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Cloud Application Predictability through Integrated
Load-Balancing and Service Time Control

Tommi Nylander, Marcus Thelander Arar, Karl-Erik Arzén, Martina Maggio
Department of Automatic Control, Lund University

Abstract—Cloud computing provides the illusion of innite  that any request receives a response within a given time). For
capacity to application developers. However, data center provi- example, Brownout [27] sacri ces the quality of the response
sioning is complex and it is still necessary to handle the risk of given to users to ensure that a large fraction of the requests

capacity shortages. To handle capacity shortages, graceful degra- . . .
dation techniques sacri ce user experience for predictability. In €XPerience a predictable latency. Brownout is based on a control

all these cases, the decision making policy that determines the @pproach [13, 32, 33], and a controller selects — at the replica
degradation interferes with other decisions happening at the in- level — requests to be answered with full quality (both the

frastructure level, like load-balancing choices. Here, we reconcile mandatory and the optional part of the response are computed)
the two approaches, developing a load-balancing strategy that 54 requests to be given an approximate answer (only the
also handles capacity shortages and graceful degradation when -
necessary. The proposal is based on a sound (:ontrol-theoreticalrnandatory part is computed). The aPproaCh h.'?\s proven tc_> be
approach. The design of the approach avoids the pitfalls of successful to bound the response times of single machines.
interfering control decisions. We describe the technique and It was then combined with load-balancing strategies [11, 28],
provide evidence that it allows us to achieve higher performance showing that the control strategy at the replica level and the load
in terms of emergency management and user experience. balancer could interfere with one another, potentially limiting
each others bene ts. For example, load-balancing strategies
based on response times are to be avoided when a replica
Capacity provisioning is of crucial importance in modergontrol strategy that bounds the response times is used [11].
distributed computation infrastructures. To determine the sizhis is not only true for brownout, but for every technique that
of data centers, and properly dimension the resources todsdorces bounded response times [5, 6], like admission control
allocated in each geographic location, most data center ownpgicies [26, 38].
use predictions of the computational needs [29, 36]. Theln general, the interference between two control policies is
computational resource within a data center is then usedaacomplex problem [8, 21]. Two different decision making
serve requests coming from multiple clients, providing thetrategies, both working well in isolation, can interfere in
illusion of in nite capacity and, as a result, the possibilityunpredictable ways with one another, especially when there
of bounding the latency [5, 6, 14, 24, 25, 42]. To do so there delays between the two decisions. For example, the
architecture uses multiple instances of the same applicatiShprtest Queue First (SQF) load-balancing policy has degraded
here calledreplicas and predictions and estimations of traf cperformance when a queue control strategy (like graceful
and needed computational capacity. degradation, or admission control) is active at the replica level,
The predictions of the incoming traf ¢ and the correspondings can be seen in the example of Section II.
estimates [16, 17] of the required computational capacity areWe propose a load-balancing and graceful degradation policy
necessarily subject to errors and uncertainty [4]. The preseribat takes into account both the decisions with the advantage of
of these errors naturally leads to two possible manageméstter controlling the response times and the resource utilization
strategies. The rst strategy is over provisioning [15, 43pf the data center. This paper makes the following contributions:
Over provisioning increases the management cost for a cloud It identi es problems with the currently used load-balancing
application, but guarantees user satisfaction. The second policies, due to the interplay between graceful degradation
strategy is provisioning according to expectations and handling techniques at the replica level and load balancers that should
capacity shortages via user experience degradation [7, 9, 27 distribute the load to multiple replicas.
34, 41], or via approximate computing [22, 37, 40]. Generally It proposes a new architecture, with a higher degree
speaking, these ways of handling capacity shortages are of controllability, that includes both load balancing and
typically clustered under the umbrella gfaceful degradation graceful degradation, solving the mentioned problems.
Graceful degradation techniques involve taking corrective ac- It presents the control design for each of the elements in
tions (that typically degrade the user experience) to ensure that this architecture.
the computing platform achieves predictability (for example, It validates the proposal with an experimental campaign,
This work was partially supported by the Wallenberg Al, Autonomous comparing it to existing techniques. The proposed archi-
Systems and Software Program (WASP) funded by the Knut and Alice tecture outperforms existing ones in terms of predictability
Wallenberg Foundation, by the Swedish Research Council (VR) for the projects gnd resource usage. It is in fact able to achieve lower

“Feedback Computing” and “Power and temperature control for large-scale . for th ti tilizi the dat t
computing infrastructures”, by the LCCC Linnaeus Center and, by the ELLIIT variance tor the response umes, utilizing the data center

Excellence Center at Lund University. resources more ef ciently.

I. INTRODUCTION
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Fig. 1: Architecture (one load balancer and multiple replicas) amdg. 2: The standard load-balancing architecture. The load balancer
path of one single requestfrom the user request (step) to the  routs incoming requests directly to a replica, where the request might
response forwarding (step ). spend some time queuing before service. Replicas include graceful

. . . . degradation controllers.
The paper is organized as follows. Section Il provides a

more precise statement of the problem our solution solves, agg, which nally replies to the user (stept ). Notice that this
details why this is necessary for modern data centers. Sectiondlkhe standard path of a request in a multi-replica architecture,
describes our control solution, and shows block diagrams fgsed in practical applications and also in earlier research [11,
all the elements involved. It also offers an analysis from th®8). |n fact, the replica cannot directly respond to the user,
control perspective of the behavior of the cloud platforhat has queried the server using the IP address of the load
Section IV provides experimental evidence for our claimsalancer. The user would not identify the replica as the server
and shows that the proposed approach is easy to implemgyk was queried and would then terminate the connection.
and offers competitive advantages in terms of response timgy, his architecture, the response produced in stepan be
management. Sectiqn V casts the proposed solution in the s{algq to “piggy-back” information from the replica to the load
of the art, and Section VI concludes the paper. balancer, without incurring an additional overhead in response
II. PROBLEM STATEMENT time. The load balancer then tears the envelope of the response
This paper deals with the problem of designing a loatgceived by the rgplica, and only answers to the user with the
balancing architecture with graceful degradation. We assu@@ual message, in step.
that the architecture is composed of one single load balancefhe mentioned architecture is commonly implemented as

(denoted with LB) and a set afi replicas (denoted with shown in Figure 2. Each replica has an individual queue for
R = fRy;R2;:::;Rng. The goal of the architecture is torequests, and the load balancer routes requests to the queues
achieve high service predictability. We translate predictabiliggsed on some policy e.g. Round-Robin, SQF, or a weighted
into two related objectives, and measure it in terms of trmgobability. In turn, each individual replica has a local graceful
response times for incoming requests. We want a statistic on fiegradation strategy — in the brownout case, a response time
response times (e.g., average"q&ercentile, 9% percentile) to controller which decides if to serve optional content or not
follow a setpoint (a predetermined value, speci ed for the givedased on the last measured response time from that replica.
cloud application). Also, we want to minimize the varianc¥Vhile this architecture is conceptually simple, the predictability
in response time. A low variance of the worst-case respor@ethe response times is highly dependent on the co-design of
times, in fact, corresponds to a high degree of predictability. the load-balancing policy and the controllers in the replicas.
the remainder of this paper, we assume a setpoint on the 98he design will also depend on the service discipline used
percentile of the response times, and use the integrated absolutéhe replicas (e.g. "First-In First-Out” (FIFO) or Processor
error (IAE) with respect to this setpoint as our predictabilitpharing (PS)). In this paper, we will assume a generalized
metric. However, similar considerations can be drawn usigg@ncept of PS being used in the replicas. Speci cally, the
other statistics. replicas will serve at a maximurivlc number of requests
The path of one single request is shown in Figure 1. We@ncurrently from the queue. FIFO and standard PS are then
assume that all requests enter the system through one cers@ply the special casddc =1 andMc = 1 respectively.
load balancer (stept ), which in turn routes each requesfor further details, see [35].
to one of then replicas R, in the Figure, as shown by After being routed by the load balancer, requests will spend
step 2). Finally, the replicas serve the requests. Each replisame non-zero time queuing before service by the replica is
is capable of performing graceful degradation, and thus cstarted. The average time spent queuing will vary with e.g.
choose to serve different amount of content, which require®rkload , number of concurrently served requebts, etc.,
more or less service time. Here we use brownout [27] fand will introduce a delay between the decisions made by the
graceful degradation, but other techniques can be applied. Usiogd balancer and the local replica controllers respectively. This
brownout implies that a request can be served either withisra problem, since delays in between the decisions introduce
without optional content. The service time used to computiee risk of routing and graceful degradation counter-acting
the optional content can be spared, in case the replica detexsh other. Load-balancing policies which have been shown
some capacity shortage. The replica determines the respaaseerform well in case of static service rates can actually
to the request and communicates it to the load balancer (steunter-act the work of the local controllers in the replicas,
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left plot shows setpoint and 95% con dence intervals for th&' 95
percentile of the response times of the optional-content requests served ) g )
by a replica. The right plot shows the Cumulative Distribution Function Fig. 4: The proposed load-balancing architecture.

(CDF) of all response times. . . o ) » .
a request is divided into two distinct parts: (i) waiting time, and

leading to poor predictability of response times. This can f@i) service time. The load balancer controls the waiting time,
example be the case with SQF, despite it being regarded as 8nd the local controller keeps the service time at a setpoint. In
of the best load-balancing alternatives [11, 28]. An exampliee following section, we describe our proposal, and detail the
of this phenomenon is shown in Figure 3. The plots depipolicies used for both load-balancing and graceful degradation,
the results of an experiment conducted with a simutatoat based on a control-theoretic approach.

emulates an architecture composed of a load balancer and 5 .
equal replicas with local graceful degradation controllers, i.e.
as in Figure 2, withn = 5. The local controllers are using,.
the feedback control strategy from [35], that determines )
optional content computation. Each replica in the simulatié?ﬁ
takes on average 0.0Bito compute the optional content par
of the response (with a variance of 0sB)l and 0.0008 on
average for the mandatory part (with a variance of 0sdp1

A maximum of M¢ =15 requests can be served concurrentl?/ “rst ¢ 9 When the load bal
in each replica. The run was repeated 20 times, in order fpd st come rst served. manner. en the load balancer

be able to show statistically signi cant behaviors (using 95‘%JUteSda 'rﬁlque?t, a Icontrtolletr deC|de”s if the rfq.uest sholu'ld be
con dence intervals). The simulator uses the open-loop clieng'ved With optionaj conten (normally) or not (i.e., applying

model and the request arrivals are modeled using the Pois ﬁcerI degradation). Based on this decision, th_e load balan_cer
distribution with arrival rate . The simulation is split into then atiaches a ag to the request and forwards it to the replica

three different time intervals, in each of them the arrival rate with the hlghest demand for a new request.
is varied. In the time intervalf0: 50) and[10Q, 150} = 400 In each replica, all the forwarded requests are assumed to

; P . — be served concurrently. From the implementation perspective,
the t t 1 =1 . . .
and in the time interval50, 100) 500 %ach request is served in a separate thread, and all the threads

The gure compares the SQF load-balancing strategy wi . . .
are run concurrently, sharing the computational capacity. At
a random load balancer. The leftmost plot shows con dence .
. . . mostMc requests may be served concurrently at each replica.
intervals for the 98 percentile of the response times of th I ) .
néumvely, an increase in the number of concurrent requests

requests served with optional content (the critical ones) an buld result in a longer service time for each of them, and

S
e will use this assumption here.

their setpoint of 1 s. The rightmost plot shows the Cumulative

Distribution Function (CDF) for the two strategies. The use o . . .
g/yhen a response is produced, a local controller in the replica
ecides how many more requests it desires to handle, and

SQF generates a higher variance in the response times, mp
notably during the period of heavy workload with= 1500 attaches this integer value to the response. The response is

when requests will spend more time queuing at the replicas, : )

Notably, SOF is performing worse than the simpler randosent back to the load balancer, triggering an event where the

choicey,olic Evepn uSin Sg eci call “brownout-a\rl)vare” Ioadr_aﬁtached integer value is used to update a list which keeps track
Policy. E g speci cally, . of the current demand of requests from each replica. The load

palancmg policies [1.9’ 28], malr_ltalmng predictable respon Zlancer then uses this list to decide where to route the next

tlme§ using the arc.hltecture of F|gure 2 (ttie factostandard requests, distributing the requests from to replicas according

architecture) remains a challenging task due to the interpl

between the different control loops, ®their desires. In summary, a request entering the proposed

hi in Fi 4 h h the followi —
To avoid this problem, we instead opt for designing a ne{%C ftecture in Figure 4 goes through the following steps

PROPOSEDSOLUTION

Based on the idea of separating the control of the response

mes into two distinct parts (one for queueing time and one for

re service time), we propose the load-balancing architecture

own in Figure 4. Contrary to the architecture shown in
igure 2, our proposal contains only one central queue for

incoming requests, situated at the load balancer.

The load balancer routes requests from the central queue

Bi indicates that the step i f d by the Load Bal
architecture where the design of the load-balancing policy a | indicates that the step is performed by the Load Balancer,

. : i that it is performed by the Replica:
of the local controllers can be done separately, with the aim for P y P
them to integrate well from the start. The total response time of

1For a description of the simulator used, see Section IV-A.



1) hLBi The request is put in the queue. inw

2) hLBi The request waits until it reaches head of the queue. r¢, e, | kv t K w tw
3) hLBi Routing is triggered with replica demands. O Z
4) nLBi An “optional content” ag is attached to the request. T

5) HLBi The request is forwarded to the replica.

6) hRi The request is served by the replica.
7) Ri A response is produced.

8) hRi A new demand value is attached to the response. ypdated periodically, and denoting wikhthe time interval
9) rLB? The response Friggers routing modi cations. [k t(k+1) t), and with ((k) the value of the threshold
10) RLBi The response is sent to the user. in said time interval, the controller behaves according to

Assuming the time overhead due to routing is negligiblEquation (1). If the measured waiting time is higher than
the delay between routing and graceful degradation decisiahg threshold, then no optional content is served. Otherwise,
is now removed. The total response time for a requesttise request is served with optional content.
separated into: (i) the waiting time in the central queue at tw()> (k) =) of)=0
the load balancer (step 2), and (ii) the service time in one t""( ) t(k) o) o )=1 Q)
of the replicas (step 7). The controller in the load balancer W t
decides if optional content should be served or not (step 4)|n stationarity, the average waiting tinig will stay in the
based on a setpoint on the waiting time in the queue (oitinity of the threshold ;. However, the exact relation will
the time needed to complete step 2). We will refer to thidgepend on the current state of the system. This motivates the
controller as thavaiting time controller By agging a request need for a feedback controller, which dynamically changes
to be served with optional content or not, the waiting timthe threshold ; such thatt,, always follows the setpoint
controller increases or decreases the throughput of the queye, In order to design this controller, a model describing the
thus affecting the waiting time of future requests. dynamics from ; to t,, is required. As a simpli cation, if the

The local controller in each replica decides how many momontroller that determines the value of is designed to be
requests the replica should demand (step 8). This is basémv in comparison with the threshold algorithm speci ed in
on a setpoint for the service time of requests (for the timgquation(1), thent,, can be approximated as always staying
needed to complete step 7). We will refer to this controlle@lose to the threshold;. This is a reasonable approximation,
as theservice time controllerEach service time controller since Equation(1) is very effective at keeping the request
affects the requests' service time by deciding the numberwéiting times close to the threshold, thanks to its event-
concurrently served requests and informing the load balanciiven execution. Using this reasoning, the dynamics fram
The service time setpoint is the same for all replicas, whit¢b t,, can be modeled in discrete time as:
ensures fairness among the requests. _ _

Finally, we desire the overall infrastructure to follow a global tw(k+1)= Ku (k) + nw; @
setpoint that prescribes statistics on the response times (e.g.vihereK ,, is a gain close td andn,, is a stochastic disturbance
95" percentile of the response times of all the replicas shoulglated to the non-deterministic nature of the arrivals to the
follow a given setpoint). A third controller is then responsiblgpad balancer and service times in the replicas. We here use
for determining the two setpoints of the other controllers — thsbntrol-theoretical design principles [2] and compute Fe
setpoint on waiting and service time — dynamically. We refefansformof Equation(2). The pulse transfer functioH ., (z)

Y

——>()——>

1<

Fig. 5: The waiting time control loop design in discrete time.

to the third controller as thtop-level controller from ; tot, then becomes
In the following, we discuss the design of each of these three K
controllers in a separate section. SectibmA describes the Hw(z) = 7‘”: 3)

waiting time controller, Sectiofll-B details the service time ) ) )
controller, Sectiorll-C discusses the top-level controller, andn order to achieve zero stationary error with respect to the
nally, Section I1l-D describes additional implementationaf€tPointry, , integral action is required in the controller. A
aspects, including our anti-windup strategy. pure integral controller is here used,
w

A. Waiting Time Control Design Cw(z) = ki : (4)

The waiting time controller is located in the load balancer, z 1
and uses the decision of serving optional content or not as'\&ferek;" is the integral gain to be determined. The proposed
actuator to steer the average waiting titeto its setpoint design for the waiting time control loop is shown in the block
r.,, - Feedback is achieved by directly measuring the waitifidgram in Figure 5.
time t,, ( ) of each request right before it is being routed. Closing the loop with the proposed controller leads to the
The controller then attaches a a@( ) 2 f0;1g, to the following characteristic equation for the closed loop system:
request based on this measurement, wioér¢ = 1 indicates 722 7+ KukV =0: (5)
that optional content should be computed and served. For W '
each request, the decision on the value af( ) is based We desire to place the poles of the closed-loop system system
on a threshold ; on the waiting time. The threshold; is within the unit circle for stability, and on the positive real
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Fig. 7: The service time control loop design in discrete time.
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can affect the service times by changing the integer number of
simultaneous requests, 2 Z* to run. However, the control
signalu 2 R* computed by the controller is a non-negative
real-valued number, which thus has to be quantizad,as due
before it can be actuated (the ceiling function is used here for
the quantization).

To be able to assess the behaviour of the control strategy
and theoretically analyze the system, we need a model relating

. . u to ts. In the modeling process, the quantization effects are
Fig. 6:95% con dence intervals from 20 runs on thresholds(upper) . _ .
and average waiting timesg, (lower) using the proposed waiting time neglected, i.e. we assurg = u. Assuming that all forwarded

controller in the load balancer. The setpoint on the mean waiting tiri@duests to the 'rep'lica will be served cor_lcurrently, and assuming
ry, is 0.5 that a change im is re ected very fast ints, we can use the

_ _ _ ) ) following simple discrete-time model:
axis for a desirable transient behavior. This corresponds to the

following desired characteristic equation ts(k+1) = Ksu(k) + ng; (8)

tw (S)

50 100 150 200

Time (s)

72 (a+ bz+ ab=0; (6) WhereKs is a gain relating the number of simultaneous requests
' _ to the average service times angd is a stochastic disturbance
where0 a;b 1, for the desired locations of the polesdescribing the variance in the service times. Note that this
Comparing coef cients in Equationg) and (6) results in the model(8) has the same structure as the waiting time m@2lg!

following system of equations: As a result, a majority of the analysis in SectibhA can be
a+b=1: re-used. However, in this case, the gKig can not be assumed
W _ Ak (7) to always stay close to 1. In fadf;s is directly related to the
Kwk = ab: ) : N
_ ' speed of the replica, which can vary greatly with time and also
Simulations suggest that the pole placemert0:92 a = pe different among the different replicas. This gain thus has

1 b=0:08gives a good transient behaviour of the closed-loap be estimated by the replica controller. The estima#anis

system, in terms of disturbance rejection and response spgegformed, in each replica, using an exponentially weighted
of the controller. Using7), this implies that we should choosemoving average lter:

ki = 0:07=K,,. Since we expect that,, 1, a reasonable to(K)
choice for the integrator gain ig" = 0:07. Ke(k+1)=(1 We(k) + =2 (9)

The robustness of this design choice can be tested by using Ua (k)
Equation(5) to examine for what values of the process gaiwhere is a design parameter, here set t& 0:5 (based on
K the closed-loop system remains asymptotically stable (ipgeliminary experiments). Using this estimated gain and the
when the poles are within the unit circle). Insertik§ = 0:07 controller design in Sectiolll-A, and in particular the results
in (5), the closed loop system remains stableKqy 14:3. from Equation(7), the following adaptive integral controller is
SinceK ,, is expected to have a value close to one, this impliggoposed for the service time:
a very robust control design. ol o

. . oy . S — .

An example showing the control action of the waiting time kP = e (10)
controller when using the proposed architecture during different s
workloads is presented in Figure 6. The setup is the samel&§ location of the slowest closed-loop pdle ¢ 1
for the comparison made in Figure 3, and 8% con dence is a trade-off between rejection of control errors caused by
intervals are based a20 runs. Here we see how the waitingchanges in server speed, robustness to estimation erréfs,in
time controller dynamically adjusts the thresholdwith the duantization errors, and rejection of the stochastic noise
changing workload such that the mean waiting titgefollows Taking these elements into consideration, we place the pole in

the setpoint, , which has a static value of 0.5 in this examplé. = 0:8, which results in a stable closed-loop system as long
asKs Ks=6:25 We consider this a robust enough design.

B. Service Time Control Design _ The adaptive integral control design is thus:
Each replica has a service time controller, responsible for 016

keeping the average service times (for requests serving optional k?
content)ts at the setpoint, . The value used for feedback is K
thus the average value of the service times of all completedThe block diagram of the complete service time model and
requests during each time intenkalThe service time controller control design is shown in Figure 7.

11)
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Fig. 9: The complete control loop design in discrete tinGs
represents the relation between average response timesl chosen
statistical measure for feedbatk

setpoint on the waiting and on the service time, respectively
ry, andr. . The setpoint;, prescribes a statistical measure
obtained from the vector of response times, e.g. th& 95
50 100 150 200 percentile. The top-level controller receives the measured value
of the same statistic of the response tinhgss a feedback

Fig. 8: 95% con dence intervals from 20 runs on estimated ddin signal. The controller then dynamically adjusts the setpoints

(upper), service time control signalsandu, (middle) and average M ‘?‘nd Mt - Wh||_e the top-level c.ontroller ShOUId, react to .
service timesds (lower) using the proposed service time controlleP€rsistent errors in the response times, we also wish to avoid
in one replica. The true gain valu&ss (upper) and the setpoint on being too sensitive to outliers and transient errors in the inner
average service timg, = 0:5 (lower) are plotted for reference.  control loops. This motivates the choice of a top-level controller
which is slow with respect to the dynamics of the waiting-
and service-time control loops. We can then re-use again the
raﬁ?alysis from Sectiotll-A , and propose the following simple
i(ﬁtegral controller:

Time (s)

The actuation of the quantized control signg| representing
the number of simultaneous requests to run in a replica, is
previously mentioned performed using piggy-backing. In mo
detail, the following steps are involved:

C
1) At startup, bothu andu, are initialized to zero. Cc(2) = k‘ : (12)
2) The control signalu is updated every time interved z 1
according to the scheme in Figure 7. The integral gairk? is chosen as a suf ciently small value.

3) Atevery request completion, a new valueuafis computed: Studying the behavior of the system, we seledteer 0:01
ule" = due. The differenceu“a = ul™ y, is determined Using this controller's output signal, we change both the

and the old value ofi, is updated taue" . other setpoints simultaneously. We specify a xed rati@

4) The response of the completed request is sent back to tAgl], which divides the total response time into a fraction
load ba|ancer, using p|ggy_back to send alse uoa7 the (due to the Wa|t|ng t|me) antl (due to service t|me) A block
number of new requests that the replica wants to servediagram of our proposed design for the top-level controller is

The steps above constitute the actuationugf completing the SNOWnN in Figure 9. The dashed area in the gure represents
control design. The mentioned design ensures stability, tacklB§ plant to co_ntrol, while the rest is th_e top-level controller. In
robustness issues, and guarantees a fast convergence, as s jant, the inner control Ivcv)ops (SECt'd'"SA and_II_I-B)_are
in the experimental validation presented in Section IV. represen_ted _by the blociG and Gcl.for the waiting time-

An example showing the control action and gain estimatioq{]d service t|me_c_ontrpl loop respectively. These control loops
of the service time controller when using the propos e given in detail in Figures 5 and 7. The bld@ék represents

architecture is presented in Figure 8. The setup is the samet f conversion block that translates average response times

for the comparison made in Figure 3, but here we instead vawo the statistic that is used as a feedback signal.

ine senvce tmesfor b oponland mandatory content by 1 % S, e eplevl convoler v b ocaes
scaling them by a factot= during different time intervals of b ) d h ’ Ip ; ph

50 s. The service time controller is able to ef ciently estimaté'rr_ll_eh C"’(‘jn e propagate dto '_[de re%_lcEls usm? L N requestﬁ.
the gainK s and dynamically adjust the number of concurrentl}/e e design parameterdecides which part of the system the

served requests, such that the mean service tine follows quest_s V.Vi” ;pend most time |n and can be tuned to handle
the setpointr,,, which has a constant value of 0.5 in thiémcertalntles in the system. Withclose to one the requests

will spend most time waiting in the queue, while the replicas
example. . L ;
_ will serve fewer requests concurrently. This is bene cial for the
C. Top-Level Control Design overall predictability of the response times in the case when
To ensure that the global setpoint on respose times st uncertainty lies in the service times. The opposite case
followed, we employ a top-level controller. This controllewith close to zero is bene cial when most uncertainty lies
decides the setpoints of the other two controllers, i.e., tirethe arrival rate of incoming requests.



D. Implementation Aspects more than one replica at any given time, which makes the

. o ) _sorting operation negligible in terms of time complexity.
The solution proposed in this paper is capable of handling

graceful degradation for a wide range of arrival rates. However, IV. EXPERIMENTAL VALIDATION

it clearly cannot cover all the possible arrival rates, as there areThijs section presents our results. We validate our control
limitations (Oﬂ the amount of §imu|taneous requests_that Cgﬁategy using the open source Python_based brownout simu-
be served in general terms), imposed by the capacity of #agor, built to mimic the behavior of cloud applications [27]
replicas. Computing these limitations is fairly straightforwar@nd described in SectidV-A . We present the results obtained
If n replicas serve only mandatory content, with a serviagith the new architecture proposal in Section IV-B.
time of t, per request, we can compute the upper bound gn .
[%. The simulator
the overall rate of requests that can be served by the system , .
The simulator de nes the concepts @lient, Request

(with full degradation) as max = n=ty,. In turn, this means ' _ ' 1
that arrival rates >  ma Will lead to over-utilization and Replica Replica Controller andLoad Balancer Clients issue

instability. In this case, it is possible to detect that addition§FAUests to be served by a replica. Clients can behave according

replicas should be started and an auto-scaler can ef cientfy @Y inter-arrival time distributions and both according to
take care of ensuring a viable operation region. The desiljlf Pen-loop or to the closed-loop client model [1, 39]. In
of such auto-scaling policy is beyond the scope of this pape¥ closed-loop model, clients wait for a response and issue

Alternatively, over-utilization can be handled using admissigh N€W request only after some think time. In the open loop

control in the central queue. model, clients do not wait and instead issue new requests
During periods of abnormally small workloads, the respon%'veIth a speci ¢ request rate. Being better at modelling a large

times will stay below the setpoint, even though optional conteH mber of independent users, we performed the evaluation
y point, gh op ith open-loop clients.

is served to all requests. This poses no issue to the user, butvf’h'(_eor each request, the simulator computes the service time.

controllers in the system will see a persistent error in respo . : :
time, and would ideally like to throttle the throughput further bngﬁe time it takes to serve requests with only the mandatory

! ! [ with the optional content in addition to the mandatory one
serving more optional content and more requests concurren

. ) X L . e computed as random variables, with normal distributions,
in the replicas. However, since it is not possible to serve mor . .

. .. -whose mean and variance are based on pro ling data from the
than 100% optional content and route more requests if the

central queue is empty, the control signals will be saturatgégzm;i r;s?];neixfeer:?netngsrgnIi?:areci:nr?riﬁglrnihgathékes care of
and unable to eliminate the error in response time. Controllers P P P '

L . - - . electing — for each request — when to serve optional content. In
with integral action which experience persistent control errofﬁe simSIator we useg the replica controller gescribed in [35]

under saturation are prone ittegrator wind-up a well known .
phenomenon in control theory [2]. The effect of integratoarnOI used the suggested tuning parameters. For the control

wind-up is that the controller will be unresponsive for a perio trategy presented in SectidiB,, we use a sampling period
P P P f 0:25s. The controller code developed in the simulator can be

of time when returning to normal workloads, which of cours irectly pluaaed into brownout-aware applications like RUBIS
is unacceptable. Being a well-studied problem however, theriecty Piugg PP

exists several ef cient algorithms in the control literature foiand RUBBOS,

removing wind-up from controllers, and the implementatioB. Experimental Results

done in our simulator features anti-windup. To evaluate the predictability of our solution and compare it
Another aspect to consider when implementing strategies forthe state of the art, we run simulations 1df0 randomized

load-balancing and graceful degradation is how the compusaenarios in sequence, each lastigy. We then aggregate

tional time needed to compute the control decisions scale wite results on response times for all the requests in all the

growing arrival rates and number of replicas. The controllesgenarios. For the request generation, we use the open-loop

presented in Section Il update their decisions based on a xetlent model and the same random seed generator, ensuring that

sampling period. This means that their computational time tise same number of requests are generated in all the scenarios

unchanged with respect to the arrival rate. Despite this, sormmed that the throughput of the cloud application is the same

logic has to be executed on a per-request basis (e.g. the decisioross the experiments, irrespective of the strategy used.

on optional content, a single comparison of two oating point We use a xed setpoint;, = 1s on the 9% percentile of

numbers). The computation that is done per request is in #ilé response times throughout all scenarios. For each scenario,

cases simple, and has negligible execution times. The ma& randomize the number of replicas the average service

expensive computation done on a per-request basis is sortiimges t, (optional content) and,, (mandatory content) for

of the list with number of desired requests for each repliazach individual replica (with the variance xed to 0.0%1 s

The time it takes from when a request sends its desired namd 0.0015 respectively), the number of concurrently running

incoming request value to the time it actually gets forwardeéquestdM ¢ (i.e., roughly the number of threads that replicas

new requests is negligible, and when request are routed to tise to serve requests) and the expected optional content ratio

replica, the CorreSpondin,g element is removed from the VeCto,ﬁhttps://github.com/cloud-control/brownout-Ib-simulator

that should be sorted. Given the speed of other components ishtps://github.com/cloud-control/brownout-rubis

the system, it is unlikely that the list contains demands from“nttps://github.com/cloud-control/brownout-rubbos



TABLE I: Bounds on randomized scenario parameters. TABLE II: Results from the experiment.

Parameter Min Max ndar
na oot 3 io Strategy IAE [s] gg/igt?o?] Ma_)lginFigs[;')s?nse
to [10 23] 1 4 [s]
tm [10 %s] 2 3 ILAC-0.9 134.4 0.0953 1.41
01 09 ILAC-0.7 254.9 0.1412 2.36
Mc 5 30 Brownouf® + EPBH 4233 0.2640 2.58
Brownouf® + SQF 823.1 0.2961 3.25
The values are sampled from uniform probability distributions, Brownout + EPBH 10980 1.3577 7.27
with bounds in Table I.
The arrival rate for each scenario is set to
=0 Iea ) 2 13 ol — :
to tm ﬁ
wheret, andt, are the average service times for optional
and mandatory content respectively over the replicas (replicas o8| |
can be different in their speed). We specify the arrival rate to
avoid degenerate scenarios where the system either becomes
unstable or where the workload becomes too low — assuming 0.6 s
that an auto-scaler is in charge of selecting a correct numbef
of replicas to run in the system. ©
We compare our proposed solution to three alternative 0.4 .
strategies for the samB00 scenarios. For our solution, we use ILACI0.9
the ratio parameter = 0:9 (i.e. that each request is supposed ——ILAC0.7
to spend 90% of its time in the waiting process and 10% 0.2 =+= BrowhouFSEPBH.
of its time being served) as well as= 0:7, as we expect — Brownouf“+SQF
great variations in service times between each scenario. The ‘ ‘ ‘ Brow‘nout+EP"BH

other evaluated strategies are state of the art solutions from 00,7~ 1 15 5 >5 3 35
the literature [11, 28, 35], using the architecture in Figure 2. Optional Content Response Times (s)

The evaluated .strategles are. ) ) _ Fig. 10: Cumulative Distribution Function (CDF) of response times
ILAC- : The integrated load-balancing and service tim@r all requests with optional content.

control (ILAC) architecture of this paper, with the marked
parameter. We use both=0:9and =0:7.

Brownout®® + EPBH: A solution that employs cascade
control, Brownout® [35], paired with a brownout-
aware weighted probability algorithm for load balancin
(EPBH) [11].

Brownout®® + SQF: The Brownout® controller, with the
SQF algorithm for load balancing.

Brownout + EPBH: The original brownout controller [27],

till, the ILAC- signi cantly outperforms the other considered
strategies in both cases. The closest competitor, Browhout
combined with EPBH, has a roughly 3 times larger IAE value
%hat ILAC-0.9. The corresponding factor to the Browrféut
+ SQF strategy is roughly 6, and over 80 for the Brownout +
EPBH strategy. The superior predictability of the proposed
ILAC- strategy is also re ected in the overall standard
using the EPBH weighed probabit algoritm or oadrr 0% MU SO 1osponie (s, i e
balancing. ) - results show the effectiveness of our proposal and highlight
To evaluate the predictability of each strategy, we measyfgs problem of co-design with the standard architecture in
the In_tegrated Absolute Err_or (IAE) of dewa_tlons frqm th‘?:igure 2, where the ef ciency of the EPBH load-balancing
setpoint on theds" percentile of response times. Given @jernative varies greatly with the choice of the controller used

sampling interval of lengti, we compute the IAE as: for graceful degradation.
IAE = h  jri (k) te(K)j; (14)  The performance of the evaluated strategies are also ex-
k empli ed in Figure 11, which shows averaged values of the

where the summation is done over all sampling interkatsf 95" percentile of response times from 20 runs of 5 of the
the experiment. To complement this metric, we also recot@0 scenarios. The parameter set for each scenario is given in
the standard deviation of the overall response times and ffable lll. We see in in the gure that the performance of the
maximum recorded response time. Brownout® + SQF and BrownolGf + EPBH strategies are
The results of the experiment for each strategy are sumrhgavily dependent on the given scenario, whereas the proposed
rized in Table II, along with Cumulative Distribution Functionsstrategy keeps a high predictability regardless of the parameters
of the optional content response times in Figure 10. Comparitged for the simulations. This robustness clearly highlights the
the results of ILAC- for =0:9 with =0:7 indicates that bene ts of the architecture proposed in Figure 4 combined with
a large value of indeed was favourable in the experimena control-theoretical design approach for the decision-making.



Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

; i ,

o N o

95th Percentile of Response Times (s)
=

05 —— ILAC-0.7
EPBH—— Brownou
PBH === Setpoint (
0
0 50 100 150 200 250
Time (s)

Fig. 11: Averaged values of the 9%ercentile of response times from 20 runs of 5 selected scenarios. The parameter sets of each scenario is
given in Table Il1.

TABLE IIl: Parameters of 5 selected scenarios (out of the 100 testethe replicas [19]. Previous results show that for self-adaptive,

Scenario #1 #2 #3 # #5 brownout replicas, SQF performs quite well [28], but can be
n 9 6 4 6 9 outperformed by weight-based, brownout-aware solutions [11].
[s7] , 570 890 330 310 570 In this article, we improve on brownout-aware load balancing,
:0 [150 S] éfi ifg éf; ifg éfi by combining the load-balancing strategy with the graceful
m [10 73] 067 029 043 084 062 degradation decision, obtaining better performance in terms of
Mc 11 13 15 29 11 variance of response times, and show improved performance,

compared to previously devel d algorithms.
V. RELATED WORK P P y developed algo s

Building distributed systems that offer guarantees on their VI. CONCLUSION
timely execution while the system is subject uncertainty This paper proposes a new load-balancing architecture
and changesis a challenging task. Bounding latencies is ofhat combines the action of the load balancer with graceful
utmost importance, but this is quite dif cult in the presence afegradation techniques like brownout or admission control. We
changes [5, 6, 14, 24, 25, 42]. Changes are unpredictable, thaye designed the system and synthesized the load balancing
can be dramatic, and they can include malfunctioning [23]rategies. The advantage of the proposed solution lies in the
slow down [12], failures [18], and much more. Gracefuhterplay between the two control solutions. While in previous
degradation [31] is then introduced into the runtime system, $olutions the two different components — load-balancer and
handle these changes and guarantee performance in the presgrageful degradation controller — could compete and generate
of uncertainty. This paper shows that graceful degradation adscillations in response times, our proposal does not suffer
load-balancing can interfere with one another. We focus orfram this issue.
uni ed solution, to avoid this interference. Our proposed architecture has an important tuning parameter:

In replicated cloud services, load balancers have a crudiaé percentage of time that should be spent waiting and in
role for ensuring resilience and performance [3, 20]. Loaservice for each request. Our experimental campaign showed
balancing algorithms can either be global (inter-data center) that — irregardless of the selected percentage time — the response
local (intra-data center or cluster-level). Global load-balancirignes using the proposed load-balancing strategy are much more
decides what data center to direct a user to, depending pedictable than with any other previously explored strategy.
geographic proximity [30] or price of energy [10]. Once a datlheir variance is in fact much smaller than with other strategies,
center is selected, a local algorithm directs the request tamd their maximum is much closer to the desired setpoint than
machine in the data center. Our contribution is of the loc#lother strategies are used.
type. In the future, we plan to combine the proposed architecture

Various local load-balancing algorithms have been proposedth auto-scaling features, that trigger new replicas to be started
For non-adapting replicas, SQF has been considered very closeold replicas to be removed. We also envision using the
to optimal, despite it using little information about the state airchitecture for fault detection and countermeasures.
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