C4ST-1, C4ST-2, and C4ST-3 and they transfer sulfate with slightly different preferences. C4ST-1 has a predisposition for GalNAc flanked by two GlcAs, whereas C4ST-2 acts on GalNAc flanked by either GlcA or IdoA and has lower specific activity than C4ST-1 (13). C4ST-3 is less well characterized but acts both on desulfated chondroitin and dermatan (14). The last member of the 4-O-ST family is dermatan 4-O-sulfotransferase (D4ST-1), which sulfates GalNAc flanked by two IdoA residues.

The 6-O-ST family contains two sulfotransferases, C6ST-1 (15,16) and C6ST-2 (17). C6ST-1 has been shown with loss-of-function models to be the major enzyme in vivo (18) and mutations in human are known to result in severe chondrodysplasia (19). Two additional enzymes add sulfate groups on monosulfated disaccharides, i.e. N-acetylgalactosamine 4-sulfate 6-O-ST (GalNAc4ST-6ST) (20) and uronosyl 2-O-ST (CS2ST/UST) (21). GalNAc4ST-6ST transfers a sulfate group to position 6 on a 4-O-sulfated GalNAc. 2-O-sulfation on GlcA/IdoA adjacent to a GalNAc that has already been 4- or 6-sulfated is catalyzed by CS2ST/UST. In summary, CS/DS chains can be modified considerably and the diversity of the chain is reflected in its many biological properties.

Composition of CS/DS structures

The sulfations catalyzed by sulfotransferases result in CS/DS structures depicted in figure 3. The CS/DS chain mainly contains monosulfated disaccharides. These disaccharides are composed of a single sulfated GalNAc residue flanked by GlcA/IdoA. If GalNAc is next to an IdoA unit, the GalNAc residue is predominately 4-O-sulfated (iA unit), whereas a small proportion are disulfated, i.e. have an extra 2-O-sulfation at the IdoA residue (iB unit). In mammals, two additional disulfated structures are present. The E/iE units are implicated in many physiological events such as growth factor binding and migration (22). When GlcA is 2-O-sulfated and situated next to a GalNAc that is either 4- or 6-O-sulfated, the structures are termed B and D units, respectively. When they contain IdoA instead of GlcA, the structures are named iB and iD.
CS/DS has been purified mainly from marine animals and mammals. CS/DS contains a mixture of disaccharide units with preference for certain units. For instance, CS-A mainly contains GlcA flanked by GalNAc 4-O-sulfated structures, whereas CS-B and CS-E contain relative high amounts of iB and E units, respectively. However, CS/DS chain is never composed of a single repeating disaccharide unit.
Tumor development

Cancer is a group of diseases, consisting of unregulated cell growth and invasion of cancer cells in nearby and distant organs, leading to disturbed physiology. Tumor cells are surrounded by blood vessels, inflammatory cells, and fibroblasts. Cancers have long been considered to be unhealed wounds, where the cancer cells recruit blood vessels and stroma cells through production of growth factors and cytokines (23).

Cancer cells gain a number of characteristic features necessary for tumor development such as cell death resistance, sustained proliferative signals, and growth suppression evasion. Increased proliferation can be accomplished in number of ways, for example by increased density of growth factor receptors, altered growth factor response, or upregulated production of growth factors (24). In malignant melanoma, mutation of the B-Raf protein results in continuous signaling of the MAP-kinase pathway, resulting in enhanced proliferation (25). Tumor cells evade apoptosis by several mechanisms such as retinoblastoma (RB)-associated mutations and tumor suppressor TP53 mutations (26). Telomerase, a DNA polymerase, is virtually absent from normal cells whereas tumor cells acquire the enzyme and thereby become resistant to apoptosis and senescence (27). Changes in energy metabolism were first described by Warburg when he observed that tumor cells alter their metabolic needs by using anaerobic glycolysis as their major energy-supplying pathway. Cancer cells compensate for the lower ATP yield by upregulation of glucose transporters (28). Historically, tumors have been considered to be homogeneous cell populations, but during the last two decades a subpopulation of cancer cells named cancer stem cells has attracted attention. These cells have transcriptional profiles in common with normal tissue stem cells. Cancer stem cells are thought to have highly potent tumorigenic properties (29). Inflammation, another cancer-promoting process, is present in all tumors. The inflammatory process modifies the microenvironment and causes the release of growth factors (30). For example inflammation upregulates heparanase, an enzyme that cleaves HS, resulting in increased release of tumor-promoting growth factors (31).

Thus, cancer development is an intricate process involving numerous pathways. PGs are present either at the cell surface or in the ECM. They are known to participate in tumor-regulatory events such as angiogenesis, metastasis, and tumor growth and will be discussed later in this overview.
Tumor stroma

Interaction of tumor and stromal cells

The ECM has traditionally been regarded merely as a supporting tissue, however emerging data supports the role of ECM in tumor growth and progression. Formation of cancer stroma, which is a specialized cancer-initiated ECM, requires crosstalk between tumor cells and stromal cells (32). Fibroblasts, endothelial, inflammatory, and immune cells are different types of stromal, which produce and modify the stroma. Cancer stroma varies greatly between different tumor forms, both in terms of composition and quantity. ECM structural proteins such as collagens, laminins, proteoglycans, and hyaluronan are mainly produced by fibroblasts. In addition, fibroblasts secrete a number of cancer-promoting growth factors. An elegant study by Kuperwasser et al. showed that human tumor-derived stromal fibroblasts are necessary for the establishment of human breast tumor xenografts (33).

Tumor cells modulate the stromal compartment by production of growth factors such as vascular endothelial growth factor (VEGF), FGF, PDGF, and TGF-beta. This generates a wound-like microenvironment (34) with increased angiogenesis (35) and an increased inflammatory response (36). Angiogenesis is the formation of vessels from the pre-existing vascular network, which is necessary for tumor development. The pro-angiogenic drive of a cancer results in blood vessels with different morphology—i.e. unorganized, distorted, leaky, and hemorrhagic vessels, as a result of an unbalanced regulation of pro- and anti-angiogenic factors, for example VEGF (37,38). The HS chain of HS-PGs can bind VEGF and thus modulate angiogenesis (39,40). Recently, CS/DS has been shown to rescue VEGF-mediated angiogenesis in the absence of HS (41). In addition to VEGF expression, the angiogenic drive in tumor tissues is governed by the degree of hypoxia (42).

PDGFs are paracrine mitogens that activate fibroblasts, smooth-muscle cells, and immune cells during wound healing (43). In particular, PDGFs have essential roles in the formation of new blood vessels (44). PDGF secreted by melanoma cells induces pericyte proliferation and recruitment (45), and increased enhanced angiogenesis was seen in xenografts of PDGF-overexpressing melanoma cells (46).

During inflammation, fibroblasts, adipocytes (47), and smooth-muscle cells (36) upregulate their production of matrix metalloproteinases (MMPs) and growth factors. Increased production of MMPs by cancer and stromal cells results in degradation of the ECM and basement membrane (48). Upon degradation, the ECM-sequestered growth factors
and protein fragments are released, promoting tumorigenesis (48,49). In a co-culture study, benign and malignant skin carcinoma cells were cultured with stromal fibroblasts. Unlike benign tumor cells, malignant tumor cells had increased production of MMP1 and MMP9 when co-cultured with stromal fibroblasts, demonstrating the active crosstalk between malignant tumor cells and stromal fibroblasts (50).

Tumor-modulating growth factors

Fibroblasts have been shown to be modifiers of cancer, and a certain subpopulation of fibroblasts (i.e. cancer-associated fibroblasts) is particularly important. Cancer-associated fibroblasts (CAFs) secrete a number of growth factors and cytokines that promote tumorigenesis. Some of these growth factors are prototypic epithelial mitogens such as FGFs, TGF-beta, and HGF. HS has been found to interact with several of these growth factors (51). TGF-beta has dual roles in cancerogenesis where opposing functions of TGF-beta as a tumor suppressor and a promotor of metastasis has been described (52). In support of the latter, TGF-beta influences metastasis by the disruption of adherens junctions and induction of migration (53). Moreover, plasma TGF-beta is a predictor of early metastasis (54).

FGFs and their receptors (FGFRs) are often mutated in human tumors (55). Prostate homeostasis is partially regulated by the expression of FGFs, which is altered during neoplastic transformation. FGF1, FGF2, and FGF6-10 are produced by stromal cells and promote proliferation of epithelial cells in paracrine manner (56). It is noteworthy that mesenchymal overexpression of FGF10 leads to formation of prostate adenocarcinoma *in vivo* (57).

HGF and its receptor, MET, are tumor-promoting factors involved in processes such as metastasis and cell motility (58). Upon binding of HGF, the MET receptor dimerizes and elicits signaling cascades. This signaling transduction pathway results in activation of several kinases such as MAPK, ERK1/2, JNKs, p38, PI3K-Akt, STATs, and NF-kB (58). CAFs are known to overexpress HGF (59) and to stimulate cancer cells in a paracrine way. Inflammatory cytokines and growth factors in the neoplastic stroma induce the upregulation of the MET receptor on tumor cells of epithelial origin (60). The MET receptor is also overexpressed in ESCC (61). High levels of HGF and MET receptor correlates to poor prognosis (62). Furthermore, MET expression has been associated with metastasis.
Cell migration

Migration is necessary in many physiological events such as implantation, embryogenesis, and during several pathological conditions. An improved understanding of this could lead to new therapeutic avenues for e.g. cancer, rheumatoid arthritis, and multiple sclerosis (63). In response to pro-migratory stimuli, the cell forms protrusions. These can either be lamellipodia, filopodia, blebs, or invadopodia. In vivo lamellipodia facilitate long-distance movement whereas filopodia sense the ECM to form focal adhesions. Membrane blebbing has been suggested to participate in the migration of cells during development. Invadopodia have been implicated in cell invasion and metastasis. The protrusions are regulated by Rho GTPases, membrane phospholipids, and other signaling molecules. Furthermore, filopodia and lamellipodia are promoted by polymerization of actin, which pushes the membrane forward (64).

Lamellipodia have been described in several cell types such as fibroblasts, muscle precursor cells, and epithelial cells (65,66). In the lamellipodium, the Arp2/3 complex forms an actin network by binding to the sides of the actin filaments. A number of proteins such as profilin regulate the organization and polymerization of actin by binding and sequestering actin monomers. Furthermore, elongation is stopped by capping factors, thus redirecting the polymerization to new actin threads. The ADF/cofilin family disassembles filaments, which increases the pool of actin monomers available. Filamin A and α-actin crosslink actin filaments into a network and anchor the actin cytoskeleton to membrane proteins (67).

While lamellipodia are composed of a branched network, filopodial protrusions are generated by a treadmilling mechanism. Filopodia act as sensors for inspection of the surrounding environment. Filopodia have been suggested either to be an independent actin polymerization process mediated by formins, or to emerge from lamellipodia (68). In filopodia, actin filaments are produced by release of actin at the rear end and polymerization at the opposite end. ENA/VASP proteins inhibit capping and branching, thereby facilitating elongation and stiffness necessary to drive the plasma membrane of filipodia forward.

Invadopodia have been implicated in invasion and metastasis, since they participate in degradation of the ECM. The major feature that differentiates invadopodia from filopodia and lamellipodia is the expression of matrix-degrading proteases such as membrane type-1 metalloprotease (MT1-MMP) (69).

The Rho family of proteins control the formation of actin and adhesion complexes, and therefore the generation of lamellipodia and filopodia. RAC, Cdc42, and RhoA, are small guanosine triphosphate binding proteins (GTPases) belonging to the Rho family (70). Cdc42
facilitates cell polarity, i.e. different molecular processes at the front and at the back of a migrating cell (71). Cdc42 influences polarity by re-localization of the microtubule-organizing center and microtubule production. In the lamellipodia, RAC induces branching of the actin web through a signaling cascade that activates the Arp2/3 complex (72). RhoA participates in tail retraction (73). RhoA levels must be carefully tuned, since both ablation (74) and upregulation of RhoA leads to loss of lamellipodia.

Lamellipodia, filopodia, and invadopodia anchor to the ECM by adhesion complexes. The adhesion complexes are composed of over 150 different molecules (75). Integrins, cell membrane-bound receptors, facilitate the interaction between the ECM and the cytosolic actin-linking proteins. Cytosolic complex is associated with signaling and adapter proteins such as focal adhesion kinase (FAK), vinculin, and paxillin (76). On activation of integrins, FAK assembles and disassembles the complex that links integrin to the actin cytoskeleton. Thus, FAK regulates cell migration (77). FAK-deficient cells have a higher number of focal adhesion contacts and migrate less than normal fibroblasts (78). Several studies have shown a correlation between FAK expression and cancer development (79). During cell invasion, FAK expression has been found to both induce and reduce migration. Cancer cells have lower FAK expression and activation during EGF-mediated invasion (80). However, downregulation of FAK reduces cytotrophoblast invasion (81).

Interestingly, CS/DS is known to be involved in migration as enzymatic removal of the chain decreases migratory activity of both macrophages and osteosarcoma cells (82,83).

Metastasis

Metastatic lesions are signs of spread of disease and poor prognosis. Treatments such as surgery, chemotherapy, and radiotherapy are more likely to succeed when no metastases have been formed. The metastatic process can be divided into two major events: invasion of the ECM and vascular dissemination, followed by colonization at a distant site (84). It is a highly inefficient process since millions of cells may enter the vascular system every day and eventually only a few macroscopic metastases might develop (85,86). Invasion of the ECM consists of a series of steps such as loss of cell-cell interactions, degradation of the ECM, and tumor cell invasion. A cancer cell disrupts its E-cadherin-dependent junctions (87) and degrades the ECM by production of MMPs. Subsequently, the tumor cell continuously assembles and disassembles its focal adhesion complexes to facilitate migration along collagen fibers (88).
Integrins and tumor cell receptors, such as cell-surface proteoglycans, mediate anchor points in the ECM and facilitate actin reorganization signals. Chemokine and growth factor gradients promote migration of cancer cells, e.g. tumor-associated macrophages generate EGF gradients (89). These macrophages are located in the tumor margin or close to blood vessels. Thus, they facilitate tumor cell invasion and intravasation (90). Accordingly, overexpression of the EGF receptor on cancer cells enhances motility and increases the likelihood of forming metastases (91).

When cancer cells enter the bloodstream, the environmental conditions change drastically, i.e. absence of substratum, the presence of immune cells, and velocity-induced shear forces. Tumor cells form emboli, aggregate with platelets, to evade elimination by the immune system, a process partially mediated by P-selectin (92,93). In addition, emboli contribute to metastatic formation and arrest of blood flow in distant organs (94). Many tumors derived from the gastrointestinal tract form metastases in the liver, whereas breast and prostate cancer can lead to bone metastases. Metastatic colonization of distant organs is both dependent on the anatomical location and the microenvironment. Experimental studies have indicated that osteopontin (95) and stromal-derived factor-1 (96) form a microenvironment that is prone to develop metastatic lesions.

Thus, the metastatic process is determined by a number events occurring at the primary site, in the bloodstream, and at the distant organ. Several CS/DS-PGs such as CSPG4/NG2 and CD44 are known to participate in this process.

Squamous cell carcinoma of the esophagus

Esophageal cancer is a severe and lethal disease, and globally it is the seventh and fifth most common tumor in females and males, respectively (97). Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma are the two major types of esophageal cancer. Ninety-five percent of all esophageal cancers worldwide are ESCCs, although adenocarcinoma is the most rapidly increasing tumor form in some parts of the western world. In the United States, the incidence of adenocarcinoma has surpassed that of ESCC. The 3-year survival rate for ESCC is 15-20% in the United States (98). There is a strong correlation between alcohol consumption and smoking and the development of ESCC (99). Furthermore, ESCC is associated with low socioeconomic status, malnutrition, liver dysfunction, intake of nitrosamines (97), and pulmonary co-morbidities (100). North central China has a particularly high prevalence of ESCC, which has been suggested to be related to genetic factors (101). The tumor is often diagnosed after the age of 60,
and the first symptom is usually dysphagia. Weight loss is a symptom of progressive disease and 75% of all patients have lymph node involvement at the time of diagnosis. The primary examination is an esophagogastrroduodenoscopy (EGD) in combination with a histopathological diagnosis. A complete examination includes endoscopic ultrasound and a computed tomography (CT) scan of the chest and abdomen to detect potentially distant metastases. Fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT is a more sensitive method for detection of metastatic lesions. It is occasionally used to follow therapeutic responses (99). ESCC is classified according to TNM i.e. tumor invasiveness (T), lymph node engagement (N), and the presence of metastases (M). Esophagectomy is the primary treatment, often in combination with chemotherapy and radiotherapy or chemotherapy alone, which further increases the survival time (102).

ESCCs gain many of the genetic alterations commonly associated with neoplastic development. These mutations cause dysregulation of proteins involved in processes such as signal transduction, apoptosis, transcriptional regulation, and cell cycle control (103). The tobacco-induced cancer gene TP53 is frequently inactivated in ESCC, often combined with k-ras mutations and loss of retinoic acid receptor (104). In ESCC, signal transduction molecules such as FAK, HGF, ERK-1/2, STAT3, and particularly EGFR have been implicated in disease development. EGFR is associated with cancer invasion and has been suggested to be a prognostic factor (105). HGF expression increases both in tissue (106) and in plasma derived from ESCC. Furthermore, high levels of serum HGF correlate with poor long-term survival (107). A recent report has shown the importance of HGF for ESCC cell-mediated invasion in a 3D cell culture system (108). Since ESCC is usually detected at an advanced stage, it has been considered particularly important to identify new cancer markers. Correlations have been found between cyclin D1 (109), p53 (110), and E-cadherin (111) levels and survival rate and disease progression, although none of them have been sufficiently specific to be put into clinical use.
Biological functions of CS/DS

CS/DS structures in cancer

GAGs have been implicated in cancer progression and metastasis. In cancer, the sulfation pattern of CS/DS is different from that of normal tissue. 6-O-sulfated monosulfated disaccharides are increased in cancer compared to normal tissues whereas 4-O-sulfated monosulfated disaccharides are decreased (112). Moreover, the E units are highly expressed in ovarian adenocarcinomas and mediate VEGF binding (113) (figure 4A). During metastasis of tumor cells, E units expressed on the cell surface mediate colonization of the lung and liver (114,115). This process has been proposed to be mediated by the receptor RAGE, which is mainly expressed in the lungs (116). Another plausible explanation may be that E units mediate platelet binding, which results in the formation of tumor microemboli. These microemboli protect tumor cells against elimination by the immune system. P-selectin expressed on platelets mediates interactions between cancer cells and platelets. In a number of studies, CS/DS has been shown to bind to P-selectin (figure 4B). For example, CS-E and CS-B have been found to inhibit the binding of recombinant P-selectin to breast cancer cells (117). Moreover, two CS/DS structures composed of iB units or iD units isolated from two marine animals have been found to inhibit metastasis in a P-selectin-dependent manner in a metastatic tumor model. This was demonstrated by injection of the CS/DS structures in WT and P-selectin-deficient mice (118).
Several reports have shown that CS/DS participates in growth factor and chemokine binding. For example, IdoA is required for HGF-mediated binding and a tetrasaccharide has been found to be the minimum structure to confer affinity (120). CS-E has been shown to interact with several of the members of the FGF family. Consequently, CS-E may act as co-receptor to regulate and present growth factors (121) (figure 4A). In addition, CS-A and PDGF-BB have co-stimulatory effects on tyrosine kinase pathways, enhancing in vitro migration of fibrosarcoma cells (122). Exogenously added CS-B has been found to inhibit the proliferation of normal and malignant cells (123). Removal of CS/DS chains by chondroitinase B has also been shown to inhibit the migration and invasion of tumor cells (124).

Binding of metalloproteinases (MMPs) is another cancer-promoting feature in which CS/DS chains regulate activity. MMPs are essential for degradation of the extracellular matrix and cancer invasion.
CS-A binds to both pro-MMP-2 and MT3-MMP and this leads to activation of MMP2 (125) (figure 4C). In conclusion, CS/DS has been implicated in several biological processes and disulfated disaccharides in particular are mediators of many functions.

CS/DS proteoglycans in cancer

A cancer tissue modifies the ECM to favor tumor growth (126). Proteoglycans are key components of the ECM that regulate a number of cellular features, such as proliferation, migration, and invasion. The amounts of PGs and GAGs are increased in cancer stroma relative to non-neoplastic tissue, and they are even more concentrated in the growing edge of the tumor (127). As previously described, reciprocal signals between fibroblasts and cancer cells trigger induction of cancer-associated fibroblasts (CAFs). CAFs produce ECM, which promotes cancer development. CS/DS-PGs can influence the properties of cancer stroma. CS/DS-PGs are divided into the following groups: basement membrane PGs, nervous system PGs, extracellular PGs, cell-surface PGs, other PGs, and collagens (Table I).
Table 1. CS/DS PGs implicated in tumorigenesis and functions of the CS/DS chain

<table>
<thead>
<tr>
<th>CS/DS Proteoglycans</th>
<th>IdoA</th>
<th>Functions in tumor development</th>
<th>Functions of CS/DS and protein bound to CS/DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement membrane or basement membrane connected CS/DS-PGs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlecan</td>
<td>N.A.</td>
<td>Regulator of angiogenesis</td>
<td>N.A.</td>
</tr>
<tr>
<td>Bamacan</td>
<td>N.A.</td>
<td>Anchorage-independent growth</td>
<td>N.A.</td>
</tr>
<tr>
<td>Leprecan</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Collagen XV</td>
<td>N.A.</td>
<td>Suppresses tumor growth</td>
<td>N.A.</td>
</tr>
<tr>
<td>Nervous system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurocan</td>
<td>N.A.</td>
<td>Upregulated in astrocytoma</td>
<td>N-CAM, HB-GAM, amphoterin</td>
</tr>
<tr>
<td>Phosphacan (Receptor Protein Tyrosine Phosphatase β/ζ)</td>
<td>+</td>
<td>Mediates migration and adhesion</td>
<td>HB-GAM, amphoterin, midkine</td>
</tr>
<tr>
<td>Brevican</td>
<td>N.A.</td>
<td>Proteolytically cleaved brevican promotes glioma invasion</td>
<td>neuritogenic activity</td>
</tr>
<tr>
<td>Appican (AβPPisofom)</td>
<td>N.A.</td>
<td>N.A.</td>
<td>midkine, pleiotrophin</td>
</tr>
<tr>
<td>Neuroglycan C</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Extracellular space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggrecan</td>
<td>-</td>
<td>Stage-related loss in laryngeal squamous cell carcinoma</td>
<td>water retention</td>
</tr>
<tr>
<td>Versican</td>
<td>+</td>
<td>Increases motility, proliferation and metastasis</td>
<td>FGF family, L- and P-selectin, chemokines</td>
</tr>
<tr>
<td>Decorin</td>
<td>+</td>
<td>Suppresses proliferation, cell migration and angiogenesis</td>
<td>FGF2, FGF7, HGF, HCII, VWF, α2β1, tenascin-X, fibril formation</td>
</tr>
<tr>
<td>Biglycan</td>
<td>+</td>
<td>Upregulated in gastric cancer and expressed by tumor endothelial cell</td>
<td>HCII, FGF family</td>
</tr>
<tr>
<td>Epiphycan</td>
<td>+</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
Cell surface

<table>
<thead>
<tr>
<th>Protein</th>
<th>Expression</th>
<th>Function</th>
<th>Other Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSPG4 (NG2/MCSP)</td>
<td>N.A.</td>
<td>Regulates tumor cell growth, cell motility and associated with patient survival</td>
<td>N.A.</td>
</tr>
<tr>
<td>Betaglycan</td>
<td>N.A.</td>
<td>Suppresses cancer progression and metastasis</td>
<td>N.A.</td>
</tr>
<tr>
<td>Syndecan-1</td>
<td>+</td>
<td>Regulate tumor cell survival and proliferation</td>
<td>midkine, pleiotrophin, FGF7</td>
</tr>
<tr>
<td>Syndecan-3</td>
<td>N.A.</td>
<td>Expressed in tumor stromal vessels</td>
<td>N.A.</td>
</tr>
<tr>
<td>Syndecan-4</td>
<td>N.A.</td>
<td>Upregulated in cancer and mediates cell spreading</td>
<td>midkine, pleiotrophin</td>
</tr>
<tr>
<td>CD44</td>
<td>+</td>
<td>Tumor growth, angiogenesis, metastasis</td>
<td>migration</td>
</tr>
<tr>
<td>Neuropilin-1</td>
<td>N.A.</td>
<td>Tumor growth, angiogenesis, metastasis</td>
<td>VEGF signalling</td>
</tr>
<tr>
<td>α5β1 integrin</td>
<td>N.A.</td>
<td>Influences tumor growth and angiogenesis</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Others

<table>
<thead>
<tr>
<th>Protein</th>
<th>Expression</th>
<th>Function</th>
<th>Other Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRPX2</td>
<td>+</td>
<td>Overexpressed in gastrointestinal cancer and increases endothelial proliferation</td>
<td>HGF</td>
</tr>
<tr>
<td>Serglycin</td>
<td>N.A.</td>
<td>Promotes metastasis</td>
<td>maturation of granules</td>
</tr>
<tr>
<td>Endocan</td>
<td>+</td>
<td>Promotes tumor formation and expression correlates to survival rate</td>
<td>HGF</td>
</tr>
<tr>
<td>Testican-1</td>
<td>N.A.</td>
<td></td>
<td>N.A.</td>
</tr>
<tr>
<td>Testican-2</td>
<td>N.A.</td>
<td>Promotes invasion</td>
<td>N.A.</td>
</tr>
<tr>
<td>Testican-3</td>
<td>N.A.</td>
<td>Inhibits invasion</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Collagens

<table>
<thead>
<tr>
<th>Collagen</th>
<th>Expression</th>
<th>Function</th>
<th>Other Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen IX</td>
<td>N.A.</td>
<td></td>
<td>N.A.</td>
</tr>
<tr>
<td>Collagen XII</td>
<td>N.A.</td>
<td>Highly expressed by cancer-associated fibroblasts in colon cancer</td>
<td>N.A.</td>
</tr>
<tr>
<td>Collagen XIV</td>
<td>N.A.</td>
<td></td>
<td>N.A.</td>
</tr>
</tbody>
</table>

N.A.: not analyzed
Extracellular PGs

Of the ECM PGs, the cancer-attenuating PG decorin is the most extensively studied. Antiproliferative effects have been demonstrated through stable transfection of decorin in CHO cells (128). The mechanism has been suggested to involve TGF-beta sequestration by the core protein of decorin (129). Intriguingly, overexpression of decorin suppresses malignant progression by induction of the cyclin-dependent kinase inhibitor p21 (130). Data accumulated over the last few decades suggest that decorin interacts with two essential growth-promoting receptors, the EGF receptor and MET receptor (131). Decorin binds to the EGF receptor and causes its internalization (132), thereby suppressing tumor growth (133,134). Decorin antagonistically targets the MET receptor and attenuates the signaling pathway (135). It is a beta-catenin-mediated suppression, which prevents cancer cell invasion and migration (136). None of the anti-tumorigenic properties of decorin are known to be mediated by the CS/DS chain. Moreover, the cancer-attenuating effect is also mediated by decorin induced expression of proinflammatory molecules such as programmed cell death 4 (PDCD4) (137).

Versican—another ECM PG—participates in adhesion, proliferation, migration, and angiogenesis (138). Versican expression initiates formation of pulmonary adenocarcinoma. Moreover, downregulation of versican results in reduced tumor growth in vivo (139). It has been suggested that cells incorporate versican and HA into their pericellular matrix to promote migration (140). Incorporated versican and HA are visible at the trailing end of migrating cells, while no HA or versican is detectable at the leading edge of the cell. Versican and HA are thought to inhibit CD44-mediated ECM binding; hence the detachment at the trailing end. Recently, a study showed that versican accelerates the formation of lung metastases (141).

In addition, endocan, biglycan, testicans, and SRPX2 contribute to tumor formation. Endocan is reported to be a tumor endothelial marker in non-small cell lung cancer (142), hepatocarcinoma (143), and kidney cancer (144). There is a correlation between endocan expression, in blood and tissue, and poor survival in non-small cell lung cancer and hepatocarcinoma, respectively. The CS/DS chain of endocan binds to HGF, and this interaction is probably due to the large amount of IdoA in the CS/DS chain (145). Accordingly, endocan enhances HGF-mediated proliferation (146). Endocan-overexpressing cells were found to form tumors while control cells failed to establish xenogeneic tumors. Even more important, cells lacking the CS/DS chain could not generate tumors (147).

Biglycan is also described as a tumor endothelial marker. Downregulation of biglycan inhibits tube formation in tumor-derived
endothelial cells (148). Additionally, biglycan is known to be overexpressed in tumor tissues (149,150). The testican family has dual functions in response to MMP regulation. Testican-3 promotes MMP-mediated invasion while testican-2 abrogates this function. A recently described CS/DS-PG, SRPX2, induces endothelial proliferation in a HGF-dependent manner (151).

Cell-surface PGs

Several cell membrane-bound CS/DS-PGs such as CSPG4, CD44, neuropilin-1, and betaglycan have been thoroughly investigated. Surprisingly, the presence of IdoA is disregarded in most cases. CSPG4, also called NG2 or MCSP, is associated with cancer development, angiogenesis, and tumor progression. CSPG4 activates receptor tyrosine kinases, integrins, and FAK. These signaling transduction molecules affect multiple cellular functions such as migration, epithelial-mesenchymal transition, tumor growth, survival, and re-organization of the cytoskeleton (152). Constitutive CSPG4 expression results in increased activation of the MET receptor whereas loss of MET expression restricts CSPG4-mediated growth and migration (153). CD44, a PG with both HS or CS/DS chains, is implicated in many of the same functions as CSPG4. However, CD44 is a major receptor for hyaluronic acid (HA), which is the a major component of the ECM (154). The extracellular interaction is essential for HA-dependent migration whereas the cytoplasmic tail of CD44 binds actin cytoskeleton-related proteins (155). CD44 is located in lamellipodia and guides migration (156). One study found that a CD44-blocking antibody inhibited lamellipodia formation in an epithelial cell line (157). MET is also a partner for CD44 since a CD44 isoform, CD44v3, is known to promote phosphorylation of MET through the heparan sulfate chain (158). However, it is unclear whether the HS chain mediates this effect, since another study has suggested it to be dependent on the CD44v6 isoform (159). Thus, HGF, MET, and CD44 form a complex that activates MET (159). The cytoplasmic domain of CD44 is responsible for assembly of a complex between the intracellular domain of MET and a number of molecules including GRB2 and the proteins F-actin and moesin. Also, MET-mediated activation of Ras requires the cytoplasmic domain of CD44 (160).
CS/DS structures in neuritogenesis

CS/DS structures are implicated in brain development (161) and CNS injury (162). The CS/DS bioenzymatic machinery is carefully regulated during brain development. IdoA-containing structures (iA and iB) are mainly expressed in the cerebellum, and IdoA content increases during postnatal brain development (163). In situ hybridization suggests that DS-epi2 is ubiquitously expressed during postnatal brain development. Moreover, mRNA expression analysis has shown that expression of DS-epi2 is higher than expression of DS-epi1 (164). Using an antibody to the iD unit, the distribution of iD units in developing mouse brain was mapped. In the cerebellum, the iD unit was detectable on postnatal day 7 but was absent in adult brain. On the contrary, in the hippocampus the iD unit was expressed in adult brain (165). CS/DS purified from embryonic pig brain was found to be composed of 8–9% IdoA while the adult brain contained 1-2% of IdoA. (166). Interestingly, the embryo-derived CS/DS shows enhanced binding of FGFs (FGF-2, -10, and -18), pleiotrophin, and midkine. This binding is abolished when the CS/DS are pretreated with chondroitinase B, which clearly indicates the importance of IdoA. Hippocampal neurons were plated on CS/DS derived either from embryonic brain or adult brain. On the IdoA-rich substrate obtained from embryonic brain, neurons were activated—which contrasted with the results with neurons plated on adult brain CS/DS (166). The iB unit and E unit are believed to facilitate binding of a number of growth factors such as pleiotrophin, midkine, VEGF, FGF-2, FGF-7, and HGF. These binding properties are eliminated by chondroitinase ABC and B, but chondroitinase AC-I and AC-II only partially reduce the binding activity. Moreover, CS/DS derived from marine organisms from CS/DS chains rich in IdoA-containing disulfated disaccharides stimulate neurite outgrowth (167).

CS/DS proteoglycans in neuritogenesis

CS/DS-PGs are the most abundant PGs in the CNS, and they have important roles in regulating the microenvironment. During brain development, CS/DS-PGs are spatio-temporally regulated. The lectican/hyalactan family has four members (aggrecan, versican, neurocan, and brevican) that are involved in a variety of functions. During development of chick brain, aggrecan blocks neural crest migration—in contrast to versican, which stimulates migration (168). Neurocan, a CNS-specific PG, binds several adhesion molecules such as N-CAM and Ng-CAM/L1. This interaction inhibits neural attachment and outgrowth in vitro (169). During postnatal brain development in the rat, brevican expression progressively increases and reaches a plateau in the adult brain (170).
A number of transmembrane part-time CS/DS-PGs are expressed in brain such as neuropilin-1, CSPG4, and phosphacan (i.e. receptor-type protein tyrosine phosphatase ζ). Phosphacan mediates cell adhesion (171) and growth factor binding (172,173), and it controls neuron growth (169). CSPG4 is mainly expressed by oligodendroglial precursor cells and pericytes in the developing CNS. CSPG4 is detected during embryonic development, peaks in the postnatal period (P8-P12), and subsequently declines. The role of CSPG4 in regulation of neurite growth is debated. In one study, it was found that immunopurified CSPG4 inhibits growth whereas another study indicated that CSPG4 may have dual regulatory functions. Neuropilin-1 is a co-receptor for semaphorin-3A, which acts as an axon repellent factor (174). Appican and testicans are secreted CS/DS-PGs, and both are present in the postnatal mammalian brain. Appican is the PG form the amyloid precursor protein and the CS/DS chain of appican consists of appreciable amounts of E units, which facilitate growth factor binding (175,176). The testican family was discovered only recently, and the core protein has a calcium-binding domain. Testican-1 is expressed in pyramidal neurons of the mouse hippocampus (177).
The present investigation

Aim

The presence of IdoA in CS/DS has been well known for a long time, although the biosynthetic enzymes responsible for its synthesis, DS-epi1 and DS-epi2, were only recently identified and cloned (178,179). In the literature, biological functions for IdoA in CS/DS are mainly reported in in vitro studies. In these reports, exogenous CS/DS structures were used in cell culture and growth factor binding experiments. Our studies are the first to use genetic models to identify biological functions for DS-epi1 and DS-epi2 in tumor cell function and brain development, respectively. The overall aim of this thesis was to investigate the biological roles of IdoA in CS/DS.
Methodology
The following methods have been used in this thesis

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic ring assay</td>
<td>Ex vivo angiogenesis model</td>
</tr>
<tr>
<td>Confocal laser scanning microscopy</td>
<td>High resolution microscopy with depth selectivity</td>
</tr>
<tr>
<td>Chromatography</td>
<td>Method to separate components of a mixture</td>
</tr>
<tr>
<td>Epifluorescence microscopy</td>
<td>Optical microscopy using fluorescence to observe the specimen</td>
</tr>
<tr>
<td>Epimerase activity assay</td>
<td>Measure released 3H from 3H-labeled K4 polysaccharides</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>Laser based single-cell analysis</td>
</tr>
<tr>
<td>Generation of genetically engineered mice</td>
<td>Disruption of an existing gene by substitution with an artificial DNA piece</td>
</tr>
<tr>
<td>Immunoblot assays</td>
<td>Gel electrophoretic separation of proteins for antibody detection</td>
</tr>
<tr>
<td>Immunohistochemistry</td>
<td>Antibody based detection of antigens in a tissue</td>
</tr>
<tr>
<td>In vitro migration assays</td>
<td>Cell migration analysis using scratch wound assay or transwell pore migration system</td>
</tr>
<tr>
<td>In vitro invasion assays</td>
<td>Cell invasion analysis using Matrigel coated transwell pore migration system</td>
</tr>
<tr>
<td>In vitro proliferation assay</td>
<td>Crystal violet based proliferation assay</td>
</tr>
<tr>
<td>In vivo syngenetic tumor model</td>
<td>Subcutaneous inoculation of tumor cells into mice</td>
</tr>
<tr>
<td>Mass spectrometry analysis</td>
<td>Technique measuring mass-to-charge ratio of charged particles</td>
</tr>
<tr>
<td>Metabolic labeling and isolation of PGs and GAGs</td>
<td>Radioactive labeling of GAGs followed by anion-exchange chromatography</td>
</tr>
<tr>
<td>Microarray analysis</td>
<td>Chip based mRNA gene expression array</td>
</tr>
<tr>
<td>Phosphokinase array</td>
<td>Protein array which determines phosphorylated proteins</td>
</tr>
<tr>
<td>q-RT-PCR</td>
<td>Real-time polymerases chain reaction based quantitative measurement of mRNA</td>
</tr>
<tr>
<td>RNA interference</td>
<td>Technique which induces gene silencing</td>
</tr>
<tr>
<td>Sulfotransferase activity assay</td>
<td>Measure radioactive incorporation of 35S in the GAG chain</td>
</tr>
</tbody>
</table>
Paper I

Dermatan sulfate is involved in tumorigenic properties of esophagus squamous cell carcinoma

DS-epi1, the enzyme responsible for the conversion of IdoA in CS/DS, was cloned with unknown function and named SART2 (180). DS-epi1 was proposed to be a tumor-specific antigen. After identification of the enzymatic activity of DS-epi1, we determined that DS-epi1 was ubiquitously present in normal tissue. As DS-epi1 was highly expressed in cancer, we hypothesized that IdoA may be involved in tumor development.

Results

We found DS epimerase activity and DS epimerase 1 expression to be elevated in patient material from ESCC compared to normal tissues. In biopsies, stromal- and cancer cells were found to express DS-epi1, as shown by immunohistochemistry. To understand the function of IdoA, we stably downregulated DS-epi1 in ESCC cell lines using shRNA sequences.

Traditionally, reports of IdoA have focused on ECM PGs such as biglycan, decorin, and versican. Here we investigated the presence and functions of cell-surface-bound IdoA. Previous reports have demonstrated that IdoA-containing structures of CS/DS bind to HGF (181). Whereas these studies made use of exogenous CS/DS of defined structure and recombinant HGF, we investigated this interaction in a biological context using genetic models.

We found that IdoA promotes binding of HGF to its receptor and, more importantly, was essential for MET-dependent signaling. Moreover, IdoA is involved in migration and invasion. As MET is involved in both cytoskeletal and adhesion complexes, we hypothesized that IdoA influences these structures. Indeed, migrating DS-epi1-downregulated cells in the presence of HGF showed a disassembled actin organization, i.e. fewer cytoplasmic stress fibers and fewer plasma membrane protrusions than control cells. Focal adhesion complexes of DS-epi1-downregulated cells were homogeneously distributed at the cell membrane, whereas the focal adhesions complexes of control cells were primarily located at the leading edge. Thus, cell-surface IdoA might both function as a co-receptor for HGF, and be involved in migration and invasion of cancer cells.

In accordance with previous studies, we found a 5-fold increase in CS/DS in tumor tissue compared to normal tissue. These data were
accompanied by upregulation of 4-O- and 6-O-sulfotransferase activities. Despite the increased epimerase activity, the total amount of IdoA in cancer tissue and normal tissue was unchanged, indicating a reduced number of IdoA residues per chain.

In summary, we found IdoA to be important in cell migration, invasion and HGF-mediated cell signaling of cancer cells.

Paper II

Mouse development is not obviously affected by the absence of dermatan sulfate epimerase 2 in spite of a modified brain dermatan sulfate composition

CS/DS has been implicated in neuronal plasticity where chondroitinase ABC treatment favors neuronal regeneration (182). After central nervous system injury, the levels of CS/DS increases. In situ hybridization of the developing brain suggested that DS-epi2 is the main DS-epimerase expressed during brain development (164), and interestingly, IdoA has been shown to promote neurite outgrowth (183). Furthermore, point mutations in DS-epi2 have been implicated in the bipolar disease type II (184). In this paper, we generated DS-epi2-deficient mice, and hypothesized that these mice would have an altered brain morphology and/or neuronal dysfunction.

Results

Dsel (Dse-like) gene, coding for DS-epi2, was disrupted by insertion of a targeting vector containing a neomycin-resistance cassette. Subsequently, ES clones were screened to confirm homologous recombination. DS-epi2-deficient mice were found to be viable and were born with the expected Mendelian frequency. No difference in mortality was observed and the major organs displayed no histological abnormalities. DS epimerase activity was reduced in all tissues tested. Brain had the greatest reduction (89%) in DS-epimerase activity, followed by kidney (45% reduction). In this study, we confirmed earlier results that DS-epi2 is the main DS-epimerase active in the brain.

To determine the amount of IdoA in tissues, 35S-sulfate was injected into three-day-old mice. The labeled CS/DS chains were recovered and cleaved to establish the amount and distribution of IdoA residues. Brain contained low amounts of IdoA (2%). The IdoA amount decreased by 38% in DS-epi2 -/- brains.

DS-epi2 has a C-terminal sulfotransferase domain. Our group established that DS-epi2 does indeed have sulfotransferase activity.
(unpublished results), but the position of the added sulfate has not yet been investigated. Interestingly, CS/DS in DS-epi2-/- brain had slightly altered sulfation patterns. DS-epi2-/- brain presented a reduction of 2% in mono-4-O-sulfated disaccharides and 2% upregulation of mono-6-O-sulfated disaccharides. Moreover, brain tissue was examined histologically and immunohistologically but no histological abnormalities were detected. Distribution of CS/DS was evaluated with CS56 (anti-CS) and Wisteria floribunda agglutinin lectin (WFA, recognizing N-acetyl-galactosamine), and no differences were found relative to control brain. Perineuronal nets were visualized by anti-aggreecan antibody in both control brain and DS-epi2-/- brain, and no differences were found.

In conclusion, we found that DS-epi2 is the main epimerase in the brain. Surprisingly, the IdoA content was only affected to a moderate extent when comparing DS-epi2-/- to WT brain. Furthermore, no alterations in brain structure were detected.

Paper III

The role of dermatan sulfate in migration of aortic smooth muscle cells

Based on the results from paper I, we next set out to elucidate the influence of IdoA and CS/DS-PGs on cellular properties, especially regarding migration. Aortic smooth muscle cells (AoSMCs) derived from DS-epi1-/- and WT mice were used in this study. These cells have been thoroughly studied, especially in the context of atherosclerotic plaques. In particular, CS/DS secreted by AoSMCs has been shown to bind and retain oxidized-LDL, which in turn is a primary cause of the development of plaques. Here we wanted to study the localization of CS/DS-PGs involved in migration and their mechanisms of action.

Results

DS epimerase activity was reduced to one fifth in DS-epi1-/- AoSMCs compared to WT cells. Consequently, IdoA content was reduced in secreted CS/DS-PGs and in cell-surface CS/DS. DS-epi1-deficient cells migrated less than WT cells and to establish whether secreted or cell surface bound PGs influence migration, a number of experiments were performed. To study the role of secreted CS/DS-PGs, WT and DS-epi1-/- AoSMCs were allowed to migrate in the presence of conditioned medium derived from DS-epi1-/- and WT cells. The conditioned medium had no influence on migration of the cells of either genotype. Both cell types were seeded on DS-epi1-/- and WT matrices to examine the role of matrix-derived CS/DS-PGs. Interestingly, the different matrices did not
effect migration. As neither secreted or matrix-derived IdoA affected migration, we concluded that cell-surface-bound IdoA-containing PGs influence migration. The actin cytoskeleton and focal adhesions are essential structures in migration. Migrating DS-epi1 -/- cells had disrupted actin stress fiber organization and seemed to partially have lost directionality, as they displayed protrusions in all directions.

In summary, we found that IdoA in cell-surface-bound CS/DS-PGs participates in cell migration. Further studies are necessary to determine which PGs are involved in this function.

Ongoing studies

Paper I revealed a general increase of CS/DS in ESCC biopsies compared to normal tissue, as well as an insight into biological functions of IdoA produced by cancer cells. CS/DS-PGs are also present in the ECM produced by stromal cells. As previously described, the composition of the cancer stroma greatly influence tumor growth. Therefore, we are in the process of investigating the effect of stromal IdoA in tumor growth and angiogenesis.

Preliminary results

Syngeneic Lewis lung carcinoma cells were inoculated into the flank of DS-epi1 -/-, HET and WT mice, in a mixed C57BL6/129Sv genetic background. Preliminary data shows that tumors from DS-epi1-deficient mice weigh twice as much than tumors from WT mice (figure 5).

As previously mentioned, angiogenesis is necessary for tumor growth and wound healing. Many growth factors are known to promote vessel sprouting, but FGF2 specifically binds to IdoA containing CS/DS structures. CS/DS is abundantly released into human wound fluid and supports FGF2-mediated cell proliferation (185). Interestingly, when cultivating pieces of thoracic aortas from WT and DS-epi1-/- mice in the presence of FGF2, we found increased ex vivo microvessel sprouting in DS-epi1-/- aortas compared with WT aortas (figure 6).

The IdoA content was previously quantified in the entire ESCC biopsy (Paper I). However, the IdoA-containing compartments within the biopsies were not established. A phage display anti-IdoA antibody reacting towards CS/DS structures containing large amounts of IdoA was utilized in immunofluorescent staining (186). In the tumor tissue, the epitope was predominantly present in the stromal compartment and most likely associated with collagen fibrils (figure 7).
Conclusively, these preliminary experiments indicate that IdoA-blocks are especially present in the cancer stroma and reduction of IdoA structures may result in an increased syngeneic tumor growth and \textit{ex vivo} angiogenesis. Further studies aim to elucidate the mechanisms of these functional observations.

\textbf{Figure 5. Increased syngeneic tumor growth in DS-epi1-/- mice.} 1x106 GFP-Lewis lung carcinoma cells were subcutaneously injected into the right flank of WT, DS-epi1+/- and DS-epi1-/- mice. Animals were sacrificed after 18 days and the tumor mass was determined.
Figure 6. Increased ex vivo angiogenesis in DS-epi1-/- aortic rings. Thoracic mouse aortas from DS-epi1 -/- and WT mice were dissected and cleaned from the surrounding fibroadipose tissue. Aorta pieces (n = 6 from each genotype) were embedded in growth factor-reduced Matrigel and overlaid with FGF2-containing MCDB medium for 6 days (original magnification X 25).

Figure 7. IdoA-containing epitope recognized by GD3A12 localizes to the stromal compartment. ESCC tumor tissue biopsies were cryo-sectioned and stained with hematoxylin and anti-IdoA antibody. Dotted line indicates the boundary between cancer cells and the surrounding stromal tissue. Cancer cells are encircled.
General discussion

This thesis have investigated the role of IdoA in biological processes has been investigated. Below follows a condensed summary of the major findings and a discussion of their biological and potential therapeutic implications.

DS-epimerase 1 in cancer development

Previous studies have defined DS-epi1 as a cancer specific antigen. We found that DS-epimerase activity and DS-epi1 expression was increased in cancer tissues compared to normal tissues (Paper I). In examined bioptic tissues, a number of different cell types, such as fibroblasts, cancer cells and immune cells, could contribute to the increased epimerase activity. The immunohistochemistry analysis of DS-epi1 showed expression both on cancer cells and in the stroma. Interestingly, the expression of DS-epi1 in the ESCC cell line was approx. 10 times greater compared to fibroblasts (HFL-1) (unpublished data). HFL-1 and macrophages are able to produce CS/DS-PGs with an IdoA content of 50% (179) (187) whereas cancer and embryological epithelial cells produce chains with approx. 15% (Paper I) and 5% (178), respectively. In our study, although DS-epimerase activity in tumor tissues was upregulated, the IdoA content remained the same in cancer compared to normal tissue. Hence, in epithelial cancer cells and cancer tissues, DS-epi1 abundance is not directly reflected in IdoA content. One possible explanation may be that cancer cells may not produce sufficient amount of D4ST-1 required for high IdoA production, preventing back epimerization (4). Cancer and normal tissues were analyzed for 4-O-sulfotransferase activity using either chondroitin or dermatan as substrates. Dermatan is also a substrate for D4ST-1, in addition to other STs, whereas chondroitin is not. Indeed, cancer tissues showed a 13-fold upregulation using chondroitin and a 3-fold upregulation using dermatan, indicating a shortage of D4ST-1. Another explanation for the discrepancy could be that isolated IdoA structures were not included in the mass spectrometry analysis, which analyzed only the IdoA-block and alternating structures (figure 2). However, other studies have obtained similar ratios of GlcA and IdoA in cancer versus normal tissues using other methods, arguing against this plausible explanation (112).

We investigated the role of stromal derived CS/DS with high density of IdoA in tumor tissues. Immunofluorescence analysis showed
that IdoA is predominately found along collagen fibrils, while significantly less IdoA epitope is associated with the tumor cells (Figure 7). As the antibody recognizes IdoA-blocks containing CS/DS structures (186), the presence of alternating IdoA/GlcA and isolated IdoA structures could not be determined. Interestingly, preliminary data indicate that DS-epi1-deficient mice had increased tumor growth compared to WT. The differences in tumor growth can potentially be explained by growth factor sequestering by IdoA. Reduced IdoA might result in increased growth factor availability on cancer cells. These growth factors could then stimulate cancer cells to proliferate, invade and migrate. HGF and FGF2 are two cancer-promoting growth factors known to interact with IdoA. Interestingly, only HGF promoted migration in ESCC cells whereas FGF2 did not (Paper I). One explanation could be that cancer cells lack IdoA-blocks required for FGF2 binding (188). HGF, on the other hand, only needs a single IdoA residue (120). Macrophages are described to secrete PGs with a significant portion of IdoA (187). These PGs could participate in growth factor mediated migration gradients in analogy with the previously described EGF gradient (90).

Tumor growth is largely dependent on angiogenesis and FGF2 is a known mediator of angiogenesis. During wound healing CS/DS-containing IdoA is secreted and cooperates with FGF2. We found that IdoA-reduced aortas displayed increased angiogenesis in the presence of FGF2 compared to WT mice (Figure 6). In a recent study, CS/DS was able to rescue HS-deficiency (EXT1-/- mice) in embryoid aortic sprouting assays (41). Upon HS-deficiency, the CS/DS production was upregulated 2-fold and decorin mRNA expression was upregulated 5-fold. This compensation indicates that decorin may have regulatory functions in angiogenesis. Decorin is a secreted PG, which contains large amount of IdoA-blocks. Potentially, the increased ex vivo angiogenesis in DS-epi1-/- aortas could be a result of reduced sequestering of FGF2 by decorin compared to WT aortas.

A less investigated aspect is the regulation of DS-epimerases. However, a number of growth factors (i.e. TGF-beta, EGF, and, PDGF) are known to regulate epimerase activity in fibroblasts (9) and are abundantly expressed in cancers. Interestingly, in endothelial cells, DS-epi1 is upregulated under hypoxic conditions (unpublished results). This might increase the IdoA-content in endocan, which is mainly produced by endothelial cells.
Therapeutic implications in cancer

Cancer is primarily managed by surgery, chemotherapy and radiation. New therapeutic approaches are continuously emerging such as peptide-based immunotherapy. The concept is to activate immune cells by subcutaneous injections of tumor specific peptides. The administrated peptides are presented by antigen presenting cells, which activate cytotoxic T lymphocytes (CTLs). These peptides are presented on the cell surface, bound to the major histocompatibility complex (MHC) also named human leukocyte antigen (HLA) in humans. CTLs eliminate cancer cells that express these peptides on their A-, B-, or C-HLA receptors. These peptides often derive from proteins that are either overexpressed or aberrantly expressed in cancer. DS-epi1 was first cloned as a tumor specific antigen expressed on HLA-A24 (i.e. a subclass of the MHC class I receptors). Peptides derived from DS-epi1 have been used in clinical trials in glioblastoma multiforme (189) and prostate cancer (190), in combination with peptides derived from other cancer antigens. Thus, the clinical outcome might not only be attributed to DS-epi1 peptides. However, recently a peptide vaccine study on hepatocellular carcinoma exclusively used DS-epi1 peptides. This study showed a tendency of lower recurrence rate in patients with increased CTL activities towards DS-epi1 peptides.

Cancers frequently have mutated or truncated proteins. Two fusion forms of C4ST-1, a CS/DS biosynthetic enzyme, were present in B-cell chronic lymphocytic leukemia (191). It was speculated that these truncated proteins were secreted, as they lacked certain domains. Consequently, DS-epi1 might be truncated or mutated in cancer cells, resulting in increased peptide presentation. Hypothetically, mutated forms of DS-epi1 might be secreted from tumor cells. Since DS-epi1 acts on non-sulfated chondroitin substrates in the Golgi, an extracellular activity of DS-epi1 is unlikely. Moreover, as DS-epi1 is highly expressed in most cancers investigated, DS-epi1 might be a prognostic marker. Therefore, it would be interesting to determine if DS-epi1 is present in blood from cancer patients.

Another potential therapeutic approach could be modulation of the HGF/MET axis by IdoA reduction. Currently, no specific inhibitors or antibodies directed against the HGF/MET axis are available in the clinic. However, a great number of clinical trials are ongoing and a few have reached phase III, for example treatment of non-small lung cancer and medullary thyroid cancer (192). Interestingly, a clinical trial of esophagus adenocarcinoma using anti-HGF antibody in combination with chemotherapy has reached phase II. Development of a DS-epi1 inhibitor to downregulate the HGF/MET axis could potentially be used in combination with chemotherapy. An ongoing project in the lab is the
search for DS-epi1 inhibitors, which could potentially inhibit the HGF/MET axis.

IdoA biosynthesis

In humans, DS-epi1 and DS-epi2 are ubiquitously expressed, although with preferences for different tissues. As described previously, IdoA can be displayed in different patterns i.e. IdoA-blocks, alternating GlcA/IdoA structures or isolated IdoA residues (figure 2). One of the main focuses in our lab is to determine the roles of the two DS-epimerases in IdoA formation. On a biochemical level DS-epi1 and DS-epi2 have slightly different features depending on the cell type studied. Fibroblasts produce substantial amounts of IdoA-blocks. Silencing of either DS-epi1, DS-epi2 or D4ST-1 in fibroblasts results in reduced IdoA-blocks and increased alternating structures (179). The alternating GlcA/IdoA residue formation is suggested to only require DS-epi1 or DS-epi2. Epithelial cells produce less IdoA and overexpression of DS-epi1, but not DS-epi2, results in increased IdoA-block formation.

The distinct functions of DS-epi1 and DS-epi2 *in vivo* are dependent on the investigated tissue. Ablation of DS-epi1 results in loss of IdoA-blocks when evaluating the IdoA content in the entire mouse (6). Moreover, DS-epi1/- skin decorin is almost devoid of IdoA-blocks whereas the alternating IdoA structures are increased. Furthermore, DS-epi2/- brain is reduced in alternating structures, whereas DS-epi2/- kidney has a slight decrease of IdoA-block structures (Paper II). Conclusively, *in vivo*, two epimerases can catalyze all types of IdoA structures independently of each other, although DS-epi1 is essential to generate large amounts of IdoA-blocks. DS-epi2, on the other hand, is primarily responsible for alternating GlcA/IdoA structures *in vivo*.

Adding another level of complexity, IdoA content depends on the core protein. Potentially, CS/DS-PGs have inherited core protein information, resulting in different degrees of epimerization. A couple of different mechanistic explanations are proposed; one theory suggests that the biosynthetic enzymes are recruited to the core protein whereas the other theory proposes different sub-compartments of enzymes in the Golgi to which the core protein is guided. Xylosides, chemical compounds which lack a protein core, are primed but more importantly the primed GAG is epimerized to a low degree resembling the IdoA content found on versican (unpublished results) (193). Moreover, DS-epi1 and D4ST-1 are shown to co-localize in a certain Golgi compartment i.e. cis-Golgi (unpublished results). These results might indicate that the CS/DS bioenzymatic machinery in the Golgi is composed of sub-compartments of enzymes, although further efforts are needed to conclusively determine how CS/DS is assembled.
Biological functions of IdoA in the brain

CS/DS is a major component of brain matrix and has been described both to inhibit and favor regenerative processes. For instance, CS/DS is believed to be a barrier for axon penetration upon spinal injury (182). Another function of CS/DS is axon guidance, as it establishes permissive sprouting paths. Disulfated residue-containing domains have been shown to be essential for neuronal sprouting (194). The CS/DS-PGs are reported to contain low amounts of IdoA; 1-2% in the adult brain, whereas the embryonic brain contains 8-9% IdoA. Domains containing both IdoA and disulfated residues were found in brain embryos. These embryonic CS/DS structures possess high neurite sprouting activity compared to adult brain CS/DS. DS-epi2-/- brain, despite an approx. 40% decrease of IdoA, is histologically normal. The ECM was examined by immunofluorescent staining of CS, GalNAc, and aggrecan and no differences were found compared to WT brain (Paper II). Our results indicate that brain development possesses compensatory mechanisms. A dramatic compensation was also found in the quadruple knock-out of neurocan, brevican, tenascin-R and tenascin-C, as these mice presented very mild phenotypes (195). Nevertheless, IdoA might be important for neonatal brain development as indicated by its higher expression in brain embryos compared to adult brain. Neonatal brain is very plastic. Consequently, challenge of brain lacking DS-epi2 in animal models of brain lesions might lead to reduced abilities of neural regeneration in DS-epi2-/- compared to WT brain.

The perineuronal nets (PNNs) are specialized ECM substructures surrounding certain neuronal cell bodies and proximal dendrites. These dense networks consist of CS/DS-PGs (e.g. brevican, neurocan and aggrecan), hyaluronan, tenascin-R and link proteins (196). Different functions of CS/DS-PGs in PNNs are suggested such as sequestering of plasticity-promoting growth factors, presentation of inhibitory molecules like semaphorins and restriction of membrane protein mobility such as AMPA receptors. PNNs were detected in the expected locations in DS-epi2-/- brain and to the same extent compared to WT brain.

Interestingly, DS-epi2 is genetically associated to human type II bipolar disorder (184). Hence, provocation of DS-epi2-/- mice in models of mania and depression, such as sleep deprivation or forced swim test, might guide us in new directions. Autism, another example of a complex behavioral disease, is described after conditional deletion of the HS-polymerase, EXT1, in brain (197). The growth factor brain-derived neurotrophic factor (BNPF) plays a key role in mood regulation (198) and is decreased in the hippocampus of animals displaying bipolar disorder-related behavioral abnormalities such as depression and anxiety (199).
Hippocampus is the only brain structure retaining the disulfated structure iD units in adulthood (165). As DS-epi2 comprises a sulfotransferase domain, it could be postulated that DS-epi2 generates specific disulfated structures such as the iB, iD or iE units, modulating neurotropic factors implicated in mood disorders. Nevertheless, structure analysis of total DS-epi2/- brain shows no substantial differences in disulfated residues compared to WT brain. However, no conclusion whether DS-epi2 generates these structures in vivo could be drawn from the disaccharide analysis, as other sulfotransferases could compensate for the loss of DS-epi2. To establish the exact position of the added sulfate by DS-epi2, isolated recombinant enzyme will be required.

IdoA in migration and adhesion

As previously mentioned, glycosaminoglycan chains regulate and bind growth factors as well as collagens. In addition, transmembrane PGs are associated with migration and adhesion. Their cytoplasmic domains are binding sites for cytoskeletal proteins and kinases. A number of transmembrane CS/DS-PGs (e.g. CSPG4, CD44, syndecans, and neuropilin-1) are known to facilitate migration. The presence of IdoA is overlooked in most of these CS/DS-PGs (Table I), although CD44 and syndecan-1 are known to carry IdoA. CD44 is a part-time PG, occurring as a protein lacking the GAG chains and in a proteoglycan form, carrying both HS and CS/DS chains. Upon PDGF stimulation, CD44 is reported to express IdoA, which might mediate migration of fibroblasts (10). Moreover, CD44 is known to interact with both the MET receptor and the cytoskeleton (58). A CD44 isoform, CD44v6, is shown to attract the ERM proteins (i.e. erzin, radixin, moesin) to the cytoplasmic tail, which are essential for signaling transduction of the MET receptor (159). Upon HGF-dependent activation, the ERM proteins bind to the cytoskeleton and mediate RAS activation by the guanine nucleotide exchange factor SOS (figure 8). The HS-carrying CD44 isoform, CD44v3, is proposed to facilitate FGF-4 and FGF-8 signaling by the HS chain (200). The role of HS in MET-signaling is contradictory, as one study showed that it participates in HGF signaling whereas another study showed the opposite effect (158,159). None of these reports considered a regulatory function of the CS/DS chain. A working hypothesis, resulting from the data reported in this thesis, is that the IdoA-containing CS/DS chain on CD44 binds HGF and presents it to the MET receptor, resulting in activation of the signaling pathway, followed by re-organization of the cytoskeleton and adhesion complexes (figure 8). We demonstrated that pERK1/2 and its downstream target RSK1/2/3 were induced after HGF stimulation (Paper I). DS-epi1 downregulated cells had greater pERK1/2 expression than control cells. Moreover, DS-epi1-silenced cells had reduced
migration and disrupted cytoskeleton architecture in comparison with control cells. This might be mediated by RSK1/2/3 and the downstream target filamin A, which is known to determine cell shape and locomotion. In addition, CD44 is localized at the leading edge and in lamellipodia (201).

DS-epi1-silenced cells had increased cell areas compared to control cells (Paper I). Upon DS-epi1 silencing, the ESCC cell line upregulated the mRNA expression of the β3 integrin unit 5-fold compared to control cells (unpublished results). Moreover, DS-epi1-downregulated cells had approx. 2-fold induction of FAK and pFAK expression compared with control cells. Several potential IdoA-containing PGs could be involved in adhesion. Another explanation could be a regulatory function of DS-epi1 that upregulates for example β3 integrin unit, resulting in increased cell spreading.
Figure 8. Working hypothesis — IdoA in CS/DS mediated HGF-signaling. CD44-associated IdoA binds and presents HGF to the MET receptor, which elicits downstream signaling. This results in re-organization of actin cytoskeleton and focal adhesion complexes.
Future perspectives

The chondroitin/dermatan sulfate field has developed considerably during the last decades. After identification and cloning of the two DS-epimerases, the role IdoA could be investigated in loss-of-function models. Studies are ongoing in our lab to further elucidate the role of DS-epi1 in inflammation and embryogenesis. Recently, we generated a DS-epi1 and DS-epi2 double knock-out, supposedly totally devoid of IdoA. Surprisingly, these mice are vital, although smaller in size, being reduced approx. 40% in size and weight. This animal model could be used to study the role of IdoA in processes like angiogenesis, coagulation, wound healing, atherosclerosis, embryogenesis and tumorigenesis. Moreover, in vivo produced CS/DS structures depleted of IdoA could be used in growth factor binding and interaction studies. One setup could be to attach CS/DS with and without IdoA to a column and apply conditioned media from cells. Mass spectrometry would then be run on the bound fractions to determine novel binding molecules for IdoA.

Another approach to study IdoA is to generate of DS-epi1 and/or DS-epi2 inhibitors to block the formation of IdoA. An ongoing project in the lab is to crystallize DS-epi1, which will then be used to model potential inhibitors. These inhibitors could be studied in tumorigenic models. Would they promote or inhibit tumor formation? Is migration and invasion affected in vivo by an DS-epi1 inhibitor? Which CS/DS-PG or CS/DS-PGs mediate cell migration?

Another interesting aspect of DS-epi1 in tumor development is the fact that peptides derived from DS-epi1 has been used in clinical trials. Why do these tumor associated peptides elicit CTL responses? Could DS-epi1 possess another function in tumors beside IdoA formation? Since DS-epi1 is overexpressed in cancers, it would be exciting to see if it is detectable in the blood of cancer patients and be used as diagnostic/prognostic markers. In a therapeutic perspective, disturbing the interaction of IdoA with HGF could be of great potential. Targeting the MET/HGF axis has attracted much attention and modulation of IdoA could be one approach to this aim. Therefore, DS-epi1 inhibitors could be of great interest.

Since IdoA is increased during fetal brain development, it is plausible that it mediates important functions. Consequently, the IdoA deficient double knock-out mice might reveal altered brain structure or even neuropsychiatric disorders. Human psychiatric diseases cannot be
sufficiently replicated in mouse models, although they are still valuable tools. Provoking DS-epi2 -/- or the double knock-out, for example in sleep deprivation models, could guide us in novel directions. Conclusively, the role of IdoA in biological processes is a growing field, and could lead to novel therapeutics.
Populärvetenskaplig sammanfattning

Den andra delen av avhandlingen handlar främst om hur hjärnans utveckling påverkas av dermatansulfat. DS-epimerase 2 finns framförallt i hjärnan och tidigare studier har visat att mutationer i genen för DS-

Sammanfattningsvis visar min avhandling på möjligheter att angripa cancerutveckling ur ett nytt perspektiv. Ett läkemedel som blockerar DS-epimerase 1 skulle möjligtvis kunna användas i kombination med andra läkemedel för att förbättra överlevnaden hos cancerpatienter.
Acknowledgements

I would like to express my thanks to all those who have helped me during my work with this thesis. All members of BMC and especially those at the old C13 floor and the present D12 floor. In particular I would like to thank:

Anders Malmström, my supervisor, for always supporting and believing in me. You truly see possibilities in all situations and your optimism can really move mountains. Thanks for always keeping your door open!

Marco Maccarana, my co-supervisor, for your vast scientific knowledge and for your guidance in the lab; everything from experimental setups to the importance of staying well-organized.

Mef Nilbert, my co-supervisor, for support and encouragement.

Mattias Belting, for generously sharing your scientific expertise during a critical resubmission period.

Johan Malmström, for the mass spectrometry collaboration and for stimulating discussions.

Gunilla Westergren-Thorsson, for your support over the years.

Past and present members of Malmström and Westergren-Thorsson lab for providing a stimulating working environment and laughs. Benny, my older research brother, who during my first years as PhD student really helped and guided a confused medical student through experimental design setups and always took time to answer my questions. Erik, my research ”uncle”, for supporting chats and guidance. And you really know how to get a party going! Jakob for bringing new positive energy into the lab and providing a helping hand during a critical time. Emil for introducing me to the field of chemistry and for making the best pretzel. Barbara, Giacomo, and Mariam for collaborations and friendship. Sara, Jenny, Oskar, Annika, Marie, Lena, Kristina, Anna-Karin, Maria, Anna, Kristian, Ellen, Camilla, and Olivia for chats and laughter over the years.

I would also like to acknowledge our international collaborators. In particular Joe Zaia and Xiaofeng Shi for work involving quantification of CS/DS in Paper I.
Outside the lab I really would like to express my greatest gratitude to:

Myn friends - you all keep a special place in my heart. *Christian* and *Olof* for great times in Prague and all other places. *Henrik* for great tennis matches and *Josef* for a crazy time in Venezuela. And all my other friends from medical school and their partners for great laughter, parties and friendships. My high school friends *Andreas* and *Jakob*, we need to hang out more often. Better friends cannot be found!

Myn family; *Mum* and *Dad* for love, support and guiding me to the person I am today. *Johanna* and *Gustaf* for being loving and kind. You are the best sister and brother. *Anders, Karin, Lea, Elin, and Siri* for being just the persons you are and for bringing laughter and happiness. Also, *Erik* and *Jorun*, you belong to family. *Erik* for being like a brother to me and for all fun times. You are all fantastic!

The extra family provided by *Katrin*, thanks for great times *Satu, Mats, André, Rune* and *Anita*, for being warm, kind and letting me be the person I am.

And the most important person of all; *Katrin*, thanks for always supporting me. I dedicate this thesis to you as I truly love you and for your way of keeping me on the right track. You make me a better person; I love you!
References

