Woodwool slabs - production, properties and use

Johansson, Erik

1994

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Woodwool Slabs – Manufacture, Properties and Use

by Erik Johansson

Erik Johansson was born in Sweden in 1963.
He holds a master’s degree in Civil Engineering from Lund University. Since graduation he has done research on building materials, and has participated in development research projects on building technique and building materials in Tunisia, Algeria and Ethiopia. He is engaged as a researcher at Lund Centre for Habitat Studies and at the Division of Building Materials, the Institute of Technology, Lund University.

His master’s thesis dealt with water leakage in flat roofs in Tunisia, and he wrote a Building Issue on the topic in 1989. He is the house expert on football and spends all his free time out in the Swedish rain cheering on his home team Malmö FF.

Contents

Acknowledgements 4
1 Introduction 4
 Problem 4
 Method 4
 Organization of the report 4
2 General considerations 5
 History of woodwool slabs 5
 Production 5
 Properties 6
 Products and uses 6
3 Recommendations for production 7
 Manufacturing process 7
 Quality control 10
 Plant 10
 Equipment 10
 Staff 11
 Setting up the plant 12
 Consumption of raw materials and energy 12
 Production costs 12
4 Choice of wood 14
 Technical requirements for the wood 14
 Availability of the wood 14
 Improving the compatibility of the wood with cement 14
 Tests of suitability 14
5 Properties 15
 Thermal properties 15
 Strength 15
 Acoustic properties 16
 Fire performance 16
 Moisture properties 17
 Durability 17
 Emissions of harmful compounds 17
6 Quality control 18
 Size and density 18
 Strength 18
 Other tests 18
7 Applications 19
 Exterior walls 19
 Roofs and ceilings 22
 Surface finishes 23
References 24
Appendix 26
Acknowledgements

I would like to acknowledge some of the help I received during this study.

First I would like to thank Mr Bengt Rääf (Production Manager) and Mr Lennart Rääf of Tepro Byggmaterial, Österbymo, Sweden, for their generous hospitality on the many occasions they invited me, and my colleagues, to their factory and for the time they took to discuss the production and use of wood wool slabs.

Invaluable information on the production and use of wood wool slabs was provided by Elten Systems, Barneveld, the Netherlands, who also commented on the draft report. I am very grateful to Mr John de Wit (Division Manager) and Mr Arnold Plak (Export Manager).

My visit to Climatex Indústria de Madeira Mineralizada, Porto Alegre, Brazil, greatly increased my knowl-edge about wood wool slabs and their use. I would like to thank Mr Carlos Roberto Simm (Operations Director), Mr Luiz Sergio Bocchese, Mr Werner Dopheide, and Mr Romildo Feijó da Rosa for their warm reception, hospitality and willingness to provide information.

Last but not least, thanks to Ms Rosane Bauer, Architect, who participated in the Architecture & Development course at LCHS in 1993. She acted as guide and translator during my visit to Porto Alegre.

Erik Johansson

1 Introduction

Problem

Thermal insulation is important to improve indoor climate and save energy in a building. The use of thermal insulation materials are, however, often limited in developing countries. There are several reasons, for example:

- The advantages of thermal insulation materials are not known.
- Local thermal insulation materials are not available.
- Imported thermal insulation materials are expensive and require foreign currency.
- Use of thermal insulation materials requires modification in current building methods.

This report deals with wood wool slabs, a well tested thermal insulation material that can be made locally in most countries. Because of their versatility, wood wool slabs are easy to integrate with most construction techniques.

Many of the materials traditionally used in contemporary buildings – bricks, concrete, stone, soil block, etc. – have poor thermal insulation capacity. To reach the same thermal insulation as 100 mm of wood wool slab requires about 4 m natural stone, 1.8 m concrete, 700 mm soil block or concrete hollow block and 500 mm hollow brick.

Method

This report is primarily based on the experience gained from a research cooperation between Lund University, Division of Building Materials and LCHS, and the National Centre for Building Research and Studies (CNERIB) in Algeria during the period 1991–1993. This project, which included test production of wood-wool slabs with Algerian woods and full scale tests of the slabs in building components, laid the foundation for introducing wood wool slabs on the Algerian market.

Visits were made to modern, completely automated factories in Sweden and the Netherlands. A semi-automated, labour intensive factory was studied in Brazil. Detailed studies were also made on the use of wood wool slabs in these countries.

The report is also based on a study of the literature, including a large part of all the material on wood wool slabs written over the years.

Organization of the report

The report is divided into two parts. The first part includes Chapter 1, the background to the study, Chapter 2, a short description of the production, properties and use of wood wool slabs, and Chapter 3, a description of how wood wool slabs can be produced industrially in developing countries.

The second part includes Chapter 4, choosing an appropriate wood, Chapter 5, the properties of wood wool slabs, Chapter 6, quality control, and Chapter 7 examples of use.
2 General considerations

History of woodwool slabs

Slabs of woodwool (excelsior), gypsum and water were patented in Germany already in 1880. During the 1910s production of woodwool slabs with magnesite as the binding agent (patented 1908) started in Austria. Magnesite\(^1\) gave better durability than gypsum.

Portland cement was introduced at the end of the 1920s, and is the most common binder today, which is why they are commonly called woodwool cement slabs and, in North America, cement excelsior boards (CEB). For a long time woodwool slabs were made in Germany with either gypsum, magnesite or cement as binder. Gypsum slabs are no longer made.

The technique to produce woodwool slabs – mainly cement-bonded, but even magnesite-bonded – spread quickly from Austria and Germany to other European countries and North America. A great increase in production occurred during the years before and after the second world war, and woodwool slabs were spread even farther geographically.

At first cement-bonded woodwool slabs were produced by hand in small plants. The equipment was limited to wood shredding machines, to make the woodwool, and a mixer. Manufacture became more and more mechanized over the years, with significantly high production capacity. Modern factories are normally fully mechanized, and about 15 persons can produce up to 150 m\(^3\) slabs a day.

The most commonly used wood for woodwool slabs comes from conifers, mainly pines and firs. During the 1960s a great number of other species were tested, including tropical woods, to see if they could be used for woodwool slabs. A number of species were suitable, which led to production of woodwool slabs on other continents. There is currently production in Africa (Ghana, Malawi, Namibia, Zambia), Asia (Burma, India, Indonesia, Japan, Malaysia, the Philippines, Taiwan, Thailand) and Latin America (Brazil, Mexico, Panama, Peru, Venezuela). Production in these countries varies in the degree of mechanization – everything from manual to completely automated.

Production

The components needed for woodwool slabs are woodwool, binder (Portland cement or magnesite) and water. Normally a small amount of binder additive is added to speed up setting.

Making woodwool

Woodwool can be made from a number of woods. To make production easier, the wood should allow easy shredding (have a low density) and not contain compounds that seriously inhibit the setting of the slab.

Usually the tree trunks are air-dried (seasoned) before cutting into logs and shredding to woodwool. This reduces the amount of sugar and other compounds in the wood that inhibit setting of the slabs, and lowers the moisture content (shredding is more difficult with green wood).

To make woodwool, a half metre long log is placed in a shredding machine (Fig. 1) fitted with scoring knives perpendicular to the planing knives. The cross section of the woodwool is determined by adjusting the speed with which the log is fed toward the planing knife, and the distance between the scoring knives. The thickness of the woodwool can vary between 0.2 – 0.5 mm, and the width between 1.5 – 5 mm depending on how the slab will be used. The amount of woodwool in a slab varies between about 75 – 200 kg depending on the density of the slab.

Binder

The most commonly used binder in woodwool slabs is Portland cement, but magnesite can also be used. The Portland cement is normally of ordinary type (OPC), although rapid-hardening cement can be used to make the setting faster. Sometimes white cement is used for aesthetic reasons.

For magnesite-bonded slabs the binder can be said to be magnesium oxide (MgO), one of the components of magnesia cement.

The amount of binder depends on the density of the woodwool slab, and varies between about 150 and 400 kg/m\(^3\).

Binder additives

Normally some kind of binder additive is necessary. The setting of the Portland cement and water mixture can be inhibited to greater or lesser extent by sugars and other chemicals in the woodwool. An accelerator is therefore often added so that the slabs set within 24 hours. The most common accelerator is calcium chloride (CaCl\(_2\)). The amount of accelerator depends on the kind of wood, but is usually about 2% by weight of the water.

For magnesite-bonded slabs the binder additive is either magnesium chloride (MgCl\(_2\)) or magnesium sulphate (MgSO\(_4\)).

\(^1\) The binder is actually magnesia cement, produced by mixing magnesium oxide (MgO) with a solution of magnesium chloride (MgCl\(_2\)) or sulphate (MgSO\(_4\)). The magnesium oxide is produced by heating minerals such as magnesite (MgCO\(_3\)) or dolomite (CaMgCO\(_3\)).
Water
The water should not contain anything that would inhibit the setting of the slabs. The amount of water required is about 50% of the cement by weight.

Mixing
Before the wood wool is mixed with the binder, it is soaked in a water bath containing the binder additive. The wet wood wool is transferred to a mixer, where dry binder is added.

The ratio by weight of binder to wood wool is about 2:1. There are small variations from this ratio. Since the binder normally is the most expensive part of the wood-wool slab, attempts are made to use as little as possible. Too little binder, however, means that not all the wood-wool is coated, which results in poorer binding and strength.

Making the slabs
The mixture of wood wool, binder and water is put into moulds which are filled with the required amount of mixture by weight (Fig. 2). The moulds are then stacked on top of each other and put under pressure so that the mixture in each mould is compressed.

After the slabs have hardened, usually in 24 hours, they are demoulded and the edges trimmed with a saw. They cure for two to three weeks before they are delivered.

Properties
Thermal insulation
Wood wool slabs give good thermal insulation. Thermal conductivity is, however, relative to their density (see Fig. 23). At a density of 400 kg/m³ the thermal conductivity is about 0.085 W/mK in practice. A comparison of the thermal conductivity of wood wool slabs and some other materials is shown in Table 1.

Table 1 Comparison of density and thermal conductivity (values in practice) for wood wool slabs and some other materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Thermal conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood wool slab</td>
<td>400</td>
<td>0.085</td>
</tr>
<tr>
<td>Cellular plastic, mineral wool</td>
<td>20 – 50</td>
<td>0.036</td>
</tr>
<tr>
<td>Lightweight concrete</td>
<td>400</td>
<td>0.10</td>
</tr>
<tr>
<td>Softwood</td>
<td>500</td>
<td>0.14</td>
</tr>
<tr>
<td>Hollow brick</td>
<td>800</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Other properties
Wood wool slabs have very good acoustic properties and are often used to absorb sound in, for example, factories, public gathering places, sports and concert halls.

The material is known for its good durability. It has very good fire resistance, tolerates damp and is not attacked by mould or rot. Wood wool slabs have good resistance to insect pests, as termites.

Compared to many other insulation materials, wood-wool slabs have good bending and compression strength. They are easy to saw, drill and nail. They have good adhesion to rendering/plastering mortars and concrete. The material is considered to be healthy, since it has very low emissions of harmful compounds.

Products and uses
Insulation slabs
Insulation slabs are normally made of relatively coarse wood wool (3 – 5 mm wide). They are used for thermal insulation, and are normally not visible but rendered/plastered. The slabs can be 2 – 3 m long, 500 – 900 mm wide and 15 – 150 mm thick. Their density ranges from 250 – 700 kg/m³ depending on use. If thermal insulation capacity is important, they are made with low density; if strength is important, they are made with high density.

Acoustic slabs
Wood wool slabs meant for sound absorption are often made of finer wood wool (1.5 – 3 mm). These slabs are visible, and they are often painted for aesthetic reasons. They might also be made with white cement which gives them a whitewood colour. Acoustic slabs are usually 15 – 50 mm thick.

Special products
There are also a number of special products. To increase the loadbearing capacity for use in roof structures, the slabs might be reinforced with wooden poles or bars, or the sides of the slabs can be strengthened with galvanized steel channels (Fig. 4). These reinforced slabs can even be used as standing, loadbearing wall elements.

In many countries the slabs are sold with a finished surface. These might be a layer of cement-based mortar or gypsum plaster. The surfacing can be done so thinly that the texture of the slab still shows (Fig. 5).

2 Less commonly the binder and water are mixed before the wood wool is added. A small-scale process using this method of mixing is described in Hawkes and Cox (1992).

3 Magnesite-bonded wood wool slabs can also be produced industrially in a continuous process during which the slabs are compressed and heated to 400 °C to make them cure faster (see Kollmann 1955).
3 Recommendations for production

The manufacturing process recommended is in principle the same as for more automated production. This means the proposed plant can be gradually mechanized with more equipment without alterations in the plant layout.

This description assumes the binder is Portland cement. Magnesite can also be used according to Chapter 2.

Manufacturing process

Debarking and air-drying (seasoning)
Immediately after felling, or at least before stacking in the wood yard, the bark is removed from the trunks with a debarking tool, such as a steel scraper.

The tree trunks should then be air dried until the moisture content of the wood drops to the right level, usually about 20 – 30%. This normally takes three to six months and has to be done in open air.

Making woodwool
The trunks are cut into logs of about half a metre long and moved to the wood shredding machine on carts. During shredding, the planing and scoring knives are adjusted to produce the desired width and thickness of woodwool strands.

Weighing and soaking woodwool
Dry woodwool is taken to the scales in a wheelbarrow and the right amount for a batch is weighed. It is then carried by hand and fed into an immersion tank. The immersion tank is also filled with accelerator solution from an attached container. (The amount and type of accelerator in the solution depends on the type of wood, and it can happen that no accelerator is needed).

Before the wet woodwool leaves the immersion tank, it passes between rubber rollers to remove the excess liquid. The woodwool is then carried by conveyor belt to the mixer.

Adding the cement
Cement is delivered to the plant in bags. The bags are emptied into a container and the cement is transferred to the mixer through screws. The correct amount of cement for a batch is controlled by a cement dosing unit next to the mixer.

Mixing and moulding
Wet woodwool and dry cement are mixed continuously in a horizontal mixer. The homogenous mix is then spread in oiled moulds that are pushed into place under the mixer on a line of rollers. The amount of material in the moulds depends on the density of slab to be produced. The mixture must be spread evenly in the mould and pressed down along the edges. Note that gloves must be used to avoid skin contact with the mixture, since cement is corrosive. (Skin contact with cement might even lead to chrome allergy.)
Fig. 6
Debarking the tree trunks before they are air dried.

Fig. 7
Cutting the trunks into half a metre long logs.

Fig. 8
Debarked and cut logs stacked on carts.

Fig. 11
Woodwool is weighed manually before soaking.

Fig. 12
Dry woodwool is soaked in an immersion tank and transported to the mixer. Before the wet woodwool reaches the conveyor belt, it goes between rubber rollers to press out excess liquid.

Fig. 13
Continuous mixing of wet woodwool with cement, and filling the moulds. The mixture must be spread uniformly in the moulds and pressed down along the edges.

Fig. 17
Stripping the 24 hour old slabs.

Fig. 18
Stripping 24 hour old slabs (Climatex, Brazil).
Fig. 9
Producing woodwool in a horizontal wood shredding machine. The logs are fastened and pressed down against the planing and scoring knives by toothed rollers.

Fig. 10
Shredding woodwool. As the log is fed down, the planing and scoring knives go back and forth horizontally at high speed. The woodwool falls down under the shredder.

Fig. 14
Filling the cement container that is connected to the mixer by cement screws.

Fig. 15
Compression of filled moulds in a hydraulic press.

Fig. 16
The slabs set under pressure for 24 hours. The required pressure is maintained by a concrete slab weighing about one ton.

Fig. 19
After a weeks curing, the slabs are sawn to trim the edges and ensure the correct length and width.

Fig. 20
Storing of slabs stacked on top of each other.
Compressing and setting
The filled moulds are stacked on top of each other and compressed in a hydraulic press. The bottom of one mould becomes a lid on the mould under. Then the entire stack of filled moulds is moved and allowed to set for 24 hours. Pressure is maintained by, for example, placing a concrete slab (weighing about one ton) on top of the stack.

Stripping
When the slabs have set they are stripped from the moulds, and the moulds are cleaned and oiled for reuse.

Curing and trimming the edges
The stripped slabs must be cured indoors or under cover, protected from direct sunlight. The best curing occurs if the surrounding air is somewhat moist, so the slabs are not allowed to dry out. It is recommended that each stack of boards be covered with a plastic sheet during the first week. To avoid high temperatures due to hydration, spacers could be put between the boards.

After a total of two to three weeks curing the slabs are ready for delivery.

Quality control
Quality is monitored by inspecting randomly selected samples and should be routine at the plant (proprietary inspection) and, if possible, at an accredited testing centre. Chapter 6 gives recommendations on how to determine the quality of wood wool slabs.

Proprietary inspection
The size and weight of one sample slab, of each product made, should be checked each production day, and the findings entered in a permanent record.

Monitoring by a testing centre
The plant’s own inspection should, if possible, be corroborated by an independent testing centre, perhaps twice a year.

An overall inspection of each product should be done regularly, perhaps once a year, by an accredited testing centre. The most important checks are size, density, bending strength and compression strength.

Plant
For the production process described, it is recommended that the plant be about 55 × 40 m with a height of at least 5 m. See the design in Fig. 21. This building is large enough to permit increase automation without major alteration. There will be unused space at first, but this space might well be used to produce prefabricated elements.

The plant should be serviced by roads suitable for lorries. It needs to be connected to water and electricity. Lighting is necessary, and possibly even heating. Some partition walls are needed to separate the workshop, of-
Item	**Number**	**Code**	**Cost (US$)**
Scales for woodwool | 1 | 3 | 10,000
Salt solution preparation unit | 1 | 4 | 20,000
Woodwool conveyor | 1 | 6 | 28,000
Roller conveyor | 1 | 13 | 6,000
Edge trimming station | 1 | 16 | 47,000

Table 4 Equipment that might be purchased locally. Approximate cost 1 Dec. 1994 according to Elten Systems if the equipment is imported.

Moulds

It is recommended that the moulds have bottoms of water-resistant plywood and sides of wood strips, see Fig. 22. The plywood should be about 20 mm thick and preferably be surface treated with phenolic resin. The edge strips should be about 50 mm wide. The recommended inside dimensions for the moulds is 2 – 3 m long, 500 – 600 mm wide, and 15 – 150 mm high.

The number of moulds needed depends on the production volume and the thickness(es). With a daily production of 32 m³, if the slabs are 50 mm thick and 1 m² in area (for example 500 × 2,000 mm), the theoretical number of moulds needed is 640. However, there should always be some spare moulds, and one should have about twice as many, that is 1,300. A mould should last about five years with good care and maintenance.

Staff

For production 22 labourers (see Table 5), a supervisor and a maintenance engineer are needed, which makes a total of 24 production staff. There are also administrators, sales and marketing staff, etc.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>No. of workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab production</td>
<td>3</td>
</tr>
<tr>
<td>Debarking tree trunks, sawing into logs, shredding and transport of woodwool to scales.</td>
<td>3</td>
</tr>
<tr>
<td>Weighing woodwool and loading the immersion tank</td>
<td>1</td>
</tr>
<tr>
<td>Preparation of accelerator solution, filling cement, cleaning, oiling, etc.</td>
<td>2</td>
</tr>
<tr>
<td>Filling and spreading the mixture in the moulds</td>
<td>4</td>
</tr>
<tr>
<td>Transport of filled moulds with a manual fork-lift</td>
<td>1</td>
</tr>
<tr>
<td>Stacking the moulds, compression in the hydraulic press</td>
<td>2</td>
</tr>
<tr>
<td>Stripping the set slabs from the moulds</td>
<td>2</td>
</tr>
<tr>
<td>Transport of the stripped slabs and trimming the edges</td>
<td>3</td>
</tr>
<tr>
<td>Stacking the slabs on pallets</td>
<td>2</td>
</tr>
<tr>
<td>Delivery</td>
<td>1</td>
</tr>
<tr>
<td>Transport with manual forklift</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance of machines, sharpening the shredder knives and saw blades</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 5 Labour needed for production.
Setting up the plant

Before starting production, the equipment must be set up and tested. Mechanical and electrical installations are supervised by qualified professionals with help of the future labourers. Installations can take 1.5 – 2 months.

Each machine must be tested after installation. When all machines work well, the plant starts pilot production, while the staff is trained by experts. This training takes 2 – 3 weeks.

Consumption of raw materials and energy

Raw materials

Production capacity is usually governed by the number of shredders. With a normal thickness of wood wool (about 0.3 mm) each shredder has a capacity of 300 – 400 kg of wood wool per hour.

The production method described here makes slabs with a density of 250 kg/m³ or more. With an air-dry density of 400 kg/m³, about 32 m³ of wood wool slabs can be made during an 8 hour shift (7 hours effective work). This gives a year’s production of 7,700 m³ (reckoning 240 work days per year).

To produce 8,000 m³ of wood wool slabs per year requires about 2,000 m³ wood. An annual felling of this volume of wood requires a plantation of an estimated 200 – 500 hectares.

It is important that production of wood wool slabs does not lead to deforestation. The wood must be taken from well-managed forests and plantations, with continuous replanting.

Industries using wood do not necessarily lead to a decrease in forests. On the contrary, commercial forestry can promote wood plantation, if replanting is seen to pay.

The maximum capacity of a plant is thus 23,000 m³ (with 3-shift production). To increase production capacity per shift requires more shredders and moulds. (Proposals for larger plants than that described here can be obtained from Elten Systems, the Netherlands.)

The ratio between wood wool, cement and water (including accelerator) is about 1:2:1. For slabs with an air-dry density of 400 kg/m³, the wet density is about 470 kg/m³. An annual production of 7,700 m³ requires the following raw materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>1,000 metric tons</td>
<td>(including wastage)</td>
</tr>
<tr>
<td>Cement</td>
<td>1,875 metric tons</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>1,100 metric tons</td>
<td>(including general use)</td>
</tr>
<tr>
<td>Accelerator¹</td>
<td>18 metric tons</td>
<td>The accelerator can be calcium chloride or any other accelerating salt. A solution of 2% is assumed. However, the amount of accelerator depends on the type of wood.</td>
</tr>
</tbody>
</table>

Note there are several advantages in making slabs with a density lower than 400 kg/m³: thermal conductivity decreases (see Fig. 23), the slabs are easier to handle (lighter) and the production volume is greater for the same amount of raw materials. A lower density however means that strength decreases. This makes no difference in most applications. Lower density however requires good quality wood wool, which must be elastic and strong.

If slabs are made with a density of 300 instead of 400 kg/m³, thermal conductivity improves from about 0.085 to about 0.072 W/mK, and the volume of production increases about 30% for the same amount of raw materials.

Energy consumption

The equipment recommended requires a total of about 75 kW. The most demanding machine is the shredder which draws about 20 – 30 kW depending on the brand. Energy consumption for the plant with one shift per day is about 75,000 kWh per year (240 work days and a load factor of about 60%).

Production costs

Estimated production cost

An example is given of the calculation of production costs for 1 m³ of wood wool slab with an air-dry density of 400 kg/m³. The calculation is done for the plant recommended in this chapter and assumes one work shift per day, equivalent to an annual production volume of 7,700 m³. The current prices for imported equipment were used. Other prices and costs, which vary greatly between countries, were estimated in this example. The calculation is set up so that the correct values can easily be put in.

The calculation is done for the first year of production. Over time bank interest will go down, but the cost for maintenance will go up. Therefore it is not expected that the total production costs will change very much. Possible import taxes on the equipment are not included in the calculation. It is assumed that there is continuous production, that is the demand is rather constant and there are no big technical problems.

The calculated production cost for 1 m³ wood wool slab is 52 US dollars (see Table 6). If 50 mm thick slabs are produced, the cost per m² is 2.6 US dollars.
Calculations

Cost of raw materials (in US dollars)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit price</th>
<th>Total annual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1,875 tonnes</td>
<td>50</td>
</tr>
<tr>
<td>Wood</td>
<td>1,000 tonnes</td>
<td>25</td>
</tr>
<tr>
<td>Water</td>
<td>1,100 tonnes</td>
<td>1</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>18 tonnes</td>
<td>100</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Including transport

Cost of consumables (in US dollars)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit price</th>
<th>Total annual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moulds</td>
<td>1,300 pcs</td>
<td>50</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 With an expected lifetime of 5 years

Salaries (in US dollars)

<table>
<thead>
<tr>
<th>Number</th>
<th>Cost/person</th>
<th>Total annual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer</td>
<td>1</td>
<td>8,000</td>
</tr>
<tr>
<td>Supervisor</td>
<td>1</td>
<td>6,000</td>
</tr>
<tr>
<td>Labourers</td>
<td>22</td>
<td>4,000</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Annual salary including insurance, employers tax, etc.

Energy cost (in US dollars)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit price</th>
<th>Total annual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machines</td>
<td>75,000 kWh</td>
<td>0.4</td>
</tr>
<tr>
<td>Other</td>
<td>25,000 kWh</td>
<td>0.4</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capital costs for equipment (in US dollars)

<table>
<thead>
<tr>
<th>Investment cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import ed equipment</td>
</tr>
<tr>
<td>Transport (6%)</td>
</tr>
<tr>
<td>Other equipment</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Capital costs for plant and site (in US dollars)

<table>
<thead>
<tr>
<th>Investment cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant building</td>
</tr>
<tr>
<td>Site (8,000 m²)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Total annual cost

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortization</td>
</tr>
<tr>
<td>Interest</td>
</tr>
<tr>
<td>Sum</td>
</tr>
</tbody>
</table>

Note that if second hand or locally produced equipment are used as much as possible, investment costs will be significantly lower.

Note

The actual cost for the material will be significantly greater than the estimated production cost. Overhead costs include costs for management, administration, sales and marketing, taxes, profit, etc. When the production starts for the first time, there are also costs for installation, training and the pilot production.

It is difficult to compare prices of woodwool slabs and other building materials since the prices vary greatly between countries. In general woodwool slabs are somewhat more expensive per m² than thermal insulation materials such as mineral wool and cellular plastic to give equal thermal insulation.

Compared to traditional construction using, for example, hollow blocks, building components containing woodwool slabs are often cheaper. This is because construction is faster with the material, and it combines good thermal insulation capacity with high strength.
4 Choice of wood

This chapter deals only with cement-bonded slabs, but the procedures to choose a suitable wood are the same for magnesite-bonded slabs.

Technical requirements for the wood

Ease of shredding

The wood must allow shredding at a reasonable cost. This means it should not be too hard and/or contain much silica, which causes excessive wear on the knives. Woods with an air-dry density over 750 kg/m³ are not normally suitable. The most suitable species have few branches and trunks that grow relatively straight.

Wood species that give long, strong and elastic strands are best to achieve good thermal insulation capacity. This type of wood wool allows production of slabs with low density and sufficient bending strength. On the other hand, if the wood wool easily breaks into short strands, it is difficult to maintain both low density and good bending strength in the slabs.

The diameter of the tree trunk should normally be greater than 100 mm and less than 400 mm. (There are also special shredding machines that handle diameters under 100 mm).

The wood’s effect on setting

Cement-bonded wood wool slabs consist of organic wood wool enclosed in inorganic cement paste (Portland cement and water). Like all cellulose materials, wood to greater or lesser extent inhibits the setting of the cement. This is caused by wood sugars and other compounds that leach out of the wood in contact with the cement paste. If the species of wood prevents setting, or delays it too much, the wood is not suitable.

Availability of the wood

If a wood species is to be considered suitable for production of wood wool slabs, it is not enough that the technical requirements are met. It is also important that the wood is available in adequate quantity and at a reasonable price. The proximity to the source of wood is important, since transport costs would otherwise be high. Quick growing species are often preferable, since these woods are normally the cheapest.

An annual production of 8,000 m³ wood wool slabs, as assumed in Chapter 3, requires a plantation of about 200 – 500 hectares, assuming it is well maintained and replanted after felling. The precise area depends on how quickly the species grows.

Tree species with little commercial value might be used in wood wool slabs. Quick growing species, such as pulpwod, that are not appropriate for furniture, etc. are often suitable.

Improving the compatibility of the wood with cement

Air-drying (seasoning)

Air drying lowers the content of sugars and other compounds that inhibit setting, and normally takes 3 – 6 months.

Addition of an accelerator

The inhibition of the cement setting by the wood can be compensated by the use of an accelerator. Dissolved in water, these are often called “mineralizing fluids.” They work by making the slab set before the “cement poisons” in the wood have time to diffuse into the cement paste.

The most common accelerator is calcium chloride (CaCl₂). Other possible accelerators are magnesium chloride (MgCl₂), water-glass (sodium silicate, Na₂SiO₃, or potassium silicate, K₂SiO₃), aluminium sulphate (Al₃(SO₄)₂) and lime water. The accelerator is usually added to the water bath that the wood wool is soaked in before it is mixed with the cement. The normal concentration is between 1 – 5% by weight of the water in the mix.

There are several reasons to keep the amount of accelerator low. One is production costs, especially if the accelerator is expensive or must be imported. If the slab contains chloride, which it will if calcium chloride or magnesium chloride was used as accelerator, there is a clear risk of corrosion and galvanized nails and screws must be used.

Rapid-hardening cement

The amount of accelerator can be reduced – perhaps none is needed at all – by using rapid-hardening (quick setting) Portland cement. It is more finely ground than ordinary cement and thus more expensive.

Leaching

Another, often economical, way to improve the compatibility of the wood with cement is leaching. This is done by pre-soaking the wood wool in water for 24 hours (possibly 48 hours with a change of water after the first day). Sometimes the wood wool is soaked for some period in hot water or in solution of calcium chloride, water-glass or sodium hydroxide (NaOH).

Tests of suitability

Full-scale tests

The only way to be sure that a wood species is suitable for wood wool slabs is to produce test slabs on full scale. Such a test requires access to a wood wool shredder. If this is not available, logs can be sent away for shredding, and the wood wool shipped back. It might be possible to conduct tests at the closest wood wool slab factory, which gives one access to the factory’s practical experience, which can be very valuable. Full-scale tests can also be conducted by Elten Systems, the Netherlands.

Observe how the wood shreds. The wood should be easy to shred so that the knives do not wear out too fast.
(Normally the knives should last for eight hours production before they need sharpening.)

The slabs themselves can be made by hand. The ratio of woodwool : cement : water should be 1:2:1. First soak the woodwool in water (perhaps with an accelerator), then sprinkle on the cement. (Alternatively the dry woodwool can be put into a cement slurry.) Mixing can be done with a pitchfork in a trough or in a cement mixer. The mix is packed into a mould of appropriate size, such as 50 × 500 × 1,000 mm.

The main aim of making test slabs is to see if the slabs hold together and how long time they take to set before they can be stripped from the mould. If the test slab sets satisfactorily, in a reasonable time, one can examine its bending strength and compression strength. For these, and other tests, see Chapter 6 Quality control.

A large number of wood species have already been tested by production of full-scale slabs. They are listed in Appendix (Table A1).

Screening tests
There are several small-scale tests to determine the suitability of a wood. **Note that it is not possible to establish suitability with these tests; they only help eliminate completely unsuitable woods.**

A rather good method is to make small test slabs with woodwool, cement and water (perhaps containing accelerator). This gives an impression of the shredding quality of the wood, and if the slabs set satisfactorily. If these tests are promising, then full-scale tests are done and the slabs are tested for strength. Woods tested by this method are shown in Appendix (Table A2).

There are other more or less simple screening tests, but since they are not reliable they are not described here.

5 Properties

Thermal properties

Thermal conductivity

The thermal conductivity of woodwool slabs is mainly a function of their density and moisture content; it increases as density and/or moisture content increases. Fig. 23 shows thermal conductivity in practice as a function of air-dry density. (Thermal conductivity for oven-dry material is significantly lower.) Table 7 compares the thermal conductivity of a woodwool slab, with 400 kg/m³ density, with other materials.

![Approximate values for the thermal conductivity (λ) as a function of air-dry density for woodwool slabs (moisture content 8 – 10%).](image)

(Sources: Information from different manufacturers and Cammerer (1962): Der Wärme- und Kälteschutz in der Industrie.)

Woodwool slabs allow air to pass easily, which could increase the thermal conductivity by forced convection when the material is left unplastered (acoustic applications as in Fig. 44). Studies show however that if one side of the slab is sealed, normal values for thermal conductivity apply as well to this kind of construction.

Thermal capacity

Woodwool slabs have a high specific thermal capacity (about 1,600 J/kgK at 10% moisture content). The relatively high thermal capacity of roofs and walls constructed with woodwool slabs can significantly improve indoor comfort, since indoor temperature changes are attenuated, when there are large diurnal variations in outdoor temperature.

The thermal capacity of woodwool slabs is compared with other materials in Table 7.

Strength

The standards for strength according to DIN⁴ 1101 for cement and magnesite-bonded woodwool slabs are given in Table 8. The minimum values according to DIN are low; modern industrially produced woodwool slabs might have several times the strengths shown.

⁴ Deutsches Institut für Normung (“German standards institution”).
The strength of woodwool slabs, especially if they are cement-bonded, is insignificantly affected by high relative humidity.

Bending strength
The bending strength of a slab is high relative to its weight, because the two components – wood wool and binder – complement each other: the wood strands take the tensile stress, while the hardened cement paste (or magnesia cement) takes most of the compressive stress. The tensile strength of the wood strands is crucial to the slab’s bending strength.

Bending strength increases with density. Normally thin slabs are made with higher density than thick slabs to give adequate bending strength.

Load bearing capacity can be increased significantly by reinforcing the slabs. Steel channels or wooden poles or bars can be used, see Fig. 4. These slabs can have a bending moment capacity of over 2 kNm and are about 4 times stronger than an ordinary slab of the same thickness.

Compressive strength
Woodwool slabs have a relatively high compressive strength that, as bending strength, increases with density. The compressive strength perpendicular to the plane of the slab is expressed as compressive stress at 10% compression (see Table 8). Compressive strength of woodwool slabs is compared with other materials in Table 7.

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Thermal conductivity (W/mK)</th>
<th>Volumetric thermal capacity (J/m³K)</th>
<th>Compressive strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodwool slab</td>
<td>400</td>
<td>0.085</td>
<td>640×10^3</td>
<td>0.2 – 1.0²</td>
</tr>
<tr>
<td>Autoclaved aerated concrete</td>
<td>400</td>
<td>0.10</td>
<td>420×10^3</td>
<td>1.7</td>
</tr>
<tr>
<td>Glass wool</td>
<td>50</td>
<td>0.036</td>
<td>44×10^3</td>
<td>0.01</td>
</tr>
<tr>
<td>Expanded polystyrene</td>
<td>30</td>
<td>0.036</td>
<td>36×10^3</td>
<td>0.1</td>
</tr>
<tr>
<td>Hollow brick</td>
<td>800</td>
<td>0.47</td>
<td>700×10^3</td>
<td>–</td>
</tr>
</tbody>
</table>

1 Values in practice.
2 At 10% compression.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Weight (kg/m²)</th>
<th>Density (kg/m³)</th>
<th>Bending strength (MPa)</th>
<th>Compressive strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8.5</td>
<td>570</td>
<td>1.7</td>
<td>0.20</td>
</tr>
<tr>
<td>25</td>
<td>11.5</td>
<td>460</td>
<td>1.0</td>
<td>0.20</td>
</tr>
<tr>
<td>50</td>
<td>19.5</td>
<td>390</td>
<td>0.5</td>
<td>0.15</td>
</tr>
<tr>
<td>75</td>
<td>28.0</td>
<td>370</td>
<td>0.4</td>
<td>0.15</td>
</tr>
<tr>
<td>100</td>
<td>36.0</td>
<td>360</td>
<td>0.4</td>
<td>0.15</td>
</tr>
</tbody>
</table>

1 Maximum value.
2 Minimum value.
3 At 10% compression.

Acoustic properties

Sound absorption
Woodwool slabs have good sound absorption, which makes them suitable for all kinds of public gathering places, industries, etc.

The sound absorption normally increases somewhat with increased thickness, especially for low frequencies. Sound absorption is also affected by proximity to other materials, while painting the slabs has only slight effect.

Fig. 24 shows sound absorption at different frequencies both for a free-standing slab, such as a suspended slab, and for a slab next to a hard material, such as a woodwool slab against cast concrete.

Fig. 24 Sound absorption at different frequencies for a 50 mm thick woodwool slab. Curve A is the slab with at least 50 mm clear space over. Curve B is the slab lying against a hard material. (Source: Anon. 1985).

Sound insulation

A woodwool slab itself gives very moderate sound insulation, but if it is plastered on one side, the sound insulation properties are good (sound reduction of about 30 dB). If a plastered woodwool slab is part of a heavy wall, made of brick or concrete for example, sound insulation is very good: (sound reduction is 35 – 55 dB depending on the weight of the wall). Good sound insulation can also be achieved with a wall made of two plastered woodwool slabs with an air cavity (sound reduction of about 50 dB).

Fire performance

In spite of the wood content, woodwool slabs have good resistance to fire. The material is classed as hard to ignite, and is therefore approved for indoor surfaces according to international standards. A 50 mm thick slab resists fire for 1 hour and a 100 mm thick slab for 2 hours.

The good fire performance of the material is related to the fact that the wood strands are protected by the binder, as well as its thermal insulating capacity and coarse structure. If the material is covered with a layer of cement or gypsum plaster, fire resistance increases further.
Moisture properties
Wood wool slabs have the ability to absorb large amounts of moisture. If the relative humidity in the air exceeds 95%, the moisture content of the slab is more than 20%. (When dipped in water until saturation, the moisture content is about 30%.) Because of their capacity to absorb moisture, wood wool slabs are suitable where the relative humidity is occasionally very high, for example in sports halls. The slabs attenuate the variations in the indoor air humidity, by absorbing moisture rapidly when there is a moisture input (when the relative humidity rises) and releasing this moisture when the relative humidity decreases. Most thermal insulation materials lack this ability. Fig. 25 compares the ability of wood wool slab with wood (pine), brick and mineral wool to absorb moisture.

When wet wood wool slabs dry to air-dry (about 50% relative humidity), shrinkage in length is about 3‰.

The vapour diffusivity of wood wool slabs (at 20°C) is about 10×10^{-6} m²/s, whereas the vapour resistivity is about 20 MNs/gm.

Durability
Resistance to rot and mould
Cement and magnesite-bonded wood wool slabs have surprisingly good resistance to rot and mould. This is because the binder creates a chemically basic environment that protects the wood strands (pH-value ≥9).

Wood wool slabs have been in use for over 80 years, and the experiences of all areas of application are uniformly good. Rendered slabs have sat on facades exposed to heavy rains for over 50 years without rotting or moulding. Experience from swimming halls, where the relative humidity can be over 80%, is also very good.

The material has been buried in the ground for 30 years and kept under water for 10 years without destruction.

Mould resistance is an important quality for healthy buildings. Where moisture is high, mould is common on untreated wood and on wooden boards that are not cement-based.

Resistance to insects and termites
Because the wood strands are covered by binder, resistance to insects and termites increases significantly. Some studies show however that both cement and magnesite-bonded wood wool slabs might be attacked by termites (see Kumar 1980).

The results are very good in practice. Wood wool slabs have been used at least since the 1960s in countries with severe termite problems, without any reports of termite attack on the slabs.

For safety reasons the risk of termites must however be considered, if the slabs have an active function in the loadbearing construction.

Plastering the slabs will further reduce the risk of termite attack.

Resistance to an aggressive environment
Wood wool slabs have good resistance to aggressive air. The material resists sulphur in the air and has been very successfully used in swimming halls where the air often contains chlorine and chrome. Wood wool slabs in factories where aggressive chemicals are used have not deteriorated.

Emission of harmful compounds
Wood wool slabs have little emissions. Unlike glued wood-based boards, such as plywood and chipboard, the material does not release formaldehyde. The total amount of volatile organic compounds (TVOC) released by a cement-bonded slab was measured at less than 11 µg/m²h, which is very low (Tests by Swedish National Testing and Research Institute).
6 Quality control

The suggestions in this chapter are largely based on the German standards for woodwool slabs, DIN 1101, but local standards may be established.

Conditions of testing
The tests should be carried out on five randomly selected slabs of each product produced. Before testing, the slabs should be conditioned for at least two weeks under as constant room temperature and humidity as possible.

Size and density

Size
Requirement. The slab is measured and the following variations are allowed: length ± 10 mm, width ± 5 mm, thickness ± 3 mm.

Method. Use a steel measuring tape. Measure the length of each slab in three places and the width in four places. Measure the thickness of the slab with callipers in 10 places. The average of the measurements for each dimension should fall within the range specified.

Density
Requirement. A standard for the highest density should be established for each type of slab made. See for example Table 8, which gives the DIN standards. The average of the five slabs must be equal to or lower than the chosen standard. The density of an individual slab may not exceed this standard by more than 15%.

Method. Five slabs of the same type, whose dimensions are determined as described above, are each weighed on scales with an accuracy of ± 0.5 kg. The density of each slab is calculated.

Strength

Bending strength
Requirement. A standard for the lowest acceptable bending strength should be established for each type of slab made. See for example Table 8, which gives the DIN standards. The average value for the bending strength of the five slabs must not fall below the chosen standard. The bending strength of an individual slab may not be more than 10% below this standard.

Method. Five slabs of the same type are tested in a hydraulic press (or the equivalent). Each slab is placed on two supports (preferably rollers) that are at least as wide as the slab (Fig. 26). The slab is placed so that the supports are placed one quarter in from each short end (so that the weight of the slab itself does not affect the test). The slab is loaded with a linear load across its centre (parallel to the supports) as shown in Fig. 26. The load is gradually increased until the slab breaks. The bending strength (the modulus of rupture), σ_b (MPa), is calculated as follows:

$$\sigma_b = 0.75F \times L / (w \times t^2)$$

where F is the breaking load in Newtons (N); L, w and t are the length, width and thickness of the slab respectively (mm).

Compressive strength
Requirement. A standard for the lowest compressive strength (defined as the compressive stress at 10% compression) should be established for each type of slab produced. See for example Table 8, which gives the DIN standard. The average compressive strength of five specimens should not fall below the chosen standard. The compressive strength of an individual sample should not be more than 10% below this standard.

Method. From five slabs of the same type, saw square specimens with an edge L of, say, 200 mm. The specimens are tested in a hydraulic press (or the equivalent). Each specimen is placed between two rigid metal plates with the shorter side at least as long as the edge of the specimen. Each specimen is subjected to a load over its centre (Fig. 27). The specimen is first loaded with a force of 100 N to determine its initial thickness. The pressure is then increased steadily until the specimen is compressed to 90% of its initial thickness. Compressive strength, σ_c (MPa), is then calculated as follows:

$$\sigma_c = F / L^2$$

where F is the load (N) at 10% compression.

Other tests

Thermal conductivity
Requirement. A standard for the highest permitted thermal conductivity should be established with respect to the density of the slab. The same standard can be used.
for slabs of different thicknesses but with about the same
density. (The DIN standard for slabs with thicknesses
≥ 25 mm is 0.090 W/mK.

Method. Thermal conductivity is closely tied to dens-
ity (compare with Fig. 23), that is a test of density is an
indirect test of thermal conductivity. However, if possi-
ble, at least one thermal conductivity test should be done
per product in a laboratory. How to measure thermal con-
ductivity is described in, among others, DIN 52 612 part
1 and 2, British Standard (BS) 874 and American Stan-
dard (ASTM) C 518. Since thermal conductivity is also
related to the moisture in the material, the slabs should
be conditioned to a defined moisture content before test-
ing.

Acoustic properties
Slabs intended for sound absorption should, if possible,
be tested to produce a profile of sound absorption at dif-
ferent frequencies (see Fig. 24).

The sound insulation properties of the slabs might be
tested for the types of walls and roofs they are normally
used for. Such tests are described in BS 2750 (sound re-
duction index).

Fire performance
Fire performance is related to the density of the slabs,
that is if the slabs meet the density requirements, their
fire performance is also known. If possible the fire per-
formance of each product should be tested at least once.
Tests of fire performance are described in, for example,
DIN 4102 part 1, BS 476 part 1, 5, 6 and 7.

Chloride content
Requirement. According to DIN 1101 a woodwool slab
may not contain more than 0.35% water soluble chlo-
rides (measured in percent weight of the slab’s oven-dry
weight).

Method. The principle for the test is that chlorides are
leached out by distillation and the content is determined
by potentiometric titration. The method is described in
DIN 1101.

7 Applications

Exterior walls
Thermal insulation requirements
It is difficult to give a general standard for the thermal
transmittance (U-value) of an exterior wall, since it
depends on the local climate and on economic factors.
Adamson and Åberg (1993) recommend a maximum
U-value of 1.0 W/m²K for walls of air conditioned
houses in warm and humid climates. The types of walls
described here follow this recommendation.

Walls built on site
★ The wall in Fig. 28 is made of elements containing
a cavity. Each element consists of two woodwool slabs
sandwiching spacer strips of woodwool slab. The spacer
strips should be at least 50 mm thick. The parts are as-
sembled with cement slurry. The slabs in the elements
might stand vertically or horizontally. In the latter case
the distance can be increased between the concrete col-
umns, and each column can be cast in vertical stages.

Advantages. The walls are light and fast to build. The
cavity can be used for electrical cables. The wall has
good vertical loadbearing capacity and is stable because
of the good adhesion of the concrete columns to the ele-
ments. It has no significant thermal bridges and is safe
in case of termites, since the load is carried by the concrete.

Disadvantages. Wall elements must be prefabricated,
requiring an extra step in the work process.

![Fig. 28 Wall of vertical (or horizontal) elements consisting of two
woodwool slabs sandwiching spacer strips of woodwool slab. The elements are joined by in-situ cast columns of
reinforced concrete. (Using 30 mm thick woodwool slabs
gives a U-value of 0.9 W/m²K).](image)

Calculation of U-value for the wall in Fig. 28

<table>
<thead>
<tr>
<th>t (m)</th>
<th>λ (W/mK)</th>
<th>R (m²K/W) = 1/λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>External rendering</td>
<td>0.02</td>
<td>1.0</td>
</tr>
<tr>
<td>Woodwool slab</td>
<td>0.03</td>
<td>0.085</td>
</tr>
<tr>
<td>Cavity</td>
<td>0.05</td>
<td>—</td>
</tr>
<tr>
<td>Woodwool slab</td>
<td>0.03</td>
<td>0.085</td>
</tr>
<tr>
<td>Plastering</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>External + internal surfaces</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>0.14</td>
<td>1.07</td>
</tr>
</tbody>
</table>

\[U = 1/R_{\text{total}} = 0.93 \, \text{W/m}^2\text{K} \]

The small decrease in the insulation capacity caused by
the concrete columns is ignored in the calculation.
The wall in Fig. 29 consists of homogeneous slabs with the ends sawed into a V-shape. A square cavity is created when the slabs are placed next to each other, and reinforcement is placed in the cavity. Concrete of fluid consistency is poured in. The slabs can be placed vertically or horizontally. In the latter case the distance between the concrete columns is greater, and they can be cast in stages.

Advantages. The wall is thin and in spite of that has a low U-value (the U-value is 1.0 W/m²K for a total wall thickness of 100 mm). It has good vertical loadbearing capacity and is stable because of the good adhesion of the concrete to the slab. The wall is light and quick to build, and it is safe in case of termites since the load is carried by the concrete.

Disadvantages. The concrete columns go through the wall and function as thermal bridges, which raise the U-value somewhat.

Materials with very high thermal conductivity, such as concrete and steel, should not be allowed to go through an outer wall or the roof if possible. They function as thermal bridges promoting thermal flow. Also, when it is colder outdoors than indoors, condensation can occur on these thermal bridges causing dirtiness.

The wall in Fig. 30 consists of prefabricated, I-shaped concrete columns, with woodwool slabs placed horizontally between. The distance between the columns is the full length of the slab (2.4 m). This kind of wall is used in Zambia (see Hawkes and Cox 1992).

Advantages. The wall is thin and in spite of that has a low U-value (1.0 W/m²K for a thickness of 100 mm). It has good vertical loadbearing capacity, is extremely quick to build and is completely termite safe.

Disadvantages. The concrete columns function as thermal bridges and raise the U-value somewhat.

The wall in Fig. 31 consists of vertical (or horizontal) woodwool slabs with V-shaped ends. The slabs are joined by columns of in-situ cast concrete. (Using 70 mm thick woodwool slabs gives a U-value of 1.0 W/m²K).

Advantages. The wall is thin and in spite of that has a low U-value (1.0 W/m²K for a thickness of 100 mm). It has good vertical loadbearing capacity, is extremely quick and easy to build and safe in case of termites, since the load is carried by the steel channels.

Disadvantages. The steel channels form thermal bridges which raise the U-value of the wall.

The wall in Fig. 32 consists of vertical slabs reinforced by galvanized steel channels. (Using 70 mm thick woodwool slabs gives a U-value of 1.0 W/m²K).

Advantages. The wall is thin and in spite of that has a low U-value (1.0 W/m²K for a thickness of 100 mm). It has good vertical loadbearing capacity. The wall has no thermal bridges and is very easy and quick to build.

Disadvantages. The wall is not safe in case of termites, since the load is carried by the steel columns.

The wall in Fig. 33 consists of vertical woodwool slabs nailed on both sides of a wooden loadbearing structure. (Using 30 mm thick woodwool slabs gives a U-value of 0.9 W/m²K).

Advantages. The wall has good vertical loadbearing capacity and is quick and easy to build. The cavity can be used for electrical cables.

Disadvantages. The wall is not safe in case of termites, since the load is carried by wood studs.
If the accelerator used in making the woodwool slab contains chlorides, all nails and other metal fittings that come into contact with the slab should be hot-dip galvanized.

Either Fig. 34 shows a wall made of woodwool blocks. (The blocks are sawn from as thick a slab as possible, at least 70 mm). The blocks are laid to bond with lime cement mortar, with thin joints.

Advantages. A very quick and easy technique with great flexibility.

Disadvantages. The wall has limited vertical load-bearing capacity.

Either Fig. 35 shows a wall for a multi-storey building. The wall is made of reinforced concrete, cast in-situ between woodwool slabs which function as permanent shuttering.

Advantages. Compared to an ordinary concrete wall, this saves the work of taking down the formwork and finishing the surface of the concrete. Electric cables and other installations can be cast in the concrete. The wall has no thermal bridges and is safe in case of termites.

Prefabricated wall elements
In Porto Alegre, Brazil, a building system is used for single-storey houses – the “Climatex system” – with both exterior and partition walls of prefabricated wall elements made of woodwool slabs and concrete. During production in the factory, slabs are placed in a mould and...
reinforced concrete cast around them, leaving space for windows and doors (Fig. 36).

During assembly the elements are tied together with reinforcement bars sticking out from the elements (the joints between the elements are later covered with concrete). When all walls are up, they are rendered and plastered.

The wall elements are currently made of 50 mm thick wood wool slabs and have a U-value of about 1.3 W/m²K. To reduce the U-value to a maximum of 1.0 W/m²K, the thickness of the slabs must be increased to 70 mm.

Corrugated asbestos sheets have been the main roofing material together with a ceiling of 25 mm wood wool slab. Over 7,000 houses have been build with this system in southern Brazil since the 1970s. The houses are largely maintenance free and the residents are very pleased with them (Fig. 37). See also van Elten (1982).

Supplementary insulation
Wood wool slabs are very suitable for both external and internal supplementary insulation of walls. Against masonry (with or without rendering) or concrete walls, the material can be fixed with cement slurry, lime cement mortar or gypsum plaster (Fig. 38). The material can be nailed or screwed to wood walls.

Roofs and ceilings
Thermal insulation requirements
A roof should have at least as good insulation as the walls. In tropical climates, with high solar elevation and strong solar radiation, much of the heat transmission is through the roof, and here the roof should be better insulated than the walls. In air conditioned houses in tropical climates, Adamson and Åberg (1993) recommend a maximum U-value for the roof of 0.5 W/m²K. Most of the roofs described here meet this recommendation.

Pitched roofs
A common use for wood wool slabs in pitched roofs is to nail them to the rafters as a base for the roofing material, such as roofing tiles, metal sheets, or similar (Figs 39A and 40). Before applying the roofing material the slabs are normally coated with a cement-sand screed.

The wood wool slabs can also be nailed to the ceiling joists (Fig. 39B).

Reinforced slabs are often used in roof applications, because they are stronger than ordinary slabs and allow a greater distance between the supporting beams.

Flat roofs
The roof shown in Fig. 41 is a variant of a type of flat roof that is very common in many countries. It normally consists of prefabricated (often prestressed) concrete beams with hollow blocks (of either concrete or burnt clay) in between and is covered with a reinforced concrete slab cast in situ. By replacing the hollow blocks with wood wool slabs, and by increasing the distance between the beams, the U-value of the construction can be improved significantly.
The roof in Fig. 41 was used in two buildings in Tunisia (Fig. 44). The cost for the roofs was less than for a traditional roof using hollow blocks, even though the wood wool slabs were imported. The reason for the lower cost was mainly that it was quicker to build.

Advantages. The roof is very quick to build and needs no formwork, only posts. It has good thermal insulation ($U = 0.5 \text{ W/m}^2\text{K}$).

Disadvantages. The beams must be prefabricated and they function as thermal bridges.

Fig. 42 shows a variation of the roof in Fig. 41 using two layers of wood wool slabs. In this roof, entirely cast in-situ, the thermal bridges created by the concrete beams are broken by the underlying wood wool slab.

Advantages. The roof is quick to build. It requires no formwork when cast, only support consisting of beams and posts. It has no thermal bridges and excellent thermal insulation ($U = 0.5 \text{ W/m}^2\text{K}$).

Disadvantages. This roof requires more support when casting than the roof in Fig. 41.

Note that for the roofs in Figs 41 and 42 it is very important to calculate the shear reinforcement in the beams. This vertical reinforcement, which should be anchored in the concrete slab, increases with the distance between the beams.

Both roofs met the strict Algerian and Tunisian requirements for loadbearing capacity and deflection in full-scale laboratory tests (see Astrand et al., 1994).

Ceilings

One of the most common uses for wood wool slabs is as acoustic ceiling panels in public gathering places, corridors, etc. The slabs can either be fixed to the roof (cast against concrete or screwed in as in Fig. 39B) or suspended (Fig. 43). The air space between the slabs and the roof influences the sound absorption somewhat (Fig. 24).

Surface finishes

Wood wool slabs provide and excellent base for rendering and plastering because of their coarse texture.

Reinforcement

Before applying render or plaster, all joints between slabs, or between slabs and another material (for example a concrete column), should be reinforced. This is done to avoid cracks in the material caused by movements in the wood wool slabs due to temperature and moisture changes. Reinforcement can be done with galvanized steel wire netting, preferably welded netting (chicken-wire can be used, but because it is elastic, it does not pre-
vent small cracks). The net, which should cover at least 100 mm on each side of the joint, is fixed to the slab with hot-dip galvanized nails.

External rendering

The slabs should neither be too damp nor too dry at finishing. A dry slab, for example exposed to direct sunlight, can be dampened a little before finishing. A damp slab, for example one that has been in the rain, must dry before finishing.

The external rendering should be in two or three coats: spatterdash coat (a preparation of the base, maximum 2 mm, optional), undercoat (10 – 15 mm) and a finishing coat (paint or render 0 – 5 mm). The mortar of a previous coat should be stronger (contain more cement) or as strong as the mortar for the next coat. A suitable spatterdash coat is lime-cement mortar with a small amount of lime. A suitable material for the undercoat and the finishing coat is lime-cement mortar with equal parts (by weight) lime and cement, or with more lime than cement. (See also Anon. 1985 and Anon. 1990).

Internal plastering

Internal plastering should be done on air dry slabs. The plastering material can be cement mortar, lime-cement mortar or gypsum mortar. If a lime-cement mortar is used, a thin preparation of the base is preferable before the undercoat (10 – 15 mm) is applied. Plastering with gypsum mortar should be done in two or more coats starting with a thin undercoat.

Vapour barriers are often recommended in air conditioned buildings to improve tightness and avoid moisture transport that could damage organic materials. Woodwool slabs are moisture resistant, so there is no need for a vapour barrier in these applications. Finished woodwool slabs meet the requirement for air tightness.

References

Adamson, B and O Åberg

Anon.
1985 *Leichtbauplatten-Fibel*. Bundesverband der Leichtbauplattenindustrie e.V., München, Germany. (In German)

Anon.

Åstrand, J, L Bessadi, E Johansson, S Laïd, H Teggour and N Touni

DIN

van Elten, G J
1975 “Wood wool cement boards used for low cost houses and other applications.” *World Consultation on Wood Based Panels*, Feb. 6–16, FAO, United Nations, New Delhi, India.

1977 “Prefab Elements from Wood Wool Cement for Economic and Low Cost Housing in Argentina, Brazil, Honduras, Malaysia, Mexico, Panama, Spain, Yugoslavia.” *International Conference on the Use of Prefabricated Building Elements, Constructions in Developing Countries*. World Association for Element-building and Prefabrication, Sep.19–22, Hamburg, Germany.

Hawkes, A J and D R S Cox
1992 *A Small-scale Process for Manufacturing Wood-wool/cement Slabs in Developing Countries*. Bulletin 49. Natural Resources Institute, Chatham, United Kingdom.

Kohler, R
Kollmann, F

Kumar, S

Lee, A W C

Simatupang, M H, G H Schwarz and F W Bröker

Addresses
Manufacturers of equipment for woodwool slab production
Elten Systems
P.O. Box 15
NL-3770 AA BARNEVELD, The Netherlands

Manufacturers of wood shredding machines
MECCAT
Zona Industriale
Via Braille 5
I-391 00 BOLZANO, Italy

Some Manufacturers of woodwool slabs
Österreichische Heraklith AG
A-9702 FERNDORF, Austria
(Manufacturer of magnesite-bonded wood wool slabs. Factories in Austria, Germany and Greece)

S.A. DHENAACLITE
35, rue Emile Claus
B-8798 SINT-ELOOIS-VIJVE, Belgium

Climatex Indústria de Madeira Mineralizada Ltda.
Caixa Postal 7054
91130-040 PORTO ALEGRE – RS, Brazil

FIBRALITH GIE
Zone Industrielle
F-68190 UNGERSHEIM, France

Bundesverband der Leichtbauplattenindustrie e.V.
Beethovenstr. 8
D-80336 MÜNCHEN, Germany
(Trade association for the 14 woodwool slab manufacturers in Germany)

Organizations with information about woodwool slabs
Forest Research Institute
P.O. New Forest
DEHRA DUN 248 006
Uttar Pradesh, India

Conversion factors
from SI units to British and US units

<table>
<thead>
<tr>
<th>SI unit</th>
<th>British unit</th>
<th>US unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>3.281 ft</td>
<td></td>
</tr>
<tr>
<td>1 mm</td>
<td>3.937 × 10⁻² in</td>
<td>0.03937 in</td>
</tr>
<tr>
<td>1 m²</td>
<td>10.76 ft²</td>
<td></td>
</tr>
<tr>
<td>1 hectare</td>
<td>2.471 acres</td>
<td></td>
</tr>
<tr>
<td>1 m³</td>
<td>35.31 ft³</td>
<td></td>
</tr>
<tr>
<td>1 kg</td>
<td>2.205 lb</td>
<td></td>
</tr>
<tr>
<td>1 tonnes</td>
<td>1,120 short tons = 0.984 long tons</td>
<td></td>
</tr>
<tr>
<td>1 kg/m³</td>
<td>6.243 × 10⁻² pc (lb/ft³)</td>
<td></td>
</tr>
<tr>
<td>1 N</td>
<td>0.2248 lb f</td>
<td></td>
</tr>
<tr>
<td>1 Nm</td>
<td>8.850 in lb f</td>
<td></td>
</tr>
<tr>
<td>1 MPa</td>
<td>154.5 psi (lb f/in²)</td>
<td></td>
</tr>
<tr>
<td>1 J</td>
<td>9.485 × 10⁻⁴ Btu</td>
<td></td>
</tr>
<tr>
<td>1 kWh</td>
<td>3.414 × 10⁻³ Btu</td>
<td></td>
</tr>
<tr>
<td>1 W = 1 J/s</td>
<td>3.414 Btu/hr</td>
<td></td>
</tr>
<tr>
<td>1 kW</td>
<td>1.341 hp</td>
<td></td>
</tr>
<tr>
<td>Tk = T + 273</td>
<td>5/9 (T°F – 32) + 273</td>
<td></td>
</tr>
<tr>
<td>1 W/mK</td>
<td>6.938 Btu in/ft² hr °F</td>
<td></td>
</tr>
<tr>
<td>1 W/m²K</td>
<td>0.1762 Btu/ft² hr °F</td>
<td></td>
</tr>
<tr>
<td>1 J/kgK</td>
<td>2.390 × 10⁻⁴ kcal/lb °F</td>
<td></td>
</tr>
</tbody>
</table>

from SI units to CGS units

<table>
<thead>
<tr>
<th>SI unit</th>
<th>CGS unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 N</td>
<td>0.102 kp</td>
</tr>
<tr>
<td>1 MPa</td>
<td>10.2 kp/cm²</td>
</tr>
<tr>
<td>1 W/mK</td>
<td>0.860 kcal/m h°C</td>
</tr>
<tr>
<td>1 J/kgK</td>
<td>2.39 × 10⁻⁴ kcal/kg°C</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Suitability</th>
<th>Botanical name</th>
<th>Suitability</th>
<th>Botanical name</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies pingrow*</td>
<td>s</td>
<td>Garcinia sp. ("manggis hutan")</td>
<td>n</td>
<td>Pinus kesiya</td>
<td>s</td>
</tr>
<tr>
<td>Agathis borneensis</td>
<td>n</td>
<td>Gonyostoma brasiliense A. Shaw.</td>
<td>s</td>
<td>Pinus khaya</td>
<td>s</td>
</tr>
<tr>
<td>Ailanthus malabarica DC.</td>
<td>n</td>
<td>Gossweilerodendron balsamiferm A.</td>
<td>n</td>
<td>Pinus mercisi</td>
<td>s</td>
</tr>
<tr>
<td>Albizia falcatoria</td>
<td>s</td>
<td>Grevillea robusta</td>
<td>s</td>
<td>Pinus nigra*</td>
<td>s</td>
</tr>
<tr>
<td>Albizia lebbeck</td>
<td>s</td>
<td>Haplolobus celebicus H.J.L.</td>
<td>s</td>
<td>Pinus patula</td>
<td>s</td>
</tr>
<tr>
<td>Anisoptera costata Korth.</td>
<td>s</td>
<td>Holotepialta integerifolia</td>
<td>n</td>
<td>Pinus roxburghii*</td>
<td>s</td>
</tr>
<tr>
<td>Anisoptera marginata Korth.</td>
<td>n</td>
<td>Hopea dryobalanoides Miq.</td>
<td>s</td>
<td>Pinus sylvestris*</td>
<td>s</td>
</tr>
<tr>
<td>Anogeissus latifolia</td>
<td>n</td>
<td>Hymenodictyon excelsum</td>
<td>s</td>
<td>Pinus taiwaniaensis Hay.</td>
<td>s</td>
</tr>
<tr>
<td>Araucaria araucaria*</td>
<td>s</td>
<td>Irvingia malayana Olive</td>
<td>n</td>
<td>Polysatia hypolepaca HK. & TH n</td>
<td>s</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>n</td>
<td>Koompassia excelsa Tamb.</td>
<td>n</td>
<td>Populus deltoide</td>
<td>s</td>
</tr>
<tr>
<td>Bombax cieba</td>
<td>s</td>
<td>Koompassia malacencis Maing</td>
<td>n</td>
<td>Populus tremula</td>
<td>s</td>
</tr>
<tr>
<td>Bridelia retusa</td>
<td>s</td>
<td>Koordersiodendron pinnatum Meer</td>
<td>s</td>
<td>Pterocarpus indicia</td>
<td>n</td>
</tr>
<tr>
<td>Calophyllum inophyllum</td>
<td>s</td>
<td>Lannea coromandelica</td>
<td>n</td>
<td>Pterospermum celebicum Miq.</td>
<td>n</td>
</tr>
<tr>
<td>Calophyllum soulatia</td>
<td>s</td>
<td>Larix leptolepis</td>
<td>s</td>
<td>Quercus alba L.</td>
<td>n</td>
</tr>
<tr>
<td>Cassia siamea</td>
<td>r</td>
<td>Licania leflecki</td>
<td>n</td>
<td>Quercus falcati Michx.</td>
<td>s</td>
</tr>
<tr>
<td>Cedrela toona</td>
<td>s</td>
<td>Liquidambar styraciflua L.</td>
<td>n</td>
<td>Salmalia malabarica</td>
<td>s</td>
</tr>
<tr>
<td>Cinnamomum zeylanicum</td>
<td>n</td>
<td>Liriodendron tulipferra L.</td>
<td>n</td>
<td>Sarcococca indica</td>
<td>n</td>
</tr>
<tr>
<td>Cordia myxa</td>
<td>s</td>
<td>Magnolia foetida Lour</td>
<td>s</td>
<td>Santaria laevigata Bl.</td>
<td>n</td>
</tr>
<tr>
<td>Cratxylon sp. ("geronggang")*</td>
<td>s</td>
<td>Mangifera indica</td>
<td>s</td>
<td>Shorea buccatolata Dyer</td>
<td>s</td>
</tr>
<tr>
<td>Cunninghamia lanceolata Hook.</td>
<td>s</td>
<td>Mangifera minor Bl.</td>
<td>n</td>
<td>Shorea elliptica Burck.</td>
<td>n</td>
</tr>
<tr>
<td>Dacryodes excelsa</td>
<td>s</td>
<td>Melanorea wallichii Hook.</td>
<td>n</td>
<td>Shorea gibbosa Brandis</td>
<td>n</td>
</tr>
<tr>
<td>Dalbergia sissoo</td>
<td>s</td>
<td>Miristica lowiana King</td>
<td>n</td>
<td>Shorea gysbertiana Burck.</td>
<td>s</td>
</tr>
<tr>
<td>Dehussia caesi Bl.</td>
<td>s</td>
<td>Mora excelsa</td>
<td>n</td>
<td>Shorea hopefolia Sym</td>
<td>s</td>
</tr>
<tr>
<td>Delonix regia</td>
<td>s</td>
<td>Morus sp. ("shetoot")</td>
<td>n</td>
<td>Shorea koordersi Brandis</td>
<td>n</td>
</tr>
<tr>
<td>Dipteryx pumilus Bageker.</td>
<td>s</td>
<td>Octomeles sumatrana Miq.</td>
<td>s</td>
<td>Shorea leprosula Miq.</td>
<td>n</td>
</tr>
<tr>
<td>Diospyros macrophylla Bl.</td>
<td>s</td>
<td>Ogeinia ooejineis</td>
<td>n</td>
<td>Shorea ovalis Bl.</td>
<td>s</td>
</tr>
<tr>
<td>Dipterocarpus sp. ("gurjan")*</td>
<td>s</td>
<td>Polaquiunm ferox H.J.L.</td>
<td>n</td>
<td>Shorea palembanica Miq.</td>
<td>s</td>
</tr>
<tr>
<td>Dipterocarpus appendiculatus Scheff.</td>
<td>s</td>
<td>Polaquiunm hexandrum Baill</td>
<td>n</td>
<td>Shorea paracellata King.</td>
<td>s</td>
</tr>
<tr>
<td>Dipterocarpus costiferus Merr.</td>
<td>s</td>
<td>Polaquiunm obovatum</td>
<td>n</td>
<td>Shorea pinanga Schell.</td>
<td>n</td>
</tr>
<tr>
<td>Dipterocarpus costulatus V. S.</td>
<td>n</td>
<td>Polaquiunm obesifolium Burck</td>
<td>s</td>
<td>Shorea sp. ("Meranti")</td>
<td>r</td>
</tr>
<tr>
<td>Dracemontelon dao dae & Rolf.</td>
<td>n</td>
<td>Polaquiunm rostratum Burck</td>
<td>n</td>
<td>Simuraba amara</td>
<td>r</td>
</tr>
<tr>
<td>Dracemontelon mangiferum Bl.</td>
<td>n</td>
<td>Parastemon versteeghi Meer & Perry</td>
<td>n</td>
<td>Spondias cytherea Sonn.</td>
<td>n</td>
</tr>
<tr>
<td>Drypetes longipilus Pax & Hoffm.</td>
<td>n</td>
<td>Purinari corymbosa Miq.</td>
<td>n</td>
<td>Swietenia macrophylla</td>
<td>n</td>
</tr>
<tr>
<td>Durio zibethinus Merr.</td>
<td>s</td>
<td>Puya leery Kurz</td>
<td>n</td>
<td>Syzygium cumini</td>
<td>s</td>
</tr>
<tr>
<td>Emblica officinalis</td>
<td>r</td>
<td>Pericopsis elata</td>
<td>n</td>
<td>Tarrietia javanica Bl.</td>
<td>n</td>
</tr>
<tr>
<td>Eperus falcata</td>
<td>n</td>
<td>Picea abies*</td>
<td>s</td>
<td>Tectona grandis</td>
<td>r</td>
</tr>
<tr>
<td>Eschweileria sp.</td>
<td>n</td>
<td>Picea smithiana*</td>
<td>s</td>
<td>Terminalia spread</td>
<td>n</td>
</tr>
<tr>
<td>Eucalyptus globulus*</td>
<td>s</td>
<td>Pinacera sp.*</td>
<td>s</td>
<td>Tetrameles nudiflora*</td>
<td>n</td>
</tr>
<tr>
<td>Eucalyptus grandis</td>
<td>s</td>
<td>Pinus sp. ("southern pine")*</td>
<td>s</td>
<td>Toona ciliata</td>
<td>n</td>
</tr>
<tr>
<td>Ficus sp. ("gular")*</td>
<td>s</td>
<td>Pinus caribaea</td>
<td>s</td>
<td>Tsuga chinensis Pritz.</td>
<td>r</td>
</tr>
<tr>
<td>Ficus sp. ("bar")</td>
<td>s</td>
<td>Pinus densiflora</td>
<td>s</td>
<td>Xylopia malayana HK. f. & TH n</td>
<td>n</td>
</tr>
<tr>
<td>Gauna motleyana Pierre</td>
<td>n</td>
<td>Pinus elliottii*</td>
<td>s</td>
<td>s</td>
<td>suitable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>not suitable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>r</td>
<td>restrictive suitability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A1. Woods tested by production of full-scale slabs.

A wood is considered suitable if the slab meets the requirements for bending strength of DIN 1101 or an equivalent standard. (Information from different sources. Information about other woods can be obtained from Elten Systems, the Netherlands.)

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Suitability</th>
<th>Botanical name</th>
<th>Suitability</th>
<th>Botanical name</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afzelia bipindensis</td>
<td>n</td>
<td>Daniellia ogea</td>
<td>r</td>
<td>Nauclea diderrichii</td>
<td>n</td>
</tr>
<tr>
<td>Antiaris africana</td>
<td>n</td>
<td>Distemonanthus benthamianus</td>
<td>r</td>
<td>Neusgordonia papaverifera</td>
<td>r</td>
</tr>
<tr>
<td>Antrocaryon micraster</td>
<td>s</td>
<td>Entandrophragma angolense</td>
<td>s</td>
<td>Ongokea gore</td>
<td>n</td>
</tr>
<tr>
<td>Berlinia grandiflora</td>
<td>s</td>
<td>Entandrophragma cylindricum</td>
<td>r</td>
<td>Piptadeniastrum africanum</td>
<td>n</td>
</tr>
<tr>
<td>Canarium schweinfurthii</td>
<td>r</td>
<td>Entandrophragma utile</td>
<td>r</td>
<td>Pterocarpus indicia</td>
<td>r</td>
</tr>
<tr>
<td>Cedrela odorata</td>
<td>s</td>
<td>Eucalyptus camaldulensis</td>
<td>r</td>
<td>Tectona grandis</td>
<td>r</td>
</tr>
<tr>
<td>Cebia pentandra</td>
<td>n</td>
<td>Eucalyptus gomphophylla</td>
<td>s</td>
<td>Terminalia ivorense</td>
<td>n</td>
</tr>
<tr>
<td>Celius zenkeri</td>
<td>n</td>
<td>Guarea cedrata</td>
<td>n</td>
<td>Terminalia superba</td>
<td>s</td>
</tr>
<tr>
<td>Chlorophora excelsa</td>
<td>n</td>
<td>Khaya sp. ("khaya, mahogany")</td>
<td>n</td>
<td>Tieghemelia heckeli</td>
<td>n</td>
</tr>
<tr>
<td>Christophyllum africanum</td>
<td>s</td>
<td>Lourou trichiloides</td>
<td>s</td>
<td>Triplochiton scleroxylon</td>
<td>r</td>
</tr>
<tr>
<td>Chrysophyllum albidum</td>
<td>n</td>
<td>Mansonia abbrevia</td>
<td>s</td>
<td>s</td>
<td>suitable</td>
</tr>
<tr>
<td>Cola gigantea</td>
<td>r</td>
<td>Manilkara altissima</td>
<td>r</td>
<td>n</td>
<td>not suitable</td>
</tr>
<tr>
<td>Cylicodiscus gabunensis</td>
<td>s</td>
<td>Musanga cecropioides</td>
<td>s</td>
<td>r</td>
<td>restrictive suitability</td>
</tr>
</tbody>
</table>

Table A2. Woods tested by production of small test slabs.

The wood is considered suitable if it can be shredded easily and if the slabs set satisfactorily. If these tests are promising, then full-scale tests are done and the slabs are tested for strength. (Information from different sources.)