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Abstract—Adverse weather conditions can cause deterioration
of wireless channels, leading to reduced link capacities. Unlike in
other types of networks, in radio-based wireless mesh networks,
the link capacities depend not only on the prevailing conditions,
but also on interfering transmissions, as well as the transmission
power and modulation and coding schemes used. This leads
to increased dif�culty in modelling and mitigating partial link
failures, such as those caused by unfavourable weather. In this
paper we present optimisation models for recon�guration of
routing and traf�c demand volumes in wireless mesh networks,
taking into account transmission power and modulation and
coding schemes. We consider both a network planning application
and online optimisation in response to failure states as they
occur. We conduct a numerical study on a realistic network
topology, showing the feasibility of our models for practical
implementation.

I. I NTRODUCTION

A common problem in wireless networks is the variability of
the radio channel, leading to varying link capacities over time.
While channel variation also occurs on a small time scale, in
this paper we focus on changes that occur at larger time scales,
on the order of an hour or longer. Degradation of link capacity
at this scale can be caused for example by changes in the
weather, such as precipitation resulting in lowered achievable
data rates, especially at higher frequencies [1].

In the case of large time scale changes, it is possible to
mitigate the effects of channel degradation by recon�guration
of the network. However, the con�guration of a wireless mesh
network is more complex than that of, for example, free-space
optical networks or �xed-link networks, as have been consid-
ered in previous work on weather-related failures. Because of
interference, the capacity of radio links is dependent on the
constellation of active links, as well as their chosen modulation
and coding schemes (MCSs) and transmission power.

In this paper, we apply linear and mixed-integer program-
ming to optimise the transmission power and MCS for each
link, along with link scheduling, in order to minimise the
reduction in service during partial or total link failures. We
then apply our model in a numerical study to a realistic
wireless network with various traf�c loads and investigate
its performance. We consider two different implementation
scenarios for our models: a network planning application, in
which the network con�guration is optimised for predicted
future failure states; and an online application, in which
optimisation is performed for states as they occur, or shortly
in advance, for example by exploiting weather forecasts.

The rest of this paper is organised as follows. Section
II discusses related work in this area. In Section III, we
describe our system model and optimisation formulations.
Then, in Section IV, we present our numerical study and
results. Finally, in Section V, we conclude this paper and
discuss directions for future work.

II. RELATED WORK

Two key characteristics of weather-in�icted failures in
wireless networks are their locality, and the prevalence of
partial, rather than total, failures. Region-based failures have
been studied in [2], and extended to consider multiple failure
regions in [3]. This allows for modelling of spatially correlated
failures instead of considering only network connectivity ork-
connectivity. In our models in this paper, we use a physical
interference model that captures the effects of nearby links on
each other, as well as mitigation of these through optimisation
of both MCS and transmission power. In our numerical study,
we consider failure states based on real-world weather data,
where links fail in geographically limited regions.

In [4], the notion of probabilistic region failures was in-
troduced, and in [5], three different measures of survivability
were presented for wireless mesh networks with such regional
failures. We focus particularly on the third of these, namely the
expected percentage of total �ow delivered after a failure. For
each failure state we consider, we maximise the service level,
that is, the proportion of the nominal rate of the traf�c demands
that can be delivered while in the failure state. Further, we
consider the case where the network has a limit on its average
power across all states. We consider known failure states based
on historical data, rather than probabilistic failures, however,
failure states in our model are weighted according to their
historical prevalence, which corresponds to an estimate of
future likelihood of occurrence of each state.

A MIP model for routing con�guration and dynamic an-
tenna alignment in wireless mesh networks with regional
failures caused by adverse weather was given in [6]. Here,
separate channels are chosen for intersecting links in order
to avoid interference. We however adopt a full physical
interference model, allowing us to capture the effects of
even distant links, which may collectively interfere with an
ongoing transmission on a given link, even if their individual
contributions to interference are small. This also allows us
to model adjustment of transmission power and MCS, which



can have bene�ts in energy usage, interference reduction, or
improved capacity, depending on which values are chosen.

Transmission power and MCS are also critical to consider
when addressing partial link failures in radio networks. An
increase in signal attenuation can be counteracted by dropping
to an MCS with a lower rate, increasing transmission power,
or both, but increasing transmission power also increases the
interference to other links. Multiple partial link failures have
been studied for microwave networks in [7], and for free
space optical networks in [8]–[11], however the links in such
networks do not interfere with each other.

In order to model interference, we make use of compatible
sets (c-sets), �rst introduced in [12], which are sets of links that
can transmit simultaneously. Extensions for modulation and
coding schemes, and transmission power control were given
in [13] and [14], respectively. Since our models are inherently
non-compact, we apply column generation to �nd the c-sets
needed for the optimal solutions. In each c-set, we generate
the links to be activated as well as the MCS and transmission
power for each link.

III. SYSTEM MODEL

A. Problem setting

We consider a wireless mesh network characterised by a
directed graphG = ( V; A). A number of different unicast
demands use the network, with a single, given route for each
demand. The demands are elastic, that is, their data rates
may be reduced in response to adverse network conditions,
however, in our optimisation problem our objective will be to
minimise this reduction in demand rates.

At any given time, the network may be in any one of
a number of possible failure states. Each state speci�es the
failure level of each link in the network. We employ a physical
interference model to determine whether successful transmis-
sion is possible on a given link (possibly with simultaneous
transmissions on other links), with a given transmission power
and modulation and coding scheme. Successful transmission
can occur when a minimum signal-to-interference-to-noise ra-
tio (SINR) condition is satis�ed, with this minimum threshold
depending on the MCS used. Failure states for links are then
characterised by the path loss speci�c to each link. A high
path loss corresponds to poorer channel conditions on the link.
In general, link failures are partial, that is transmission is still
possible but the data rate may be reduced. However, if the path
loss becomes too high, data reception may not be possible on
that link even with maximum transmission power, the lowest
available MCS, and no interfering transmissions. In this case
we can consider the link to have failed completely.

This model of link failure states differs to previous work
in, for example, FSO networks (as discussed in Section II),
since the capacity of radio links depends not only on the
prevailing environmental conditions, but also on concurrent,
interfering transmissions. This means that failure states cannot
be expressed only as a coef�cient of the nominal link capacity,
but must instead be closely integrated with the interference
model used. For this, we will usecompatible sets(c-sets) to

describe sets of links, with accompanying transmission power
coef�cients, MCSs, and state-dependent path loss exponents,
that are able to successfully transmit data simultaneously at a
speci�ed rate.

We will consider two related optimisation problems, one
for use in network planning, and one for con�guration of the
network in response to, or in anticipation of, failure states
as they occur. In both problems, we take as the objective to
maximise the minimum relative rate over all traf�c demands
and all states. Here, relative rate refers to the proportion of the
demand traf�c rate that can be realised relative to the speci�ed
requested rate for the demand. For example, a demand that
requests a rate of 5 Mb/s but, in a given state, only achieves
a rate of 2.5 Mb/s, will have a relative rate of 0.5. In order to
combine the demand rates in each state, we take a weighted
average over all states, where the weights are chosen by the
network operator. These could, for example, be based on the
probability distribution over the occurrence of the different
states.

For each state, we consider the lowest relative rate achieved
by any demand in that state. We will call this minimum relative
rate theservice levelfor the state. We then �nd the c-sets,
along with the proportion of time the network should use
each c-set, that maximise the weighted sum of the service
levels across all states. At the same time, we require that
the network use at most a speci�ed power, averaged over the
state distribution, and that all demands receive at least some
minimally acceptable rate in all states.

Here, we will not explicitly consider link scheduling, as
this depends heavily on the speci�c medium access protocol
to be used. In the case of TDMA, our optimised c-set durations
may be directly realised to within some quantisation error that
will depend on the number of c-sets, the distribution of their
durations, and the length of the TDMA frame. In the case
of CSMA-based protocols, there will be further performance
losses due to contention, and the optimal time proportions may
only be able to be realised statistically. However, even in this
case, the values given by our models may be used to provide
an upper bound on the network's performance.

B. Notation

In our formulations, we will make use of the following
notation:

� S: set of failure states
� D: set of demands
� C: set of c-sets
� M : set of MCSs
� b(a); e(a): beginning and end of arca 2 A , respectively

(a = ( b(a); e(a)) )
� w(s): weight of states 2 S, e.g. probability of being in

states
� f (d); d 2 D : data rate [Mb/s] of demandd
� P(d); d 2 D : �xed route used by demandd 2 D (P(d) �

A )
� D(a): set of demands whose routes contain arca 2 A ;

D(a) := f d 2 D : a 2 P(d)g



� tc: proportion of time of usingc 2 C in one frame
� B (c; a); a 2 A : rate [Mb/s] of arca in c-setc 2 C(a)
� C(a) � C : family c-sets containing arca 2 A
� C(s) � C : family of c-sets in states 2 S
� C(a; s) � C : family of c-sets containing arca 2 A , in

states 2 S
� V(c) � V : set of nodes active in c-setc 2 C
� A(c) � A : set of arcs active in c-setc 2 C
� P: upper bound on the power to be used on average by

the network
� F : lower bound on proportion of demand rate to be

realised in each state.

C. Master Problem

We formulate the master problem as follows.

max
P

s2S w(s)xs (1a)

[� s
a � 0]

P
c2C (a;s ) B (a; c)ts

c � F (a)xs;

a 2 A ; s 2 S (1b)

[� s]
P

c2C (s) t
s
c = 1 ; s 2 S (1c)

[� s � 0] xs � 1; s 2 S (1d)

[� s � 0] xs � F; s 2 S (1e)

[' � 0]
P

s2S w(s)
P

c2C (s) P(c)ts
c � P (1f)

xs 2 R+ ; s 2 S (1g)

ts
c 2 R+ ; c 2 C; s 2 S; (1h)

where F (a) =
P

d2D (a) f (d), and P(c) =P
v2V (c) � (v; c)G(v). F (a) thus gives the total requested rate

on arca 2 A , while P(c) gives the power used for all arcs
when c-setc 2 C is in operation. The total power forc is
found by summing over the power used by each nodev 2 V
active in c, where the node power is given by its power
control coef�cient � (v; c) (determined using the pricing
problem that we will de�ne in Section III-E) multiplied by
the node's maximum usable powerG(v). The variables in
square brackets on the left-hand side denote the dual variables
for each constraint, which will be used to de�ne the dual
problem in Section III-D.

The objective function (1a) maximises the weighted average
of the service level over all states. Constraint (1b) ensures that,
on each arc, the demands' traf�c is served at at least the service
level xs. B (a; c) describes the achievable rate on arca 2 A
when applying c-setc 2 C, while ts

c describes the proportion
of time thatc is applied while the network is in states 2 S.
The left-hand side thus gives an average rate for arca over
all the c-sets used in states. The right-hand side is then the
total requested rate on arca multiplied by the service level.

Constraint (1c) ensures the proportions of time applied to
the c-sets used in each state form a distribution, that is, sum
to 1. Constraint (1d) caps the service level at1, since we
are not able to serve the demands at higher rates than those
requested. Constraint (1e) gives the minimum service level for
all demands and states. Finally, constraint (1f) imposes a limit
on the average power used by the network across all states. On
the left-hand side, we take the average power used in each state

across the c-sets applied in that state, weighted by their time
proportions, and then take the weighted average over all states.
This constraint connects the different states and makes them
dependent on each other, which increases the dif�culty of the
problem. In Section III-F, we will give a decomposed version
of the problem for cases where such a linking constraint is not
required.

D. Dual problem

Since the master problem is not compact — there are
exponentially many possible c-sets in relation to the size of
the network — we will apply column generation to �nd the
c-sets that are required for an optimal solution. To do so, we
�rst take the dual of the master problem, and then use it to
de�ne a pricing problem for the column generation. Since the
master (and dual) problem is linear, optimality is assured when
solving the master using the generated c-sets.

The dual problem is given by

min 'P +
P

s2S (� s + � s � F � s) (2a)
P

a2A F (a)� s
a + � s � � s � w(s); s 2 S (2b)

P
a2A (c) B (a; c)� s

a � w(s)p(c)' � � s;

s 2 S; c 2 C(s) (2c)

� s
a ; � s; � s; ' 2 R+ a 2 A ; s 2 S (2d)

� s 2 R s 2 S: (2e)

Constraint (2c) can be used to de�ne the pricing problem. For
each c-setc 2 C in the list of c-sets generated so far, there
will be one instance of this constraint corresponding toc. The
goal of the pricing problem is then to �nd a new c-set that
maximally breaks this constraint.

E. Pricing problem

The pricing problem de�nes the conditions for a compatible
set. Since each states 2 S has its own family of c-setsC(s)
that it uses, at each column generation iteration, we can solve
a separate pricing problem for each state. This makes each
pricing problem simpler. The pricing problem for each state
is as follows.

max
P

a2A � s
a

� P
m 2M B (a; m)ym

a

�

� w(s)'
P

v2V G(v)� v X v (3a)

X v =
P

m 2M xm
v ; v 2 V (3b)

Ya =
P

m 2M ym
a ; a 2 A (3c)

P
a2 � (v) Ya � 1; v 2 V (3d)

P
a2 � + (v) y

m
a = xm

v ; v 2 V ; m 2 M (3e)

N +
P

v2Vnf b(a) ;e(a)g G(v)p(v; e(a)) � v X v �
1

 (m ) G(b(a))p(b(a); e(a)) � b(a) + M (1 � ym
a );

a 2 A ; m 2 M (3f)

� v � 1; v 2 V (3g)

X v ; Ya 2 B; v 2 V ; a 2 A (3h)

xm
v ; ym

a 2 B; v 2 V ; a 2 A ; m 2 M (3i)

� v 2 R+ ; v 2 V : (3j)



Binary decision variablesX v and Ya , for node v 2 V and
arc a 2 A , respectively, indicate whetherv and a are to be
included in the c-set, that is, actively transmitting when the
c-set is in use. The corresponding binary decision variables
xm

v and ym
a indicate whether or not MCSm 2 M is to be

used for this transmission, whereM is the set of all available
MCSs. The continuous decision variable,� v gives the power
control coef�cient for nodev 2 V , with � v = 1 indicating that
nodev transmits with full power, and� v = 0 indicating that
nodev does not transmit at all.

G(v) is the maximum transmission power of nodev, and
p(v; w) represents the path loss from nodev 2 V to node
w 2 V , such that� v G(v)p(v; w) will be the total received
power atw from v. B (a; m) is the data rate achievable on arc
a when using MCSm. In general, this may vary from arc to
arc, for example if nodes have different numbers of antennas
allowing for multiple spatial streams, but in the case where all
nodes have identical hardware, the rate will only depend on
the chosen MCS. For each MCSm 2 M , an SINR threshold
 (m) must be reached form to be used on a given arc.N is
the noise level, which we take to be equal for all arcs.

For a given optimal solution to the dual problem, the optimal
values of variables� s

a and ' are taken and used to de�ne
the objective function (3a) for the pricing problem. The form
of the objective mirrors the dual constraint (2c), except that
we explicitly de�ne the arc rateB (a; c) and c-set powerp(c)
in terms of the pricing problem decision variablesym

a , � v ,
andX v . If the optimal pricing problem objective exceeds� s,
thus breaking constraint (2c), a new c-set has been found and
should be added toC(s).

Constraints (3b) and (3c) ensure that only one MCS is
chosen for each active node and arc, respectively, and that
if the node or arc is not active, no MCS is chosen. Constraint
(3d) requires that at most one arc incident to any give node is
active in the c-set, that is, the node may not receive and send
at the same time, and all transmissions are unicast. Constraint
(3e) forces each nodev 2 V to use the same MCS as its active
incident arc, and also makes sure that the node is active if and
only if one of its incident arcs is active.

Constraint (3f) gives the SINR condition to receive success-
fully on arca 2 A using MCSm 2 M , with the transmission
power de�ned by� b(a) . The left-hand side gives the noise and
interference terms, while the right-hand side gives the signal
relative to the threshold (m). M is a constant used to cancel
the constraint when arca is not active or does not use MCS
m, and is given bymaxa2A f 1

̂ G(b(a))p(b(a); e(a))g, where
̂ = min m 2M f  (m)g. The last constraint (3g) ensures that
each node transmits with at most its maximum power.

The bilinearities� v X v may be resolved by de�ning auxil-
iary variableszv = � v X v , zv 2 R+ , and adding the following
constraints to the pricing problem.

zv � � v ; zv � X v ; zv � X v + � v � 1; v 2 V : (4)

The objective should then be replaced with maximising
P

a2A � s
a

� P
m 2M B (a; m)ym

a

�
� w(s)'

P
v2V G(v)zv (5)

and similarly for constraints (3f).

F. Problem Decomposition

In the master problem, constraint (1f) couples the differ-
ent states, meaning that during column generation, at each
iteration the dual is solved for all states, and one instance
of the pricing problem is solved for each state. Finally, the
master problem is also solved for all states together. However,
if the network does not require the average power limitation
de�ned by constraint (1f), or any other similar coupling
constraint, then the master problem may be decomposed into
a subproblem for each states 2 S, given by

max x (6a)

[� a � 0]
P

c2C (a) B (a; c)tc � F (a)x; a 2 A (6b)

[� ]
P

c2C tc = 1 ; (6c)

[� � 0] x � 1 (6d)

[� � 0] x � F (6e)

tc 2 R+ ; c 2 C (6f)

x 2 R+ : (6g)

The dual problem is then

min � + � � F � (7a)
P

a2A F (a)� a + � � � � 1 (7b)
P

a2 cB (a; c)� a � �; c 2 C (7c)

� a 2 R+ ; a 2 A (7d)

� 2 R: (7e)

The pricing problem for each states 2 S will be as in
formulation (3), except the objective will be replaced with

max
P

a2 A � a(
P

m 2M B (a; m)ym
a ); (8)

which must exceed� in order to add a new c-set.

IV. N UMERICAL STUDY

A. Test data and parameters

In order to test the performance of our model, described in
Section III, we conducted a numerical study using the network
topology shown in Figure 1. This network instance is based
on that used in [10] and [11], but adapted to suit a radio
network instead of a free-space optical (FSO) network as in
that work. By using this network, we could also make use
of the accompanying partial link failure state data, which was
based on real weather data collected for the Paris metropolitan
area. In total, 206 partial link failure states were determined
based on weather data for one year. For our study, however, we
used only the �rst 10 states, which collectively accounted for
6802 hours, or approximately 78% of the time. To determine
the weights for each state, the number of hours in which that
weather state was observed was divided by 6802, the total
number of hours for all 10 states.

To adapt the network instance to be suitable for a radio
network, we reduced the link distances by a factor of 50 (so,
for example, a 10 km FSO link would become a 200 m radio



Fig. 1. Network topology for the numerical study

TABLE I
DISTANCES BETWEEN NODES

1 2 3 4 5 6 7 8 9 10 11 12

1 – 200.0 176.40 200.0204.6 164.0 180.0 248.0264.0 320.0 232.0 378.0

2 200.0 – 176.40 309.4270.2 264.0 312.2 444.4164.4 160.0 132.0 179.20

3 176.40 176.40 – 162.8154.0 174.0 242.2 452.4333.8 367.2 204.8 207.2

4 200.0 309.4 162.8 – 56.6 118.0 138.4 371.8414.6 473.2 341.6 370.4

5 204.6 270.2 154.0 56.6 – 72.0 98.0 329.0362.0 424.6 305.0 360.6

6 164.0 264.0 174.0 118.072.0 – 72.0 278.0312.0 380.0 282.0 366.0

7 180.0 312.2 242.2 138.498.0 72.0 – 230.2358.0 434.0 350.6 440.4

8 248.0 444.4 452.4 371.8329.0 278.0 230.2 – 391.2 479.0 481.4 622.8

9 264.0 164.4 333.8 414.6362.0 312.0 358.0 391.2 – 88.8 181.0 363.0

10 320.0 160.0 367.2 473.2424.6 380.0 434.0 479.088.8 – 177.0 344.6

11 232.0 132.0 204.8 341.6305.0 282.0 350.6 481.4181.0 177.0 – 181.4

12 378.0 179.2 207.2 370.4360.6 366.0 440.4 622.8363.0 344.6 181.4 –

link). We also adjusted the data rates to use the modulation
and coding schemes available in 802.11ac, but kept the same
relative traf�c demands between each pair of nodes as in [10],
[11], which were based on real population data. Each demand
was thus scaled by10� 4, e.g. a 10 Gbps demand for the
FSO network becomes instead a 1 Mbps demand for the radio
network (in our lowest traf�c load scenario). We call this the
base demand level, which was then multiplied by a scaling
factor that we varied in our experiments. The distances and
base demands for the network are shown in Tables I and II.

Specifying link failure states is also more complicated
for a radio network than for an FSO network, due to the
interference between nearby links. In our model, links may
also change their transmission power and MCS to account for
either adverse channel conditions or interference. As such, the
failure state data also needed to be modi�ed to �t our model.
This was done by mapping failure percentages from the FSO
network to path loss exponents in our model. In the states
we considered, four failure levels were present: 100% (total
link failure), 50%, 25%, and 0% (fully working). We used
the following path loss exponents to represent these failure
levels: 3.9 for 100%, 3.6 for 50%, 3.4 for 25%, and 3.0 for
0%. These values were chosen such that links' available rates

TABLE II
BASE DEMANDS (MBPS)

1 2 3 4 5 6 7 8 9 10 11 12

1 – 7.438 0.540 0.4260.499 0.502 0.524 0.4740.541 0.526 0.487 0.382

2 7.438 – 0.540 0.4260.499 0.502 0.524 0.4740.541 0.526 0.487 0.382

3 0.556 0.556 – 0.0230.034 0.035 0.036 0.0330.038 0.037 0.029 0.023

4 0.460 0.460 0.025 – 0.027 0.028 0.029 0.0260.030 0.030 0.022 0.001

5 0.539 0.539 0.037 0.029 – 0.036 0.037 0.0340.039 0.037 0.034 0.026

6 0.542 0.542 0.037 0.0290.036 – 0.037 0.0340.039 0.038 0.034 0.026

7 0.566 0.566 0.039 0.0300.037 0.037 – 0.0340.040 0.039 0.035 0.028

8 0.422 0.422 0.026 0.0180.026 0.027 0.028 – 0.029 0.028 0.023 0.018

9 0.468 0.468 0.029 0.0200.029 0.029 0.031 0.028 – 0.031 0.026 0.020

10 0.455 0.455 0.028 0.0200.028 0.029 0.030 0.0270.031 – 0.025 0.020

11 0.502 0.502 0.030 0.0200.031 0.031 0.033 0.0290.034 0.033 – 0.021

12 0.394 0.394 0.023 0.0160.024 0.024 0.026 0.0230.027 0.026 0.021 –

TABLE III
MODULATION AND CODING SCHEMES

MCS Rate (Mbps) SINR threshold
0 6.5 1.58
1 13.0 3.16
2 19.5 7.94
3 26.0 12.59
4 39.0 31.62
5 52.0 63.10
6 58.5 100.00

with the highest achievable MCS would reduce with successive
failure levels. In concrete terms, using the parameter values we
applied in our experiments, a 200 m link without interference
and transmitting at full power can achieve MCS 6, with a data
rate of 58.5 Mbps, when using a path loss exponent of 3.0.
For an exponent of 3.4, this drops to MCS 4 with 39.0 Mbps,
for 3.6 it becomes MCS 3 with 26 Mbps, and for 3.9, MCS
0 with 6.5 Mbps. Longer and shorter links will of course be
affected differently.

The modulation and coding schemes for 802.11ac are shown
in Table III, along with their corresponding SINR thresholds
used in our experiments. The necessary SINR threshold for
a given MCS will differ for different hardware; the ones we
have used are from [15]. The other parameters used in our
experiments are shown in Table IV. Four experiments were
performed, with increasing demand scaling factors in order to
increase the total load on the network.

B. Results and discussion

The results of our numerical study are shown in Table
V. As would be expected, the �nal objective function value
obtained from solving the master problem decreases with the
demand scaling factor: the network becomes more loaded and
is unable to meet the demands with the same level of service,

TABLE IV
PARAMETERS FOR THE NUMERICAL STUDY

Parameter Value
Noise (N ) -111 dB

Maximum transmission power (G(v)) 20 mW
Demand scaling factor 1.0, 1.5, 2.5, 3.0



TABLE V
NUMERICAL STUDY RESULTS

S M I C T D [s] TP [s] TM [s] T [s]
1.0 0.997 44 171 0.23 8068.80 0.01 8069.04
1.5 0.798 39 384 0.21 32114.14 0.01 32114.36
2.5 0.479 47 424 0.39 39982.06 0.02 39982.47
3.0 0.399 40 376 0.25 34809.70 0.01 34809.96

S: demand scaling factor,M : master problem objective,I : number of pricing
problem iterations,C: total number of c-sets (for all states, includes 78 initial
c-sets),TD : solution time for the dual problem (all iterations),TP : solution
time for the pricing problem (all iterations),TM : solution time for the master
problem,T : total solution time.

especially in more challenging failure states. The number of
c-sets generated, as well as the time spent on iterations of
the pricing problem, also increases. This is because when the
network is lightly loaded, some states may reach full service.
When this occurs, no more c-sets can be generated that break
the corresponding dual constraint for these states, and the
pricing problem executes rapidly with objective0. In all cases,
both the dual and master problem had very short solution
times, which is to be expected as these are linear problems,
whereas the pricing problem is a mixed-integer problem and
took much longer to solve.

Overall, the solution times were acceptable for practical
applications. For network planning, solution times on the order
of hours, as seen here, are easily accommodated. More states
could also be added, which would linearly increase the overall
solution time, since the majority of the time is spent in the
pricing problem, where we have a separate problem for each
state.

For online optimisation using the decomposed version of
our models given in Section III-F, the optimisation would
be performed upon entering a new failure state. In this case,
we need only solve for a single state, so the times shown
in the table for the pricing problems can be reduced by
approximately a factor of 10 (since we used 10 states in
our experiments). The resulting solution time is then on the
order of one hour. This is an acceptable duration, if a state
will last for several hours, and especially if states can be
predicted, as is typically the case for weather conditions, since
the problem may then be solved in advance. The solution time
can also be reduced further by saving c-sets from previous
solutions, potentially reducing the number of iterations needed.
Another way to reduce solution times is by stopping the c-
set generation after some smaller number of iterations, for
example when the change in the optimal dual solution becomes
negligible over several consecutive iterations. This will then
give a feasible, albeit typically very close to optimal, solution.
This is a well known phenomenon in column generation,
discussed for a similar c-set generation context in [16].

V. CONCLUSION

In this paper, we have presented mixed-integer programming
models for multiple partial link failures in wireless mesh
networks. Our models maximise the proportion of traf�c

demands that can be met in each failure state, while meeting
an overall power limit for the network. We achieve this using
a realistic physical interference model, and optimising both
transmission power, and modulation and coding schemes for
each link.

To evaluate our models, we have conducted a numerical
study using failure states based on real-world weather data
with a realistic network topology. The solution times for
our optimisation problems were on the order of hours, for a
network planning application, or approximately one hour, for
an online optimisation use case in which the network adapts
to new states as they occur. These times are acceptable for
practical implementation and use of the models.

In future work, more extensive experiments can be carried
out to more thoroughly evaluate our models. In particular,
experiments based on real radio networks with detailed chan-
nel models would be especially valuable. Testing with more
scenarios and with different sized networks would also provide
a more complete picture of the performance of our models.
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