Beslutsanalys och investeringskalkyler avseende brandskydd

Tehler, Henrik

2000

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Beslutsanalys och investeringskalkyler avseende brandskydd

Henrik Johansson

Department of Fire Safety Engineering
Lund University, Sweden

Brandteknik
Lunds tekniska högskola
Lunds universitet

Report 3118, Lund 2000

Rapporten har finansierats av BRANDFORSK
Beslutsanalys och investeringskalkyler avseende brandskydd

Henrik Johansson

Lund 2000
Abstract
When basis for decisions concerning fire protection are created it is desirable to express the result, whether the investment is recommended or not, in a way that can be understood by persons without a background in fire engineering. The present report focuses on how the basis for a decision concerning fire protection can be expressed as an investment appraisal. Included are also two case studies where the suggested method is used for investment appraisals concerning the investment in automatic sprinkler system. The case studies were performed for buildings belonging to ABB and Avesta Sheffield and the result was that the net present value of the sprinkler investment was 31,000,000 SEK and 156,000,000 SEK. This means that an investment in a sprinkler system can be seen as profitable in both buildings.
Sammanfattning

Att visa att en investering i brandskydd är lönsam är svårt, och en av anledningarna till detta är att det är mycket svårt att kvantifiera den säkerhetshöjning (riskreducerering) som investeringen åstadkommer. Ett sätt att undersöka lönsamheten i en investering i brandskydd är att analysera denna på samma sätt som vilken annan investering som helst, d.v.s. med hjälp av en investeringskalkyl.

I rapporten visas hur de negativa effekterna som en brandskyddsinvestering innebär (t.ex. kostnader för grundinvestering samt drift- och underhåll) kan analyseras tillsammans med de positiva (minskad risk) och resultera i en investeringskalkyl som kan användas vid beslut angående investeringen. Resultatet från investeringskalkylen blir ett kapitalvärde som är ett mått på investeringens långsiktiga lönsamhet; endast om kapitalvärdet är positivt bör investeringen genomföras.


En av dessa tre metoder används sedan, i kombination med en investeringskalkylmetod, för beräkning av den långsiktiga lönsamheten i två investeringar avseende heltäckande sprinklersystem. Kalkylerna genomfördes i byggnader som tillhör ABB respektive Avesta Sheffield. Resultatet från kalkylerna blev att kapitalvärdet för investeringen i ABB-byggnaden var 31.000 tkr och för investeringen i Avesta Sheffield-byggnaden 156.000 tkr, och eftersom ett positivt kapitalvärde innebär att investeringen bör genomföras kan investeringarna betraktas som långsiktigt lönsamma med de antaganden som gjorts i analyserna.

Metoden (metoderna) som redovisas i rapporten utgör bra grund då investeringar i brandskydd skall motiveras och kan även användas för att underlätta kommunikation med personer som saknar specifik utbildning inom brandsäkerhet. Förutsättningar finns för att metoderna kan användas vid analyser av beslut angående brandskydd på ett mer rationellt och logiskt sätt än tidigare.
Summary

It can sometimes be difficult to motivate investments in fire protection; especially when the demands from the building regulations are already met and there will be no substantial reduction in the insurance premium if the investment should be made. In this situation the decision-maker somehow has to evaluate the negative effects from the investment (the initial cost and the cost of maintenance) and the positive (the risk reduction) in order to produce a basis for the decision. In the present report the net present value method is used as a basis for the decision.

The basis for using the net present value to estimate the profitability of investment in fire protection is the classical bayesian decision theory. This theory has been criticised and some of the criticisms, that are deemed to be relevant in the present context, are also presented in the present report. The criticism that has the largest influence on decision making regarding fire protection has been aimed at the precise representation of probability that is stipulated by the classical bayesian decision theory. When evaluating a decision concerning different fire protection alternatives it is often very difficult to assign a specific numerical value to a probability regarding for example the reliability of a fire protection system. This is why three other theories for making decisions are also presented in the present report.

One of those methods is used then in combination with the net present value method to calculate the net present value of two different investments in sprinkler systems. The investment appraisals are performed for sprinkler systems in industrial buildings belonging to ABB and Avesta Sheffield. The result from those investment estimates is that the net present value for the sprinkler system in the ABB building is 31,000,000 SEK and for the sprinkler system in the Avesta Sheffield building 156,000,000 SEK. Since the net present value for both investments are positive the sprinkler systems are deemed to be profitable given the assumptions in the calculations.

The method of combining risk analysis method concerning fire protection with Bayesian decision theory into an investment appraisal constitutes an attractive way of presenting a fire protection investment to decision-makers. It is also possible to see that an investment in fire protection is not always only a cost but can actually be very profitable given that one evaluate the risk reduction that the investment produces.
Förord
Denna rapport är en del i fas 2 av projektet "Ekonomisk optimering av det industriella brandskyddet”, vilket finansieras av BRANDFORSK. Som hjälp vid framtagandet av denna rapport har funnits en referensgrupp bestående av följande personer:

Tommy Arvidsson, BRANDFORSK
Nils Fröman, Pharmacia & Upjohn
Ingemar Grahn, Avesta Sheffield AB
Anders Olsson, Trygg-Hansa
Bo Sidmar, Asea Brown Boveri AB
Michael Hårte, Saab Military Aircraft
Ola Åkesson, Räddningsverket
Sven Erik Magnusson, LTH Brandteknik
Lars Nilsson, Försäkringsförbundet
Per Nyberg, Skandia Industri
Björn Lindfors, SKF Reinsurance Comp Ltd
Jan-Erik Johansson, Stora Risk Management
Liselotte Jonsson, Sycon
Per-Erik Malmnäs, Stockholms universitet
Innehållsförteckning

1. INLEDNING........................................................................................................................................ 1
   1.1. METOD................................................................................................................................. 1
   1.2. RAPPORTDISPOSITION......................................................................................................... 2

2. BESLUTSANALYS ......................................................................................................................... 3
   2.1. OLIKA OMRÅDEN INOM BESLUTSANALYSEN................................................................. 4
   2.2. KLASISK BAYESISANSK BESLUTSANALYS........................................................................ 5
      2.2.1. Sannolikheter och nyttovärden..................................................................................... 6
      2.2.2. Beslutsregler .............................................................................................................. 8
      2.2.3. Kritik mot den klassiska bayesianska beslutsteorin .................................................... 9
   2.3. NYTTOFUNKTIONER ............................................................................................................. 12
   2.4. OSÄKRA SKATTNINGAR ....................................................................................................... 15
      2.4.1. Osäkerhetsanalys ........................................................................................................ 16
      2.4.2. Maximin-kriteriet för förväntad nytta ........................................................................ 18
      2.4.3. Hypermjuk beslutsteori ............................................................................................. 23
   2.5. BESLUTSPROBLEMS MED FLERA MÅL .............................................................................. 29

3. INVESTERINGSKALKYLER............................................................................................................. 31
   3.1. INVESTERINGSKALKYLER SOM TEKNISKT BESLUTSSTÖD ......................................... 31
   3.2. KAPITALVÄRDESMETODEN............................................................................................... 33
   3.3. OSÄKERHETER ................................................................................................................... 37
   3.4. RISKJUSTERAT KAPITALVÄRDE ...................................................................................... 38

4. PRAKTISKA EXEMPEL PÅ INVESTERINGSKALKYLER ......................................................... 43
   4.1. ABB AUTOMATION PRODUCTS ...................................................................................... 43
   4.2. AVESTA SHEFFIELD ........................................................................................................ 46
   4.3. SAMMANFATTNING .......................................................................................................... 49

5. SAMMANFATTANDE DISKUSSION............................................................................................ 51

6. REFERENSER................................................................................................................................ 53

BILAGA 1, SSD-BERÄKNINGAR
BILAGA 2, BETALNINGSFLÖDEN FÖR INVESTERINGSKALKYLER
BILAGA 3, EXEMPEL PÅ ”THE DUTCH BOOK THEOREM”
1. Inledning

Att ta fram beslutsunderlag för investeringar i brandskydd är inte lätt. En anledning till detta är att det är svårt att värdera den säkerhetshöjning som investeringen är tänkt att åstadkomma. Ett möjligt sätt att värdera denna säkerhetshöjning är att skatta sänkningen av de förväntade framtida kostnaderna på grund av brand. Detta är dock problematiskt i sig eftersom sänkningen av förväntade framtida kostnader är svår att skatta och förenad med stora osäkerheter. I denna rapport kommer metoder för att hantera dessa problem och osäkerheter att presenteras, och en säkerhetshöjning/risksänkning definieras alltså som en sänkning av de förväntade framtida kostnaderna på grund av brand.

Vid den typ av investeringskalkyl som normalt förekommer i företag (se till exempel Nilsson & Persson, 1999) används − även om det inte alltid framgår − förväntade värden av de osäkra parametrarna som ingår i modellen. Om samma typ av investeringskalkyl även unnyttjas för brandskyddsinvesteringar där säkerhetshöjningen värderades som en förväntad sänkning av framtida kostnader skulle mycket vara vunnet. Anledningen till detta är att det då skulle bli mycket lättare att föra fram beslutsunderlaget till personer som saknar specifik utbildning inom brandområdet, eftersom investeringen kan beskrivas i termer som är bekanta för de flesta med kännedom om företagsekonomi. I rapporten kommer att presenteras metoder för att genomföra investeringskalkyler för brandskydd där säkerhetshöjningen värderas som en sänkning av de förväntade framtida kostnaderna på grund av brand.

Den klassiska bayesianska beslutsteorin är nyttig då investeringskalkyler diskuteras. En traditionell investeringskalkyl är egentligen inget annat än en beslutsanalys med beslutskriteriet att maximera det förväntade monetära utfallet, vilket är det beslutskriterium som används i den klassiska bayesianska beslutsteorin. Mot bakgrund av detta är det lämpligt att ett försök att applicera investeringskalkyler på beslutsproblem av typen brandskyddsinvesteringar inleds med en redovisning av den klassiska bayesianska beslutsteorin och dess begränsningar.

1.1. Metod

Metoden som används för att komma fram till ett lämpligt tillvägagångssätt vid investeringskalkyler avseende brandskydd utgår från klassisk bayesiansk beslutsteori, d.v.s. teorin om hur en så kallad rationell beslutsfattare skall välja i situationer som involverar osäkerhet. Beslutskriteriet som används i den klassiska bayesianska beslutsteorin är att det alternativ som maximerar den förväntade nyttan skall väljas; detta kriterium används också i de investeringskalkyler som presenteras i denna rapport.

Många av de problem som kan analyseras med metoden som används i denna rapport är mycket svåra att kvantifiera, framförallt med avseende på sannolikhet för olika händelser. Detta är anledningen till att den klassiska bayesianska beslutsteorin kompletteras med avsnitt som beskriver hur problem med svåra värdnings- och sannolikhetsskattningar kan hanteras.
1.2. **Rapportdisposition**

För att visa hur investeringskalkyler kan användas för skattning av den långsiktiga lönsamheten i brandskyddsinvesteringar inleds rapporten med ett kapitel (kapitel 2) som beskriver den klassiska bayesianska beslutsanalysen. Detta kapitel redovisar denna teoris viktigaste beståndsdelar: alternativen, tillstånden och konsekvenserna samt sannolikheterna för och nytan med dessa olika konsekvenser. I kapitlet redovisas också exempel på användning av den klassiska bayesianska beslutsteorin.


Efter det grundläggande kapitlet om beslutsanalys följer kapitel 3 som behandlar investeringskalkyler med avseende på brandskydd. Investeringskalkyl, vilket är en form av beslutsanalys, diskuteras med avsikten att fastställa hur en investeringskalkyl kan användas som tekniskt beslutsstöd när det gäller brandskyddsproblem. I kapitlet används kapitalvädesmetoden för bedömning av lönsamheten i en investering. Dessutom diskuteras även användning av det så kallade riskjusterade kapitalvärdet, vilket är ett lönsamhetsmått som är justerat med avseende på beslutsfattarens riskattityd.

För att visa hur metoderna som beskrivs i rapporten kan användas praktiskt redovisas två genomförda investeringskalkyler i kapitel 4. De två kalkylerna har genomförts i byggnader som tillhör ABB och Avesta Sheffield, och kalkylerna visar hur den långsiktiga lönsamheten med en investering i ett heltäckande sprinklersystem kan genomföras.

Rapporten avslutas i kapitel 5 med en sammanfattande presentation av resultaten i rapporten och en diskussion om den praktiska användningen av de presenterade metoderna.
2. Beslutsanalys

Beslutsfattande är en del av vardagen, och i de flesta fall fattar man beslut som man inte upplever som speciellt svåra, till exempel vad man skall äta till frukost, vilken tid man skall gå hemifrån på morgonen o.s.v. I många fall är man förmodligen inte ens medveten om att ett beslut fattats; man bara gör saker av ren vana eller handlar intuitivt. Det finns dock tillfällen då man inte kan identifiera det bästa alternativet enbart med hjälp av erfarenhet eller känsla, och i dessa fall kan beslutsanalys fungera som ett hjälpmedel vid beslutsfattande.


Med avvägningar avses det engelska ordet "trade-offs". Eftersom ett beslut ofta innebär för- och nackdelar inom olika områden, måste avvägningar mellan fördelar i ett område göras mot nackdelar i ett annat. Exempelvis kan det röra sig om ett bilköp där priset på bilen måste vägas mot kvaliteten, köregenskaperna, lastutrymmet, utseendet m.m. I regel innebär ett högre pris även en högre kvalitet och bättre köregenskaper, men inte nödvändigtvis bättre lastutrymme. Avvägningar handlar alltså om att välja mindre av en positiv egenskap för att få mer av en annan.

Olika perspektiv kan leda till olika beslut. Exempelvis kan detta förekomma i en grupp där flera personer ingår. Vissa i gruppen värderar några konsekvenser på ett sätt, medan andra värderar konsekvenserna på ett annat sätt, något som kan leda till att personerna blir oense om vilket som är det bästa beslutet. Det kan alltså vara svårt att fatta ett beslut

---

1 Två typer av osäkerheter brukar användas: kunskapsosäkerheter och stokastiska osäkerheter (Hofer, 1996). Kunskapsosäkerheter uppkommer på grund av bristande information angående till exempel en parameter som ingår i beslutsmodellen, och den stokastiska osäkerheten uppkommer på grund av slumpmässiga fenomen. Kunskapsosäkerheter kan minskas genom mer information, medan den stokastiska osäkerheten inte går att minska på detta sätt.
beroende på hur man uppfattar konsekvenserna men också på hur man uppfattar sannolikheterna för olika händelser.

En beslutsanalys kan hjälpa en beslutsfattare att komma till rätta med dessa svårigheter genom att presentera en strukturerad modell över beslutsproblemet, samt genom att med enkla regler ge en rekommendation till ett handlingsalternativ.

Detta kapitel avser redogöra för den klassiska bayesianska beslutsteorin, samt kortfattat diskutera några andra teorier som kan användas för att hantera problem som den förstnämnda teorin inte klarar av.

Kapitlet inleds med en beskrivning av olika områden inom beslutsanalysen av vilka endast den normativa beslutsanalysen kommer att behandlas utförligt i rapporten. Fortsättningen av kapitlet redovisar den klassiska bayesianska beslutsteorin, som är en normativ teori, och därmed ger en rekommendation om hur en beslutsfattare skall välja i en viss situation. Teorins viktigaste delar, alternativen, tillstånden, konsekvenserna samt sannolikheterna och nyttan med de olika konsekvenserna beskrivs med hjälp av enkla exempel. Dessutom exemplifieras teorins begränsningar.

Den klassiska bayesianska beslutsteorin kräver att alla sannolikheter och värdet av konsekvenserna som ingår i problemet skall kunna anges exakt, vilket i många fall, då det gäller brandskyddsproblem, är svårt. Detta medför att några metoder som kan användas för att hantera tillfällen då sannolikheter och värdet av konsekvenser inte kan anges exakt också diskuteras i kapitlet.

2.1. Olika områden inom beslutsanalysen

Beslutsanalys är ett mycket stort område där en påtaglig utveckling har skett under den senare delen av 1900-talet. För en person med grundläggande teknisk bakgrund kan det förefalla som om beslutsanalys är begränsat till modeller som beskriver för beslutsfattaren vilket beslut, i en viss given situation, som är det optimala. Denna typ av modeller är dock enbart en del av alla modeller som handlar om beslutsanalys.

Rasmussen (1997) visar en tydlig uppdelning av beslutsanalysen i tre olika områden: de normativa teorierna, de teorier som beskriver beslutsfattande utifrån en avvikelse från normen och de teorier som beskriver hur personer i verkligheten fattar beslut. I Figur 1 illustreras denna indelning tillsammans med olika forskare och teorier inom de olika områdena.

<table>
<thead>
<tr>
<th>Normative, prescriptive theories &amp; models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic theory – von Neuman, Morgenstern</td>
</tr>
<tr>
<td>Expected Utility theory – Keeny, Raiffa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descriptive models in terms of deviations from norms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judgment Biases – Kahneman, Tversky</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descriptive models of actual behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural decision models - Klein</td>
</tr>
</tbody>
</table>

Figur 1 Uppdelning i tre områden inom beslutsanalysen (Rasmussen, 1997).
2. Beslutsanalys

När beslutsproblem diskuteras i denna rapport kommer teorier från den första gruppen, d.v.s. de normativa teorierna att utnyttjas. Anledningen till detta är att då man är intresserad av att få hjälp med att välja ekonomiskt optimalt alternativ, är endast modeller från det normativa området relevanta. Att använda normativa teorier är dessutom nödvändigt om man vill skapa beslutsunderlag som liknar de investeringskalkyler som normalt används för beslut i företag.

I ett beslutsunderlag, vilket är framtaget med hjälp av de normativa teorierna, skall det framgå någon typ av rekommendation för beslutet. Huruvida beslutsfattaren bestämmer sig för att genomföra beslutet i enlighet med rekommendationen torde höra hemma i den sista gruppen som Rasmussen använder, modeller som beskriver hur personer verklig fatar beslut. En viktig egenskap hos de normativa teorier som presenteras i denna rapport är alltså att de inte gör anspråk på att beskriva hur en person fattar beslut, utan de beskriver hur personen bör fatta beslut för att vara rationell. Vad begreppet rationell innebär i detta sammanhang kommer att förklaras senare i detta kapitel.

2.2. Klassisk bayesiansk beslutsanalys


<table>
<thead>
<tr>
<th>Tillstånd</th>
<th>Alternativ</th>
<th>s₁</th>
<th>s₂</th>
<th>..</th>
<th>sₘ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>o₁₁</td>
<td>o₁₂</td>
<td>..</td>
<td>..</td>
<td>o₁ₘ</td>
</tr>
<tr>
<td>a₂</td>
<td>o₁₂</td>
<td>o₂₂</td>
<td>..</td>
<td>..</td>
<td>o₂ₘ</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>an</td>
<td>oₙ₁</td>
<td>oₙ₂</td>
<td>..</td>
<td>..</td>
<td>oₙₘ</td>
</tr>
</tbody>
</table>

Figur 2 Generell modell av en beslutsmatris.

För att exemplifiera teorin för en beslutssituation använder Savage ett exempel där en man måste bestämma vad han skall göra med ett ägg som är tänkt att användas i en omelett.
“Your wife has just broken five good eggs into a bowl when you come in and volunteer to finish making the omelet. A sixth egg, which for some reason must either be used for the omelet or wasted altogether, lies unbroken beside the bowl. You must decide what to do with this unbroken egg. Perhaps it is not too great an oversimplification to say that you must decide among three acts only, namely, to break it into the bowl containing the other five, to break it into a saucer for inspection, or to throw it away without inspection. Depending on the state of the egg, each of these three acts will have some consequence of concern to you” (Savage, 1954)

Gärdenfors och Sahlin (1988b) presenterar en beslutsmatris av Savages problem, vilken illustreras i Figur 3.

<table>
<thead>
<tr>
<th>Act</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break into bowl</td>
<td>Six-egg omelet</td>
</tr>
<tr>
<td></td>
<td>No omelet, and five good eggs destroyed</td>
</tr>
<tr>
<td>Break into saucer</td>
<td>Six-egg omelet and a saucer to wash</td>
</tr>
<tr>
<td></td>
<td>Five-egg omelet and a saucer to wash</td>
</tr>
<tr>
<td>Throw away</td>
<td>Five-egg omelet and a good egg destroyed</td>
</tr>
<tr>
<td></td>
<td>Five-egg omelet</td>
</tr>
</tbody>
</table>

Figur 3 Beslutsmatris som visar Savages omelettproblem (Gärdenfors och Sahlin, 1988b).

I exemplet som Savage diskuterar är de olika alternativ som mannen har att välja mellan (1) att knäcka ägget direkt i skålen med de övriga ägggen, (2) att först knäcka och inspektera ägget innan det blandas med de övriga eller (3) att kasta ägget direkt. De olika tillstånd som, i det här fallet, ägget kan ha är antingen ”bra” eller ”ruttet”. Konsekvenserna av manns beslut och äggets tillstånd kan bli en omelett med sex ägg, ingen omelett och fem förstörda ägg, en omelett med sex ägg och en skål att diska, en omelett med fem ägg och en skål att diska, en omelett med fem ägg och ett bra ägg förstört eller en omelett med fem ägg.

2.2.1. Sannolikheter och nyttovärden

I den klassiska bayesianska beslutsteorin förutsätts det att en beslutsfattare kan ange en sannolikhet för alla olika tillstånd, till exempel sannolikheten att ägget i exemplet ovan skulle vara ruttet. Dessutom skall varje konsekvens tilldelas ett numeriskt värde som avspeglar beslutsfattarens ”nytta” givet att just den aktuella konsekvensen realiseras. Meningen med nyttovärdena är att de skall visa beslutsfattarens preferenser rörande konsekvenserna utan att blanda in sannolikheten att de olika konsekvenserna skall inträffa. Ett nyttovärde kan vara vilket värde som helst, men det är viktigt att förhållandena mellan nyttovärdena avspeglar beslutsfattarens preferenser avseende skillnaden i konsekvenser. Detta innebär att nyttovärdena inte bara skall kunna användas för att ge en fingervisning om att konsekvens $o_{1,1}$ är bättre än $o_{1,2}$, vilken i sin tur är bättre än $o_{1,3}$, utan också hur mycket bättre $o_{1,1}$ är än $o_{1,2}$ i förhållande till skillnaden mellan $o_{1,2}$ och $o_{1,3}$. Nyttovärden brukar betecknas med $u$, och exempelvis kan då nytan som är förknippad med konsekvens $o_{1,1}$ skrivas som $u_{1,1}$.

Det är viktigt att notera att den klassiska bayesianska beslutsteorin förutsätter att en beslutsfattare är villig att ange exakta sannolikheter och nyttovärden. Några av de modeller för beslutsfattande som diskuteras senare i rapporten erfordrar inte att dessa...
värden skall anges exakt. Vad detta innebär för den praktiska tillämpningen kommer att diskuteras längre fram.


Nyttovärdena som beslutsfattaren anger för de olika konsekvenserna är också subjektiva, d.v.s. de representerar beslutsfattarens preferenser angående de olika konsekvenserna. Detta betyder att om beslutsfattaren byts ut till någon annan kan de olika nyttovärdena ändras på grund av att den nya beslutsfattaren har olika preferenser jämfört med den tidigare beslutsfattaren.

De sannolikheter och nyttovärden som används i beslutsanalyser skall dels tolkas som numeriska uttryck för beslutsfattarens subjektiva uppfattning av hur troliga de olika tillstånden är, dels som uttryck för hans/hennes preferenser rörande konsekvenserna. Sannolikhets- och nyttovärdena skall vara sådana att beslutsfattaren är villig att basera sitt beslut på dem (Benjamin and Cornell, 1970). Det är dock inte alltid lätt att komma fram till en subjektiv sannolikhet, eller ett nyttovärde. Det vanligaste sättet att erhålla en skattnings av en sannolikhet är att låta en eller flera experter inom det aktuella området göra en skattnings av sannolikheten. Ett annat sätt att härrida subjektiva sannolikheter är att låta beslutsfattaren deltaga i ett fiktivt lotteri:

Exempelvis kan de fiktiva lotterierna användas på följande vis om man är intresserad av en beslutsfattarens subjektiva sannolikhet för att rökluckorna i en fabrik öppnas (p) då det brinner. Beslutsfattaren får välja mellan två lotterier; det första lotteriet innebär att han/hon erhåller 100 SEK med säkerhet (det är egentligen inget lotteri), och det andra lotteriet innebär att han/hon får 200 SEK om rökluckorna öppnar vid brand men inget om de inte öppnar. Antag att beslutsfattaren väljer det andra lotteriet. Detta innebär att den förväntade nyttan med det första lotteriet är mindre än den förväntade nyttan i det andra lotteriet (se olikhet [2.1]). Detta resonemang förutsätter dock att beslutsfattaren baserar sina beslut på principen att maximera den förväntade nyttan. Vad denna princip innebär kommer att diskuteras senare i kapitlet.

\[
u(100kr) < p \cdot u(200kr) + (1 - p) \cdot u(0kr) \]  

[2.1]

Om man dessutom antar att kronor och nytta i detta sammanhang är samma sak, vilket är ett rimligt antagande när det rör sig om mindre summor, kan olikhet [2.1] skrivas som olikhet [2.2].

\[
\frac{100}{200} < p
\]  

[2.2]

Genom resonemanget med lotterierna vet man alltså att beslutsfattarens subjektiva sannolikhet för att rökluckorna skall öppnas vid brand är större än 0,5. Nu kan man fortsätta undersökningen genom att klargöra beslutsfattarens preferenser mellan det
andra lotteriet och ett nytt lotteri där han/hon erhåller exempelvis 150 SEK med säkerhet. Beloppet i det säkra lotteriet ökas till dess att beslutsfattaren bedömer båda lotterierna som lika bra; då kan man erhålla beslutsfattarens subjektiva sannolikhet för händelsen att rökluckorna öppnas vid en brand. Liknande resonemang kan användas om man vill ta reda på nyttovärdena för olika utfall.

Förutom att sannolikheter och nyttovärden skall avspeglas beslutsfattarens uppfattning om osäkra händelser och preferenser rörande konsekvenser, måste de också vara koherent skattade. Detta innebär att sannolikheter måste vara mellan 0 och 1; summan av sannolikheter för oförenliga händelser som fyller hela utfallsrummet måste vara 1, och sannolikheten att någon av två oförenliga händelser inträffar är summan av sannolikheterna att var och en av händelserna inträffar, d.v.s. \( P(A+B) = P(A) + P(B) \) (Clemen, 1996).

Om någon skulle ange sannolikheter som bryter mot dessa regler skulle en skicklig vadförmedlare hela tiden kunna lura pengar av personen i fråga genom väl genomtänkta vad. Detta är vad som kallas ”The Dutch Book Theorem” och beskrivs bland annat i Clemen (1996). Det förefaller sannolikt att ingen skulle vilja skatta sannolikheter på ett sådant sätt att han/hon oundvikligen förlorade pengar om vederbörande skulle delta i vadslagning. Ett exempel som visar principen i ”The Dutch Book Theorem” finns i Bilaga 3.

### 2.2.2. Beslutsregler

Så här långt i rapporten har det beskrivits hur man formulerar sitt beslutsproblem genom att strukturera olika alternativ; identifiera olika möjliga tillstånd och skatta sannolikheter för dessa; identifiera vilka konsekvenser som uppkommer beroende på alternativ och tillstånd samt skatta nyttovärdet för dessa konsekvenser.


För att illustrera principen om maximerad förväntad nytta används Savages omelettexempel; tidigare i detta kapitel redovisades beslutsmatrisen för exemplet (Figur 3), men inga beräkningar av förväntad nytta gjordes. Enligt matrisen har beslutsfattaren tre alternativ att välja mellan: att knäcka det sista ägget rakt ner i skålen med de övriga äggen (\( a_1 \)), att knäcka ägget i annan skål för att först inspektera om det är ruttet eller ej (\( a_2 \)) eller att kasta ägget utan att inspectera det (\( a_3 \)). Beroende på om ägget är ruttet eller ej, alltså äggets tillstånd, kommer de olika alternativen att få olika konsekvenser. Dessa konsekvenser beskrivs i Figur 3, och den konsekvensen man erhåller om man väljer alternativ \( a_1 \) (att knäcka ägget i skålen med de övriga äggen) om ägget är bra (tillstånd \( s_1 \)) benämns \( o_{1.1} \). Vidare benämns konsekvensen vid val av alternativ \( a_2 \), om \( s_2 \) inträffar, \( o_{1.2} \), o.s.v.
Det är naturligt att använda en skala mellan 0 och 1 då nyttovärdet för de olika konsekvenserna skall väljas. 0 betyder i detta fallet den sämsta konsekvensen och 1 den bästa. Efter noggrant övervägande kommer beslutsfattaren fram till de nyttovärdet som presenteras i Tabell 1. Tabellen innebär att en omelett gjord av sex ägg betraktas som den bästa konsekvensen och får följaktligen nyttovärdet 1. Att omeletten blir gjord på sex ägg men medför att en skål måste diskas har tilldelats nyttovärdet 0,95, d.v.s. inte så mycket lägre än den första konsekvensen. En omelett gjord på enbart fem ägg värderas däremot som klart sämre än en gjord på sex. Detta syns i tabellen eftersom alla konsekvenser där enbart fem ägg har använts värderas som åtminstone fem gånger sämre än vad den sämsta konsekvensen med sex ägg (o1,2) värderas till i förhållande till den bästa konsekvensen (o1,1).

Tabell 1  Nyttovärdet för de olika konsekvenserna i omelett exemplet.

<table>
<thead>
<tr>
<th>Konsekvens (oi,j)</th>
<th>Beskrivning</th>
<th>Nytta (ui,j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1,1</td>
<td>En omelett gjord av sex ägg</td>
<td>1</td>
</tr>
<tr>
<td>o1,2</td>
<td>Ingen omelett, fem bra ägg förstörda</td>
<td>0</td>
</tr>
<tr>
<td>o2,1</td>
<td>En omelett gjord av sex ägg och en skål att diska</td>
<td>0,95</td>
</tr>
<tr>
<td>o2,2</td>
<td>En omelett gjord av fem ägg och en skål att diska</td>
<td>0,65</td>
</tr>
<tr>
<td>o3,1</td>
<td>En omelett gjord av fem ägg och ett bra ägg som kastats bort</td>
<td>0,6</td>
</tr>
<tr>
<td>o3,2</td>
<td>En omelett gjord på fem ägg</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Den förväntade nytta för de olika alternativen får man genom följande beräkningar där sannolikheten att ägget är ruttet har skattats till 0,2, d.v.s. pS(s2)=0,2:

\[
E(U_1) = p_S(s_1) \cdot u_{1,1} + p_S(s_2) \cdot u_{1,2} = 0,8 \cdot 1 + 0,2 \cdot 0 = 0,8 \\
E(U_2) = p_S(s_1) \cdot u_{2,1} + p_S(s_2) \cdot u_{2,2} = 0,8 \cdot 0,95 + 0,2 \cdot 0,65 = 0,89 \\
E(U_3) = p_S(s_1) \cdot u_{3,1} + p_S(s_2) \cdot u_{3,2} = 0,8 \cdot 0,6 + 0,2 \cdot 0,7 = 0,62
\]

\(E(U_i)\) är den förväntade nytta om alternativ \(i\) väljs, \(p_S(s_j)\) är sannolikheten att ägget har tillståndet \(j\) och \(u_{ij}\) är nytta för beslutsfattaren om konsekvens \(o_{ij}\) inträffar.

Som illustreras i beräkningarna ovan är alternativ 2 (a2), d.v.s. alternativet där ägget först knäcks i skål för inspektion, det bästa enligt MEU-principen.

2.2.3. Kritik mot den klassiska bayesianska beslutsteorin

Den så kallade Ellsbergs paradox² (se exempelvis Gärdenfors & Sahlin 1988b) innebär att en person skall göra två val mellan två alternativ. Beslutssituationen presenteras på följande vis: en boll skall dras ur en urna som innehåller 30 röda bollar och 60 svarta eller gula bollar där förhållandet mellan antal svarta och antal gula bollar är okänd. Om man väljer det första alternativet (a₁) erhåller man 100$ om man drar en röd boll från urnan, annars får man ingenting. Om man väljer det andra alternativet (a₂) erhåller man 100$ om man drar en svart boll annars får man ingenting. Under samma förhållanden som det första valet skall man även göra ett andra val mellan alternativen a₃ och a₄. Om man väljer a₃ erhåller man 100$ om en röd eller gul boll dras från urnan, annars ingenting; om man väljer a₄ får man 100$ om man drar en svart eller gul boll, annars får man ingenting. Beslutssituationen kan illustreras med beslutsmatrisen i Tabell 2.

<table>
<thead>
<tr>
<th></th>
<th>Röd</th>
<th>Svart</th>
<th>Gul</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>100$</td>
<td>0$</td>
<td>0$</td>
</tr>
<tr>
<td>a₂</td>
<td>0$</td>
<td>100$</td>
<td>0$</td>
</tr>
<tr>
<td>a₃</td>
<td>100$</td>
<td>0$</td>
<td>100$</td>
</tr>
<tr>
<td>a₄</td>
<td>0$</td>
<td>100$</td>
<td>100$</td>
</tr>
</tbody>
</table>

I undersökningar där personer har fått ta ställning till valen mellan a₁ och a₂ samt a₃ och a₄ har det visat sig att de flesta föredrar a₁ framför a₂ och a₄ framför a₃. Dessa val bryter mot ”The sure-thing principle” eftersom det enda som skiljer valsituationerna är de 100$ som man erhåller om en gul boll blir resultatet av dragningen.

Slutsatsen av Ellsbergs paradox är att människor verkar ta hänsyn till kvaliteten eller tillförlitligheten i kunskapen om hur sannolika de olika tillstånden är. Detta innebär att det är skillnad mellan om en person vet att en konsekvens kommer att realiseras med sannolikheten 0,5 och om han/hon tror att den kommer att realiseras med en sannolikhet som är mellan 0,4 och 0,6. Enligt det bayesianska sättet att tolka beslutssituationer skall beslutsfattarens uppfattning angående hur troliga de olika framtida tillstånden är kunna representeras med en sannolikhet för varje tillstånd. Kvaliteten i dessa sannolikheter skall inte påverka beslutet, vilket det enligt Ellsbergs paradox gör.

Ellsbergs paradox behöver dock inte innebära att principen att maximera den förväntade nyttan är ”felaktig” för en normativ teori rörande beslutsfattande. Försöken tyder bara på att personerna i undersökningarna inte fattar beslut enligt axiomen. Raiffa (1968) uttrycker det som följer:

“But no one claims that most people do behave as they ought to behave. Indeed, the primary reason for the adoption of a prescriptive or normative theory (that is, an “ought to do” theory) for choice behaviour is the observation that when decision making is left solely to unguided judgement, choices are often made in an internally inconsistent fashion, and this indicates that perhaps the decision maker could do better than he is doing. If people always behaved as this prescriptive theory says they ought to, then there would be no reason to make a fuss about a prescriptive theory. We could then just tell people, ‘Do what comes naturally.’ ” (Raiffa, 1968)

² Ellsbergs paradox redovisades först i Ellsberg (1961).
De normativa teorier som diskuteras här bör inte uppfattas som rättessnören för beslutsfattare i den meningen att dessas beslut betraktas som felaktiga om de inte följer axiomen. Ett bättre sätt att se dem är att betrakta dem som hjälpmedel då svåra beslut skall fattas och uppfatta de resultat som teorierna ger endast som rekommendationer.


"There are many ad hoc schemes that can be found in the literature but, to our mind, no proposal other than maximization of expected utility withstand the scrutiny of careful examination.” (Keeney & Raiffa, 1976)

I den här rapporten kommer beslutskriteriet att maximera den förväntade nyttan att användas, men det kommer att modifieras något med hänsyn till hur det används i den klassiska bayesianska beslutsteorin. Anledningen till detta är att i en situation där man vill veta om det är lämpligt att investera i ett specifikt brandskyddssystem eller ej, är det ofta svårt att exakt skatta sannolikheter för exempelvis att personalen släcker en brand. Detta innebär att det är en fördel att tillåta icke-precisa sannolikheter och konsekvenser i en analys, eftersom man ju då inte behöver ange mer än vad man egentligen känner till om sannolikheten eller konsekvensen. Icke-precisa sannolikheter och konsekvenser kommer att behandlas i avsnitt 2.4.

Detta innebär att en liten förändring gentemot den klassiska bayesianska beslutsteorin måste göras, nämligen att man inför betingad beräkning av förväntad nytta.

Jeffrey (1983) använder begreppet ”conditional expected utility” (CEU), vilket innebär att den förväntad nytta med de olika alternativen i en valsituation beräknas givet att det aktuella alternativet valts. Den betingade förväntade nytta med ett alternativ kan uttryckas som i ekvation [2.3].

\[
CEU(a_i) = P(s_j | a_i) \cdot u(o_{i,j}) + P(s_2 | a_i) \cdot u(o_{i,2}) + \cdots + P(s_j | a_i) \cdot u(o_{i,j})
\]  

[2.3]

Det bästa alternativet skulle i detta fallet vara det som maximerar den betingade förväntade nytta.

### 2.3. Nyttofunktioner

Två personer med olika ekonomiska förutsättningar, exempelvis en miljonär och en mycket fattig person, som ställs inför en beslutssituation där konsekvenserna är av ekonomisk karaktär kommer att värdera dessa konsekvenser olika. En förlust på exempelvis 5000 kronor betyder i princip ingenting för en miljonär, men för den fattige kan detta vara en katastrof. För att ta hänsyn till detta i en beslutsmodell används ofta så kallade nyttofunktioner, och dessa funktioner kan användas för att översätta ett monetärt utfall till nytta. Nyttofunktioner existerar även för andra konsekvenser än monetära, men de monetära konsekvenserna används här som exempel för att visa användningen av nyttofunktioner.

Om man ser nytta som funktion av monetära konsekvenser av osäkra situationer torde det vara rimligt att nyttovärdena blir större då de monetära konsekvenserna blir högre (positiva monetära konsekvenser). Det är dock inte självklart vilket utseende kurvan skall ha: skall den vara konkav, konvex eller kanske rak? Utseendet på kurvan bestämmer hur en beslutsfattare fattar beslut, eller rättare sagt, hans/hennes värdering av allvarliga konsekvenser i förhållande till lindriga. Figur 4 visar tre typer av nyttofunktioner som brukar användas för att karaktärisera en beslutsfattares inställning till risk.

**Figur 4 Illustration av typer av nyttofunktioner.**

Den riskneutrale beslutsfattaren fattar alltid sina beslut med utgångspunkt från det förväntade monetära värdet av en osäker situation. Detta innebär att om det förväntade värdet av en osäker situation är positivt kommer personen i fråga att vilja utsätta sig för den osäkra situationen. En person som karaktäriseras som riskundvikande väljer alltid
att erhålla det förväntade monetära värdet av en osäker situation i stället för att utsätta sig för osäkerheten att delta i situationen. En person som betecknas som risksökande accepterar aldrig det förväntade monetära värdet av en osäker situation utan vill i stället delta i den osäkra situationen. Om man vill beskriva detta beteende med en nyttofunktion avslöjar formen på kurvan om man är riskundvikande, risksökande eller riskneutral. En konkav kurva (se Figur 4) betyder att personen är risksökande och en konvex kurva att personen är riskundvikande, medan en rak kurva tyder på riskneutralitet.

Tidigare i kapitlet då en beslutsfattare skulle ange nyttovärden för olika typer av konsekvenser skedde detta helt subjektivt, d.v.s. det var upp till beslutsfattaren att tilldela alla konsekvenser ett värde som representerade hans/hennes preferenser. Nyttofunktioner innebär en förenkling för beslutsfattaren; i stället för att behöva bedöma varje konsekvens räcker det med att formen på nyttofunktionen bestäms, varefter nyttan med alla utfall kan beräknas. Nyttofunktionen är alltså ett sätt att hjälpa beslutsfattaren att fatta bättre beslut.

För att bestämma en beslutsfattarens nyttofunktion kan så kallade referenslotterier användas. Referenslotterier innebär att beslutsfattaren får svara på frågor angående sitt agerande i en rad olika osäkra lotterier. Exempelvis kan ett referenslotteri som illustreras i Figur 5 användas.

![Referenslotteri](image.png)

**Figur 5** Ett referenslotteri för att bestämma en beslutsfattares nyttofunktion.

I figuren framgår att beslutsfattaren har att göra ett val mellan två alternativ (1 och 2), där alternativ 1 innebär att beslutsfattaren deltar i ett lotteri där sannolikheten är lika stor att han/hon erhåller 100 tkr som ingenting, nämligen 0,5. Alternativ 2 innebär att beslutsfattaren erhåller en säker summa $x$ tkr, d.v.s. det råder ingen osäkerhet angående beloppet. Referenslotteriet går till så att beslutsfattaren skall bestämma vid vilket belopp $x$ tkr som alternativ 1 och 2 är likvärdiga för honom/henne. Att alternativen är likvärdiga innebär även att beslutsfattaren är beredd att betala $x$ tkr för att få vara med i ett lotteri som utformas enligt alternativ 1. Informationen om vid vilket belopp $x$ som alternativen är likvärdiga kan användas för att fastställa en punkt i nyttofunktionen. Eftersom det är praktiskt att normalera nyttooskalan till mellan 0 och 1 får den sämst konsekvensen (0 tkr) nyttan 0 och den bästa konsekvensen (100 tkr) nyttan 1. Detta är de två första punktarna i nyttofunktionen. Om exempelvis 40 tkr är likvärdigt med alternativ 1 i Figur 5 skulle punkten där nyttan är 0,5 och den monetära konsekvensen 40 tkr kunna markeras och sammanbindas med de övriga punkterna som ingår i nyttofunktionen (se Figur 6). Anledningen till att nyttan är 0,5 i just den punkten är att den förväntade nyttan i alternativ 1 är 0,5, och eftersom alternativen bedöms som likvärdiga är alltså nyttan av alternativ 2 också 0,5. Det belopp som är likvärdigt med en
osäker situation, till exempel lotteriet ovan, kallas för lotteriets ”certainty equivalent” (CE). Detta är alltså det monetära belopp som är likvärdigt med en osäker situation.

![Illustation av den nyttofunktion som skapats med hjälp av referenslotteriet i Figur 5.](image)

Med den typ av referenslotterier som presenterats ovan kan man fortsätta att resonera sig fram till hur nyttofunktionen för en beslutsfattare ser ut. Nästa referenslotteri skulle till exempel kunna vara en vinst på 100 tkr med sannolikheten 0,5 eller en vinst på 40 tkr med sannolikheten 0,5, vilket illustreras i Figur 7. Om beslutsfattaren anser att 70 tkr är likvärdigt med detta lotteri skulle den fjärde punkten (0 räknas som en punkt) i Figur 6 kunna ritas ut. Utseendet på kurvan har den jämnats ut något för att inte bli så hackigt.

![Diagram av Referenslotteri för att bestämma en beslutsfattares nyttofunktion.](image)

Det kan vara ganska tidsödande att ta fram en nyttofunktion, vilket innebär att det kan vara klokt att använda en funktion som styrs av en eller ett par parametrar. Ett exempel på en nyttofunktion vars utseende bestäms av en parameter är den exponentiella nyttofunktionen. Den exponentiella nyttofunktionen kan skrivas som ekvation [2.4], där \( U(x) \) är nytta med det monetära utfallet \( x \) och \( R \) är risktoleransen (Clemen, 1996).

\[
U(x) = 1 - e^{-x/R}
\]  

[2.4]

Formen på denna nyttofunktion styrs helt av värdet på \( R \), vilket beskriver hur riskundvikande beslutsfattaren är. Ett högt värde på \( R \) innebär att funktionen nästan är rak, d.v.s. nära riskneutral, och ett lågt värde innebär att kurvan böjer sig ganska snabbt. Den exponentiella nyttofunktionen är bra för att modellera beslut under osäkerhet, och det finns åtminstone två skäl att använda den; dels är den lätt att hantera därför att dess utseende styrs av endast en parameter, dels har den visat sig stämma väl överens med beslutsfattares preferenser (Howard, 1988).

![Figur 8 Nyttofunktion för Avesta Sheffield i intervallet 0 till 1000 mkr.](image)

Avesta Sheffields nyttofunktion är nästan linjär i området som ligger under ca 200, vilket innebär att Avesta Sheffields riskattityd, för små summor (under ca 200 mkr), är neutral. Om omsättningen i företaget varit mindre, eller om ett mindre företag använts som exempel, hade området i vilket företaget betecknas som riskneutralt varit mindre.

Om man skall använda nyttofunktioner i praktiskt beslutsfattande avseende brandskydd verkar det finnas goda skäl att välja en exponentiell nyttofunktion: funktionen är enkel eftersom den endast styrs av en parameter och det har kunnat konstateras att den stämmer väl överens med hur beslutsfattare i företag verkligens fattar beslut (Howard, 1988).

### 2.4. Osäkra skattningar

Oftast kan det vara svårt för en beslutsfattare att ange ett exakt värde på en sannolikhet. Det kan helt enkelt vara svårt att uttrycka sin uppfattning angående en framtid osäker händelse med ett exakt numeriskt värde. Detta torde också gälla då konsekvenserna för vissa händelser skall uttryckas, d.v.s. det kan till exempel vara svårt att känna till de ekonomiska konsekvenserna av en viss olycka, även om olyckans omfattning är klart definierad.

**2.4.1. Osäkerhetsanalys**

Ett sätt att hantera problemet med att ange icke exakta sannolikheter och konsekvenser är att utföra känslighetsanalyser och osäkerhetsanalyser. Detta innebär att en modell enligt den klassiska bayesianska beslutsteorin används, men i stället för att man nöjer sig med att skatta ett enda värde på sannolikhet och konsekvens skattar man flera värden för en parameter (sannolikhet eller konsekvens). Skattningen kan till exempel anges som ett intervall eller som flera exakta värden. För att ange ett mått på hur säker man är på skattningsen av ett specifikt sannolikhetsvärde använder man andra ordningens sannolikheter. Detta innebär att en specifik sannolikhet (exempelvis sannolikheten att personalen släcker branden) kan ha flera värden, exempelvis 0,3, 0,4, 0,5, 0,6 eller 0,7. För dessa värden definierar man en andra ordningens sannolikhetsfördelning, som beskriver hur tillförlitliga de olika värdena är. Till exempel kanske man anser att sannolikheten att släckte stöd ovan troligtvis har värdet 0,5 och därför får detta värde en hög tillförlitlighet, d.v.s. en hög andra ordningens sannolikhet. Eftersom man även anser att det är möjligt att sannolikheten är 0,4 eller 0,6 anger man en ganska stor tillförlitlighet för dessa värden, medan värdena 0,3 och 0,7 har liten tillförlitlighet. Tillförlitligheten hos de olika värden för sannolikheten att personalen släcker branden (P(Släck)) skulle kunna illustreras genom sannolikhetsfördelningen i Figur 9.
Eftersom man använder flera olika värden på sannolikheter och konsekvenser kan också den förväntade nyttan med ett alternativ ha olika värden. Tillförlitligheten i de olika värdena för den förväntade nyttan kan beskrivas på samma sätt som för sannolikheter och konsekvenser, d.v.s. genom en sannolikhetsfördelning. I praktiska tillämpningar erhåller man denna sannolikhetsfördelning genom Monte Carlo-simulering.

I den klassiska bayesianska beslutsteorin används, vilket diskuterats tidigare i rapporten, beslutskriteriet att välja det alternativ som maximerar den förväntade nyttan. När man modifierar den klassiska bayesianska beslutsteorin genom att tillåta flera olika värden på sannolikheter och konsekvenser måste detta beslutskriterium också modifieras eftersom det kan förekomma flera värden på den förväntade nyttan för ett alternativ. Ett beslutskriterium som är lämpligt i detta sammanhanget är det så kallade Reliability Weighted Expected Utility-kriteriet (RWEU-kriteriet) (Hansson, 1991). RWEU-kriteriet innebär att tillförlitligheten i värdena för alla sannolikheter och konsekvenser skattas genom en sannolikhetsfördelning. Ur denna sannolikhetsfördelning härleds sedan ett värde som får representera parameter. Det värde som används är ett viktat medelvärde av de olika möjliga sannolikhetsvärdena; de vikter som används är de tillförlitlighetsvärden som skattats för värdena. För exemplet i Figur 9 skulle till exempel värdet 0,5 användas eftersom 0,1 * 0,05 + 0,2 * 0,4 + 0,5 * 0,5 + 0,2 * 0,6 + 0,7 * 0,05 = 0,5. Då denna beräkning genomförts för alla sannolikheter och konsekvenser som betraktas som osäkra används de framräknade värdena i en klassisk bayesiansk beslutsanalys och det alternativ som har den högsta förväntade nyttan betraktas som det bästa alternativet.

Det är inte bra att använda RWEU-kriteriet då två alternativ är mycket lika varandra. Detta beror på att i detta fall kan, då alternativen jämförs, en liten förändring av tillförlitligheten av vissa värden resultera i att rekommendationen för beslutet ändras helt. Som illustration kan följande exempel användas:

Antag att två brandskyddsalternativ jämförs och att tillförlitligheten i olika värden för skillnad i förväntad nytta mellan alternativen kan beskrivas med sannolikhetsfördelningen i Figur 10. Det värde som skulle erhållits om RWEU-kriteriet användes har markerats med en streckad linje i figuren. Ur figuren framgår att RWEU-kriteriet skulle rekommendera alternativ 1 eftersom den förväntade nytta är positiv, men om man betraktar hela fördelningen så ser man att för lite mindre än hälften av alla
kombinationer av möjliga sannolikhetsvärden och konsekvenser har alternativ 2 den högsta förväntade nytan. Detta betyder att en liten ändring i skattningarna av tillförlitligheten av de olika värdena i modellen skulle kunna göra att rekommendationen angående vilket alternativ som skall väljas ändrades.

![Diagram](image)

Figur 10 Illustration av en sannolikhetsfördelning som representerar tillförlitligheten i olika värden för skillnaden i förväntad nytta mellan två alternativ \(E(U_1)-E(U_2)\).

För att göra en beslutsfattare uppmärksam på denna typ av situationer är det bra att införa begreppet robusta beslut. Ett beslut betraktas som robust om det alternativ som rekommenderats med RWEU-kriteriet också har den högsta förväntade nytan för de flesta av de möjliga kombinationerna av sannolikhetsvärden och konsekvenser. Vad ”de flesta ” möjliga kombinationer innebär är upp till den enskilda beslutsfattaren att bestämma, men i denna rapport används 95% som ett lämpligt värde. Detta innebär att om 95% av sannolikhetsmassan i den fördelning som representerar skillnaden i förväntad nytta mellan två alternativ (t.ex. Figur 10) är placerad över eller under 0, är beslutet robust.

I praktiken kommer analysen som precis beskrivits troligtvis att genomföras med hjälp av Monte Carlo-simulering. Detta innebär att de osäkra parametrarna (sannolikhet och konsekvens) beskrivs med hjälp av sannolikhetsfördelningar. Sedan gör man ett antal simuleringar, kanske 5000, där skillnaden i förväntad nytta beräknas. Vid varje simulering får de olika osäkra parametrarna slumpmässigt nya värden i enlighet med de fördelningar som antagits. Detta innebär att resultatet blir ett antal olika beräkningar av skillnaden i förväntad nytta och om dessa sammanställs till ett histogram får man en approximation av sannolikhetsfördelningen för skillnaden mellan det förväntade värdet av de båda alternativen. Detta histogram kan sedan användas för att avgöra huruvida ett av alternativen är bättre i 95% av simuleringarna eller ej. Om detta är fallet betraktas beslutet som robust, annars inte.

**2.4.2. Maximin-kriteriet för förväntad nytta**

I metoden anser man att det för en och samma sannolikhet kan finnas flera möjliga värdén. Ju mer sannolikt ett värde är, desto högre epistemisk tillförlitlighet har det. Epistemisk tillförlitlighet är ett sätt att beskriva beslutsfattarens uppfattning om vilka sannolikhetsvärdén som är mest troliga. Antag till exempel att en beslutsfattare skall skatta sannolikheten att en övertändning uppkommer i ett specifikt rum, givet att en brand uppkommit ($P(S_1)$). Om beslutsfattaren tvingades välja endast ett värde (det klassiska bayesianska synsättet) skulle han/hon välja 0,5, men eftersom sannolikheten är svår att skatta är han/hon osäker. Om beslutsfattaren fick visa vilka värdén som han/hon bedömer som sannolikast, d.v.s. vilka värdén som enligt honom/henne har högst epistemisk tillförlitlighet, skulle detta kunna se ut som Figur 11, där $\rho$ symboliserar den epistemiska tillförlitligheten. Figur 11 visar att personen anser att värdet 0,5 har högst epistemisk tillförlitlighet men att det även finns andra värdén som är möjliga.

Om en annan person skulle bedöma samma sannolikhet skulle figuren för den epistemiska tillförlitligheten troligtvis se annorlunda ut. Till exempel skulle den kunna se ut som Figur 12. Vad innebär skillnaden mellan bedömningen av sannolikheten i Figur 11 respektive Figur 12? Figur 11 innebär att personen som gjort denna skattning är säkrare på att sannolikhetsvärdet är någonstans i närheten av 0,5, medan personen som gjort skattningen i Figur 12 är osäkrare eftersom det finns värdén som har relativt hög epistemisk tillförlitlighet inom ett större intervall.
Maximin-metodens sätt att betrakta sannolikheter har stora likheter med RWEU-metoden som beskrevs i förra avsnittet; i båda sätten har beslutsfattaren en uppfattning om vilka värden på den aktuella sannolikheten som är mer sannolika än andra.

Så här långt finns det alltså vissa likheter mellan RWEU-metoden och Gärdensfors och Sahlins metod, men när det gäller reglerna för val av alternativ skiljer de sig åt. I RWEU-metoden, som den beskrivits i denna rapport, hanteras osäkerheten rörande rätta sannolikhetsvärden genom exempelvis Monte Carlo-simulering, där de sannolikheter som i högst grad påverkar beslutet varieras i enlighet med de statistiska fördelningarna som beskriver dem. Detta resulterar i en fördelning för den förväntade nyttan, vilken sedan kan jämföras med fördelningar för den förväntade nyttan i andra alternativ.

När det gäller Maximin-kriteriet för beslutsanalys behövs inga Monte Carlo-simuleringar, utan beslutsfattaren börjar med att välja ett \( \rho \)-värde som representerar den minsta epistemiska tillförlitligheten som ett sannolikhetsvärde kan ha för att användas i beslutsanalysen. Ju högre \( \rho \)-värde han/hon väljer, desto färre antal möjliga sannolikhetsvärden beaktas i analysen, vilket illustreras i Figur 11 och Figur 12 där samma \( \rho \)-värde har valts i båda figurerna (\( \rho_1 \)). Detta innebär att personen som skattat Figur 11 kommer att beakta sannolikhetsvärden från ett mindre intervall än personen som skattat Figur 12. Intervallet inom vilket sannolikhetsvärden beaktas syns i figuren som tjocka linjer längs den horisontella axeln. Vilka sannolikhetsvärden som betraktas som möjliga beror alltså inte bara av \( \rho \)-värdet utan också av utformningen av den fördelning som beskriver beslutsfattarens tro angående vilka värden som är mest sannolika, d.v.s. den epistemiska tillförlitligheten i skattningen. En fördelning som är samlad i ett mindre område (Figur 11) innebär att personen är säkrare på sin skattning av sannolikheten än om fördelningen är mer utspridd som exempelvis i Figur 12.

I Gärdensfors & Sahlin (1988a) beskrivs inte explicit hur \( \rho \)-värdet skall väljas. En diskussion förs i stället om att de möjliga sannolikheter skall reduceras "with a 'satisfactory' degree of epistemic reliability". Modellen för vilka sannolikheter som skall beaktas kan, om den epistemiska tillförlitligheten sätts till sitt högsta värde, bli endast ett värde per tillstånd. Detta är samma situation som då den klassiska
bayesianska beslutsteorin används. Om den epistemiska tillförlitligheten i stället antas ha det lägsta värdet, d.v.s. $p_0$ i Figur 11 och Figur 12, kommer samtliga sannolikhetsvärden att beaktas. Denna typ av angreppssätt för att fatta beslut brukar kallas för "'decision making under ignorance' " Gärdenfors & Sahlin (1988a).


Exemplet handlar om person X som har blivit erbjuden att delta i vadslagning vid tre tennismatcher. I match A känner person X mycket väl till båda spelarna, han/hon vet resultatet från deras tidigare matcher, han/hon känner till deras dagsform o.s.v. Han/hon bedömer att sannolikheten att den spelare som börjar serva vinner matchen är lika stor som sannolikheten att den som inte börjar serva vinner, d.v.s. 0,5. I match B känner person X inte till någonting angående spelarna, han/hon har aldrig hört talas om dem förrut, han/hon har aldrig sett dem spela, o.s.v. Då han/hon skall bedöma sannolikheten att spelaren som börjar serva vinner matchen blir bedömningsen 0,5. I match C vet person X lika lite om spelarna som i match B, men innan matchen har börjat råkar han/hon höra att en av spelarna är otroligt mycket bättre än den andra spelaren, som är en ren amatör. Olyckligtvis lyckas han/hon inte uppfatta vem av spelarna som är den bättre, varför sannolikhetsskattningen att spelaren som börjar serva också vinner matchen även i detta fallet blir 0,5.

Exemplet visar alltså att sannolikhetsskattningarna för att personen som börjar serva vinner matchen är lika, nämligen 0,5. Person X:s kunskap om de olika spelarnas chanser är dock helt olika. I match A är han/hon säker på sin skattning, och han/hon skulle om någon frågade honom/henne huruvida skattningen inte kan vara 0,7 säkerligen säga att så inte är fallet. I match B är han/hon inte alls säker på sin skattning, och förmodligen skulle han/hon på frågan huruvida inte sannolikheten skulle kunna vara 0,7 svara att det kan vara så och att han/hon valde 0,5 bara därför han/hon var tvungen att välja ett värde. I match C skulle person Xs skattning förmodligen vara 0,2 eller kanske 0,8 om han/hon bara vetat vilken av spelarna som var den bättre, men eftersom han/hon inte vet det blir det naturligt att även denna gång skatta värdet 0,5 för sannolikheten att personen som börjar serva vinner matchen.

Nu erbjuds person X att delta i vadslagning rörande de tre tennismatcherna A, B och C. Om person X lyckas gissa rätt vinnare i matchen får han/hon $30 och om han/hon gissar fel förlorar han/hon $20. I match A är person X ganska säker på sin skattning av sannolikheten 0,5 att personen som börjar serva vinner, vilket betyder att tillförlitligheten i skattningen är hög. Alltså blir intervallet för vilka sannolikheter som skall beaktas inte särskilt stort. I detta exempel antas det att intervallet är så smalt att värdet 0,5 kan representera hela intervallet. Om dessutom det monetära utfallet är likvärdigt med nyttan kan den förväntade nyttan med vadet beräknas som $5 enligt
ekvation [2.5], och eftersom den förväntade nyttan med att inte anta vadet är 0 skall person X enligt beslutsregeln att maximera den minsta förväntade nyttan anta vadet. Tillståndet att speleren som börjar serva också vinner matchen benämns $s_1$ och det att han inte vinner benämns $s_2$.

\[ E(U_{A,1}) = P_1(s_1) \cdot u_{1,1} + P_1(s_2) \cdot u_{1,2} = 0,5 \cdot 30 + 0,5 \cdot (-20) = 5 \]  

[2.5]

I match B är tillförlitligheten i skattningen mindre, vilket betyder att flera värden för sannolikheten att speleren som börjar serva vinner matchen måste beaktas. Person X väljer att beakta tre olika sannolikheter. Hur många värden som används beror av vilken nivå av epistemisk tillförlitlighet som han/hon väljer att beakta, d.v.s. hur stor risk han/hon är villig att ta att han/hon utesluter något möjligt sannolikhetsvärde. Person X:s val innebär att han/hon betraktar tre fördelningar för utgången av matchen ($P_1$, $P_2$ och $P_3$), d.v.s. fördelningen där summan av sannolikheten att speleren som börjar serva också vinner matchen ($s_1$) och sannolikheten att speleren som börjar serva inte vinner matchen ($s_2$) är 1. De tre fördelningarna, som kallas $P_1$, $P_2$ och $P_3$, är tvåpunktsfördelningar där $P_1$ är samma som i match A, d.v.s. lika stor sannolikhet att $s_1$ resp. $s_2$ inträffar, $P_2(s_1) = 0,25$ och $P_2(s_2) = 0,75$ samt $P_3(s_1) = 0,75$ och $P_3(s_2) = 0,25$ (fördelningarna illustreras i Figur 13).

![Figur 13](image_url)

Figur 13 Illustration av de tre möjliga sannolikhetsfördelningarna för vadslagningen i match B.

Det förväntade monetära utfallet (nyttan) för de tre fördelningarna beräknas enligt ekvationerna [2.6], [2.7] respektive [2.8]. I dessa ekvationer innebär $E(U_{B,1})$ den förväntade nyttan i match B räknat med den första uppsättningen sannolikheter.

\[ E(U_{B,1}) = P_1(s_1) \cdot u_{1,1} + P_1(s_2) \cdot u_{1,2} = 0,5 \cdot 30 + 0,5 \cdot (-20) = 5 \]  

[2.6]

\[ E(U_{B,2}) = P_2(s_1) \cdot u_{1,1} + P_2(s_2) \cdot u_{1,2} = 0,25 \cdot 30 + 0,75 \cdot (-20) = -7,5 \]  

[2.7]

\[ E(U_{B,3}) = P_3(s_1) \cdot u_{1,1} + P_3(s_2) \cdot u_{1,2} = 0,75 \cdot 30 + 0,25 \cdot (-20) = 17,5 \]  

[2.8]

---

3 Ordet risk kan ha många olika betydelser. I detta sammanhang avses risk ett värde mellan 0 och 1 där 0 innebär att alla möjliga sannolikhetsvärden beaktas i besluten och ett högt värde att endast ett fåtal av de möjliga sannolikhetsvärdena beaktats (Gärdenfors & Sahlin, 1988a). Vid högre risk har alltså fler möjliga sannolikhetsvärden uteslutits ur analysen.
2. Beslutsanalys

Av ekvationerna framgår att det förväntade monetära utfallet är $5, $-7,5 eller $17,5 beroende på vilken uppsättning sannolikheter som används. Om alternativet att delta i vadet skulle jämföras med att inte delta (monetärt utfall = 0) skulle maximin-kriteriet rekommendera att person X inte deltar i vadet eftersom den minsta förväntade nyttan är mindre än 0 (vilket är den förväntade nyttan då person X avstår).

Om person X hade valt att ta en högre risk och uteslutit $P_2$ och $P_3$ från den uppsättning fördelningar som beaktats när han/hon fattat sitt beslut hade match $B$ varit identisk med match $A$, och alltså hade person X i det fallet deltagit i vadet.

Om en liknande analys genomförs för match $C$ skulle den givit att person X bör avstå från vadet även där, eftersom det är troligt att någon av sannolikhetsuppsättningarna skulle innehållit en låg sannolikhet för vinst och en hög för förlust. Detta skulle i så fall medföra att den minsta förväntade nyttan även i detta fall var mindre än 0.

Gärdenfors & Sahlin teori som presenterats ovan ger möjlighet att även ta hänsyn till tillförlitligheten i sannolikhetsskattningar, d.v.s. till hur mycket relevanta fakta som ligger bakom skattningarna. Att tillämpa denna metod inom beslutsfattande angående brandskydd kommer dock troligtvis att bli alltlöft betungande rent praktiskt beroende på att de händelseträd som används är mycket stora. För att göra metoden praktisk skulle ett stöd i form av lätt hanterlig programvara behövas. I så fall skulle metoden troligtvis kunna utgöra ett bra hjälpmedel, särskilt om programmet tillåter att den epistemiska tillförlitligheten varierades i realtid. En variant av metoden som är praktiskt användbar är att använda konservativa värden på osäkra parametrar. För tillämpningar inom brandskydd skulle konsekvensen bli att exempelvis sannolikheten att ett sprinklersystem släcker en brand inte skattas som 0,95, vilket bedöms som det mest troliga värdet, utan som 0,8, vilket bedöms som det minsta möjliga värdet. Tillämpningen innebär alltså en konservativ beräkning av den förväntade nyttan med alternativet.

2.4.3. Hypermjuk beslutsteori

En annan metod som kan användas då det är svårt att ange exakta sannolikheter och konsekvenser är den hypermjuka beslutsteorin (Supersoft Decision Theory, SSD). SSD tillåter en beslutsfattare att uttrycka både sannolikheter och konsekvenser på ett oprecist vis. Exempelvis kan uttalanden som ”Konsekvens $o_{1,1}$ är bättre än $o_{1,2}$” eller ”Sannolikheten att konsekvens $o_{1,1}$ inträffar är större än 0,5” användas när man genomför en beslutsanalys. Fördelen med att inte behöva ange exakta värden är att beslutsfattaren inte tvingas uppnå mer information angående en parameter än vad han/hon egentligen känner till. Dessutom kan det vara svårt att ange ett exakt värde, och det är då en fördel att kunna ange ett mycket brett intervall som man med säkerhet vet innesluter värdet. SSD lämpar sig alltså för beslut där mycket lite information finns att tillgå; till exempel har SSD använts för beslutsanalys av var Sveriges kärnavfall skall placeras (Malmnäs, 1993), för val av programmeringsspråk (Malmnäs, 1995) och för rekommendation av medicinsk behandling (Malmnäs, 1995).

Tre beslutskriterier används i SSD: Min(E(U)), Max(E(U) och Medel(E(U)), d.v.s. för två alternativ jämförs den minsta förväntade nyttan, den största förväntade nyttan och det aritmetiska medelvärdet av den förväntade nyttan. Om ett alternativ är bättre än ett annat enligt dessa tre kriterier klassas alternativet som det bästa av de två.

Figur 14 Illustration av beslutsträdet för installation av sprinklersystem eller ej.

Antag att sannolikheten för att en brand blir stor, d.v.s. totalförstör anläggningen, skattas som mindre än 0,05 under 30 år givet att sprinkler installeras. Skatningen av sannolikheten för en storbrand under systemets livslängd är tilltagen i övertal; förmodligen är sannolikheten mindre än 0,05, varför detta värde skall tolkas som en övre gräns för sannolikheten. Den nedre gränsen för sannolikheten antas vara 0,01.

När det gäller det osprinklade alternativet kommer sannolikheten för en stor brand att vara större. Hur mycket större är svårt att bedöma, men ett högsta värde för sannolikheten för en stor brand då sprinklersystem inte finns installerat bedöms vara 0,15. Det minsta värde som bedöms som realistiskt för sannolikheten att en stor brand inträffar bedöms vara 0,01.

Beslutsmatrisen för detta problem presenteras i Tabell 3. Där framgår att de tillstånd som kan inträffa är antingen att en stor brand uppkommer under 30 år eller att det inte gör det. Alternativen är att antingen investera i ett sprinklersystem eller låta bli. En skillnad med detta beslutsproblem gentemot problemet med omeletten som redovisades i avsnitt 2.2 är att i detta fall påverkar valet av alternativ sannolikheterna för de olika tillstånden. Detta innebär att om man väljer att installera sprinklersystemet påverkas sannolikheten för att en stor brand skall uppkomma, d.v.s. sannolikheten för det första tillståndet.
<table>
<thead>
<tr>
<th>Investera inte i sprinklersystem</th>
<th>Stor brand</th>
<th>Ingen stor brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investera i sprinklersystem</td>
<td>o₁,₁</td>
<td>o₂,₁</td>
</tr>
<tr>
<td></td>
<td>o₂,₂</td>
<td>o₁,₂</td>
</tr>
</tbody>
</table>

En rangordning av konsekvenserna är inte svårt: o₁,₁ är den bästa konsekvensen eftersom den betyder att ingen investering i sprinklersystem görs och att ingen stor brand uppkommer. Den näst bästa konsekvensen är o₂,₁, som är något sämre än o₁,₁ beroende på investeringen i sprinklersystemet. o₂,₁ är klart bättre än o₁,₂ vilken i sin tur är något sämre än o₂,₂.

Denna rangordning av de olika konsekvenserna kan uttryckas med hjälp av nyttovärden som u₁,₁ > u₂,₁ > u₁,₂ > u₂,₂, vilket innebär samma sak som skrevs i textform ovan. Det är också möjligt att uttala sig om skillnaderna i nyttan mellan de olika konsekvenserna. Skillnaden, mätt i nyttovärde, mellan konsekvens o₁,₁ och o₂,₁ bedöms lika som skillnaden mellan o₁,₂ och o₂,₂, d.v.s. u₁,₁ - u₂,₁ = u₁,₂ - u₂,₂. Dessutom kan man uttala sig om hur mycket sämre skillnaden i nyttan är mellan o₂,₁ och o₁,₂ än mellan o₁,₁ och o₂,₁. För dessa konsekvenser antas exempelvis gälla att 20(u₁,₁ - u₂,₁) ≤ u₂,₁ - u₁,₂, d.v.s. man betraktar skillnaden mellan o₂,₁ och o₁,₂ som åtminstone tjugo gånger större än skillnaden mellan o₁,₁ och o₂,₁. Detta innebär att man betraktar skillnaden mellan att ha ett sprinklersystem och att inte ha ett sprinklersystem som åtminstone tjugo gånger mindre än skillnaden mellan att ha ett sprinklersystem och klara sig utan storbränder och att inte ha ett sprinklersystem och drabbas av en storbrand.

För att underlätta en jämförelse införs u₂,₂ = 0, u₁,₂ = x, u₂,₁ = x + y, u₁,₁ = 2x + y. Anledningen till att u₂,₂ = 0 är att detta är den konsekvens som värderas som den sämsta och det är praktiskt att ha nyttoskalan normerad till mellan 0 och 1, varför u₁,₁ = 2x + y = 1 (se även ekvation [2.9]).

\[ 2x + y = 1 \] \hspace{1cm} [2.9]

Det fakta att man betraktar skillnaden mellan o₂,₁ och o₁,₂ som åtminstone tjugo gånger större än skillnaden mellan o₁,₁ och o₂,₁ kan uttryckas som olikhet [2.10].

\[ y > 20x \] \hspace{1cm} [2.10]


\[ y > 0,909 \] \hspace{1cm} [2.11]
I Figur 15 illustreras nyttan med de olika konsekvenserna samt variablenheterna $x$ och $y$.

![Diagram](image)

Figur 15 Illustration av nyttan med de olika konsekvenserna.

När man vill värdera de båda alternativen skall man enligt SSD analysera den förväntade nyttan för de båda alternativen, och eftersom inga exakta värden på sannolikheten och konsekvenser har skattats kan inte heller något exakt värde på den förväntade nyttan anges. Denna måste istället beskrivas som en funktion av sannolikheten och nyttovärdena.

Den förväntade nyttan i båda alternativen kan uttryckas enligt ekvation [2.12] och [2.13], där $E(U_1)$ och $E(U_2)$ är den förväntade nyttan för alternativ 1 (investera i sprinklersystem) respektive 2 (investera inte i sprinklersystem).

$$E(U_1) = p_1 \cdot u_{1,2} + (1 - p_1) \cdot u_{1,1}$$  \hspace{1cm} [2.12] \\
$$E(U_2) = p_2 \cdot u_{2,2} + (1 - p_2) \cdot u_{2,1}$$  \hspace{1cm} [2.13]

För att komma fram till vilket alternativ som är det bästa skall man enligt SSD utvärdera den förväntade nyttan för två alternativ enligt tre kriterier. De tre kriterierna som används för att avgöra vilket av två alternativ som är bäst är:

1. $\max(E(U_1)) - \max(E(U_2))$
2. $\min(E(U_1)) - \min(E(U_2))$
3. $\text{medel}(E(U_1)) - \text{medel}(E(U_2))$

Kriterium 1 innebär en jämförelse mellan de båda alternativens maximala förväntade nyttan, kriterium 2 en jämförelse mellan alternativens minsta förväntade nyttan och kriterium 3 en jämförelse mellan det aritmetiska medelvärdet för den förväntade nyttan av alternativen. Om ett alternativ har ett högre värde enligt alla dessa kriterier betraktas alternativet som det bästa av de två.

Eftersom den förväntade nyttan är en funktion av både sannolikheten och nyttovärden (ekvation [2.12] och [2.13]) kan man börja med att göra utvärderingen med hjälp av sannolikheten, d.v.s. låter konsekvenserna vara uttryckta i form av variabler. Det är också lämpligt att byta ut $u_{1,2}$, $u_{1,1}$, $u_{2,2}$ och $u_{2,1}$ mot kategorier av $x$ och $y$. Hur detta byte sker redovisades tidigare när värdeavstämman mellan konsekvenserna diskuterades (se Figur 15).
Först beräknas alltså \( \max_p(E(U_1)) \), \( \text{medel}_p(E(U_1)) \), \( \min_p(E(U_1)) \), \( \max_p(E(U_2)) \), \( \text{medel}_p(E(U_2)) \), \( \min_p(E(U_2)) \) då 0,01 \( \leq p_1 \leq 0,05 \) och 0,01 \( \leq p_2 \leq 0,15 \). Resultatet blir:

\[
\begin{align*}
\max_p(E(U_1)) &= 0,05x + 0,95 \\
\max_p(E(U_2)) &= 0,99x + 0,99y \\
\min_p(E(U_1)) &= 0,15x + 0,85 \\
\min_p(E(U_2)) &= 0,95x + 0,95y \\
\text{medel}_p(E(U_1)) &= 0,1x + 0,9 \\
\text{medel}_p(E(U_2)) &= 0,97(x+y)
\end{align*}
\]

Man kan se att i samtliga uttryck för \( \max_p \), \( \min_p \) och \( \text{medel}_p \) som redovisas ovan ingår \( x \) som en av variablerna. Det framgår också att om man skall finna exempelvis \( \max(E(U_1)) \) och \( \max(E(U_2)) \) måste \( x \) i det första fallet anta sitt största värde och i det andra fallet sitt minsta värde; det går alltså inte att beräkna \( \max(E(U_1)) - \max(E(U_2)) \) med ett värde om \( x \) skall ha samma värde i båda uttrycken för \( \max \). I stället för att försöka maximera uttrycken för förväntad nytta med avseende på \( x \) och \( y \) uttrycker man differensen mellan alternativen, t.ex. \( \max(E(U_1)) - \max(E(U_2)) \), som funktioner av \( x \) och \( y \).

\textit{Kriterium 1: Max}(E(U))

Först undersöks skillnaden mellan det maximala förväntade värdet av alternativ 1 och det maximala förväntade värdet av alternativ 2 (ekvation [2.14]).

\[
\max(E(U_1)) - \max(E(U_2)) = 0,95 - 0,94x - 0,99y
\]  
[2.14]

Om \( \max(E(U_1)) - \max(E(U_2)) > 0 \) innebär det att det maximala förväntade värdet för alternativ 1 är större än för alternativ 2. Detta kan även uttryckas som olikheten [2.15], vilken har skapats genom kombination av ekvation [2.14] och ekvation [2.9].

\[
0,48 - 0,52y > 0
\]  
[2.15]

För att alternativ 1 skall vara det bästa alternativet enligt kriterium 1 måste \( y \) vara mindre än 0,923 (från olikhet [2.15]). Man vet sedan tidigare, genom antaganden om sannolikhet och nyttovärdet, att \( y \) måste vara större än 0,909 för att det över huvudtaget skall finnas en lösning till problemet. Det framgår alltså att alternativ 1 är det bästa alternativet enligt detta kriterium om \( y \) är mellan 0,909 och 0,923, men att alternativ 2 är det bästa om \( y \) är mellan 0,923 och 1. Det är alltså troligare att alternativ 2 är det bästa, men eftersom man inte kan vara riktigt säker kan man alltså inte uttala sig om kriterium 1.

\textit{Kriterium 2: Min}(E(U))

Om det minsta förväntade värdet för alternativ 1 är större än det minsta förväntade värdet för alternativ 2 (\( \min(E(U_1)) - \min(E(U_2)) \)) gäller olikhet [2.16].

\[
\min(E(U_1)) - \min(E(U_2)) = 0,85 - 0,8x - 0,95y > 0
\]  
[2.16]
Genom att utnyttja ekvation [2.9] kan villkoret för att alternativ 1 skall vara bäst enligt kriterium 2 uttryckas som olikhet [2.17].

\[ 0.45 - 0.55y > 0 \]  

Olikhet [2.17] innebär att \( y \) måste vara mindre än 0,818 för att alternativ 1 skall vara det bästa enligt kriterium 2. Eftersom \( y \) enligt olikhet [2.11] inte kan vara mindre än 0,909 innebär detta att alternativ 2 är bäst enligt kriterium 2.

**Kriterium 3: Medel(\( E(U) \))**

Om alternativ 1 är bättre än alternativ 2 avseende det tredje kriteriet gäller olikhet [2.18].

\[ \text{medel}( E(U_1)) - \text{medel}( E(U_2)) = 0.9 - 0.87x - 0.97y > 0 \]  

Genom att utnyttja ekvation [2.9] kan villkoret formuleras som olikhet [2.19].

\[ 0.465 - 0.535y > 0 \]  

Olikhet [2.19] innebär att \( y \) måste vara mindre än 0,869 för att alternativ 1 skall vara det bästa enligt kriterium 3. Eftersom \( y \) måste vara större än 0,909 (enligt olikhet [2.11]) innebär detta att alternativ 2 är det bästa enligt kriterium 3.

Resultaten från denna beräkningsomgång sammanfattas i Tabell 4. Där framgår att \( y \) begränsas av antagandena till att vara mer än 0,909. I tabellen syns också hur stort \( y \) måste vara för att alternativ 2 skall vara det bästa enligt de olika kriterierna. Som synes är det bara enligt kriterium 1 som det inte går att dra slutsatsen att alternativ 2 är bättre än alternativ 1.

**Tabell 4 Gränser för parametern \( y \).**

<table>
<thead>
<tr>
<th>Begränsning av ( y ) från antaganden</th>
<th>( y )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativ 2 bäst enligt kriterium 1</td>
<td>&gt; 0,923</td>
</tr>
<tr>
<td>Alternativ 2 bäst enligt kriterium 2</td>
<td>&gt; 0,818</td>
</tr>
<tr>
<td>Alternativ 2 bäst enligt kriterium 3</td>
<td>&gt; 0,869</td>
</tr>
</tbody>
</table>

Informationen i Tabell 4 illustreras också i Figur 16 där det framgår att alternativ 2 är det bästa för alla kriterier utom det första. I figuren kan man också se att om den nedre begränsningen av \( y \) flyttas uppåt (över 0,923) kommer alternativ 2 även att vara det bästa enligt kriterium 1.
Eftersom inte alla kriterier ger att alternativ 2 är det bästa kan man fortsätta analysen genom att titta på hur mycket större y måste vara än x för att alla kriterier skall visa att alternativ 2 är det bästa alternativet.

Genom att utnyttja att y måste vara större än 0,923 för att alternativ 2 skall vara det bästa även enligt kriterium 1 kan man erhålla att y måste vara ungefär 25 gånger större än x för att detta skall vara uppfyllt. Att y är 25 gånger större än x är inte speciellt mycket mer än den skillnad mellan y och x som användes från början (y var då mer än 20 gånger större än x), vilket innebär att ökningen i skillnad mellan x och y borde kunna accepteras; om man kan acceptera det är det bättre att investera i ett sprinklersystem än att inte göra det.

Det kan tyckas att det krävs mycket beräkningar för att lösa ett så enkelt exempel som det som precis presenterats. Det är dock inte tänkt att man skall behöva göra alla beräkningar för hand, utan detta skall skötas av ett datorprogram; i så fall kommer SSD att kunna utgöra ett bra verktyg att ta till när man vill kunna analysera situationer där man har dåligt med information. Detta skulle exempelvis kunna utgöra ett sätt att, i ett tidigt skede av beslutsprocessen, komma fram till vilka investeringsalternativ som skall utredas vidare.

Beräkningarna för problemet som precis presenterats redovisas också i bilaga 1.

### 2.5. Beslutsproblem med flera mål

Hittills i kapitlet har konsekvens o och nytta u använts generellt. Det har framgått att en beslutsfattares preferenser angående ett antal konsekvenser uttrycks via nyttovärdena, och dessa preferenser ligger sedan till grund för vilket alternativ som enligt de normativa teorierna är det bästa. Om det är så att de olika alternativen, givet ett tillstånd $s_n$, inte ger upphov till en konsekvens utan flera kan det uppkomma problem med värderingen av konsekvenserna. Detta kan till exempel inträffa vid beslutsproblem med flera mål, exempelvis då en föreslagen brandcellsuppdelning stör den ordinarie verksamheten i en byggnad. Då kan uppdelningen av en industri i flera brandceller innebära att flexibiliteten vad gäller förflyttning av material mellan två områden i anläggningen minskas. I detta enkla fall innebär ett alternativ att industrin behålls i den utformningen som den har, och ett annat att en brandcellsgräns uppförs så att inte hela verksamheten är placerad i en och samma brandcell. Då konsekvenserna av dessa alternativ skall värderas kan det vara så att förväntad skadekostnad är en parameter som
värderas, men det kan också vara så att flexibiliteten skall finnas med i värderingen eller att säkerheten för de anställda skall värderas på något sätt. Det är förmodligen lättare att hitta mer komplicerade beslutssituationer inom andra områden än brandskydd, till exempel förvaring av utbränd kärnkraftsbränsle, men det viktiga med exemplet är att det uppkommer konsekvenser i fler än ett område.

Om det bara fanns en konsekvens för varje alternativ och slumpmässigt tillstånd (ordet ”slumpmässigt” används som bestämning till tillstånd för att betona osäkerheten som är förknippad med vilket tillstånd som realiseras) skulle en person med kännedom om framtiden lätt kunna välja det bästa alternativet. Han eller hon skulle helt enkelt välja alternativet med den bästa konsekvensen, givet det tillstånd som han/hon visste skulle inträffa. Eller som Keeney & Raiffa skriver:

"Imagine a decision problem abstracted in the form of a decision tree. If a decision maker had the service of a clairvoyant, or as a colleague of ours, John Lintner, puts it, ‘if he had a phone line to the Lord,’ would his problem be conceptually simple? It would if every consequence were already described in terms of a single attribute. He would just choose that strategy leading to the highest x payoff.” (Keeney & Raiffa, 1976)

Om däremot de olika alternativen och tillstånden inte fick endast en konsekvens för beslutsfattaren skulle problemet kunna bli svårvalt ändå, trots vetskapen om framtiden, eftersom de olika konsekvenserna på något sätt måste värderas mot varandra. Med detta avses att till exempel monetära konsekvenser som uttrycks i tkr skall värderas mot konsekvenser som exempelvis uttrycks i förbättring av koncentrationen av något skadligt ämne i naturen, eller en förkortning av restiden mellan två städer.

I beslutssituationer där det finns flera olika typer av konsekvenser används vanligtvis nyttofunktioner i flera dimensioner för att översätta konsekvenser med olika enheter till nytta. Denna typ av problem kan bli mycket komplexa, beroende på vilka antaganden man gör, och i den här rapporten kommer endast en överskådlig redovisning att genomföras med fokus uteslutande på ekonomiska mål. För en bra genomgång av beslut med flera mål hänvisas till Keeney & Raiffa (1979).
3. Investeringskalkyler

Investeringskalkyler säsom de behandlas inom företagsekonomin är en typ av beslutsanalys; beslutet gäller här huruvida en viss investering skall genomföras eller ej. Investeringskalkyler för brandskydd förtjänar extra uppmärksamhet eftersom investeringskalkyler är ett etablerat begrepp i den företagsekonomiska världen, och det kan på så vis tjäna som en brygga mellan beslutsfattare och personer som sysslar med brandsäkerhet. Kalkylerna kan bli ett sätt att bättre redovisa uppfattningar om en investering i brandskydd.

I detta kapitel kommer investeringskalkylerna att betraktas från ett säkerhetsmässigt perspektiv, d.v.s. de investeringar som behandlas är av den karaktären att de inte i sig genererar några intäkter de genomföras istället för att minska en osäker framtida kostnad. I kapitlet kommer kapitalvärdesmetoden att presenteras och diskuteras utifrån ett riskperspektiv, där målet är att använda denna kalkylmodell för investeringskalkyler gällande åtgärder som minskar brandriskerna.

3.1. Investeringskalkyler som tekniskt beslutsstöd


Ett tekniskt beslutsstöd skall kunna användas för att väga fördelar mot nackdelar med en specifik investering. Beroende på hur omfattande kalkyl man vill göra kan man ta hänsyn till olika typer av ekonomiska skador, eller så tar man ingen hänsyn till skador alls och i så fall får värdering av dessa göras subjektivt av den person som tar del av kalkylen.

Den enklaste typen av kalkyl (nivå 1) är en som enbart tar hänsyn till kostnader (sänkning av kostnader) som är säkra. Med säkra kostnader avses exempelvis kostnaden för brandskyddssystemet, sänkningen av försäkringspremien på grund av investeringen, kostnad för drift och underhåll av systemet o.s.v. En kalkyl på denna nivå tar alltså inte hänsyn till att investeringen medför att brandrisken i byggnaden minskar, utan värderingen av detta sker utanför kalkylen.

Om man tar hänsyn till förändringen av brandrisken kan man välja att ta med olika slags kostnader. En grov indelning i sådana slags kostnader skulle kunna vara: Direkt skada, Primär ekonomisk följdskada, Strategisk ekonomisk följdskada (Nilsson, 2000), se Figur 17. Direkt ekonomisk skada innebör i detta fallet värdet av de tillgångar som förstös i branden, primär ekonomisk följdskada innebör skador som är en direkt följd av branden, exempelvis förlust av täckningsbidrag, strategisk ekonomisk följdskada är
av mer långsiktig karaktär och kan ha påverkan på företagets strategi och dess möjlighet att uppnå verksamhetsmål, exempelvis förlust av viktiga marknader.

Inom de olika slagen av ekonomiska skador kan man också skilja mellan olika typer av skador som är enklare eller mer komplicerade att kvantifiera. I Figur 17 syns att gruppen Direkta skador är uppdelad i två områden (ett vitt och ett grått område). Det vita området, d.v.s. ekonomiska skador som är relativt enkla att kvantifiera, skulle till exempel kunna vara kostnader för maskiner som förstörts i branden. Det vita området i gruppen Primär ekonomisk följdskada kan exempelvis vara förlust av täckningsbidrag som följd av branden. När det gäller det gråa området, d.v.s. de skador som är mer komplicerade att kvantifiera, kan det för gruppen Primär ekonomisk följdskada vara exempelvis ökade marknadsföringskostnader på grund av skadan, minskad efterförsäljning etc. I den översta gruppen Strategisk ekonomisk följdskada är troligtvis de flesta typer av skador komplicerade att kvantifiera.

![Diagram](image)

Figur 17 Olika typer av ekonomiska skador på grund av en brand.

Det enklaste sättet att genomföra en kalkyl då även säkerhetshöjningen skall värderas torde vara att använda skador från de områden i Figur 17 som är vita. Detta kallas en kalkyl på nivå 2 och skiljer sig alltså från nivå 1 genom att även skadekostnader tas med i analysen. Visserligen är skadekostnaderna relativt enkla att kvantifiera, men de är förenade med stor osäkerhet eftersom det inte går att veta varken hur ofta det kommer brinna i den aktuella byggnaden eller vilken omfattning branden kommer att få om det skulle börja brinna.

Den mest omfattande kalkylen (nivå 3) innefattar även de skador som är mer komplicerade att kvantifiera, vilket betyder att osäkerheterna i kalkylen troligtvis blir omfattande. En sammanfattning av vilka skador som beaktas i de olika kalkylnivåerna redovisas i Tabell 5. De analyser som kommer att redovisas senare i denna rapport (ABB och Avesta Sheffield) kan sägas vara analyser på nivå 2 eftersom de tar hänsyn till att en investering i brandskydd sänker risken i byggnaden, men de innehåller enbart skattningar av förlust av täckningsbidrag samt värdet av förstörd materiel.

Beroende på vilken nivå som en kalkyl utförs på tvingas beslutsfattaren subjektivt värdera de skador som inte tagits med i kalkylen tillsammans med resultatet från denna.

<table>
<thead>
<tr>
<th>Nivå</th>
<th>Beskrivning av vilka skador som beaktas i de olika kalkylnivåerna.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inga skador beaktas</td>
</tr>
<tr>
<td>2</td>
<td>Direkta skador och primära ekonomiska följdskador som är enkla att kvantifiera</td>
</tr>
<tr>
<td>3</td>
<td>Samtliga skador beaktas inklusive strategisk ekonomisk följdskada</td>
</tr>
</tbody>
</table>
3. Investeringskalkyler

3.2. Kapitalvärdesmetoden

Enligt Nilsson & Persson (1999) är en investeringskalkyls viktigaste sju komponenter grundinvesteringen \( (G) \), löpande inbetalningar år \( k (I_k) \), löpande utbetalningar år \( k (U_k) \), inbetalningsöverskott år \( k (a_k) \), ekonomisk livslängd \( (n) \), restvärde \( (S) \) och kalkylränta \( (i) \). När det gäller brandskyddsinvesteringar är de löpande inbetalningarna lika med noll eftersom investeringen inte förväntas generera några intäkter. Kalkylräntan är den så kallade alternativkostnaden för kapitalet, d.v.s. den avkastning som skulle kunna erhållas om pengarna inte investerades utan placerades någon annanstans. Ur ett beslutsanalytiskt perspektiv kan kalkylräntan betraktas som avkastningen från det alternativ som jämförs med investeringsalternativet; investeringskalkylen är egentligen en jämförelse mellan investeringsalternativet och ett alternativ där ingenting ändras förutom att de pengar som skulle ha kunnat användas till grundinvesteringen i stället investeras med kalkylräntan som avkastning.


\[
K_0 = \frac{K_n}{(1+i)^n}
\]  

Ekvation [3.1] är \( K_0 \) nuvärdet av beloppet \( K_n \) som utfaller till betalning år \( n \), och \( i \) är räntesatsen (i detta fall kalkylräntan). Då man använder denna ekvation antar man att betalningarna under ett år utfaller i slutet av året.

Om samma belopp utfaller till betalning varje år blir formeln för nuvärdet ekvation [3.2] där \( a \) är det årliga beloppet.

\[
K_0 = a \cdot \frac{(1+i)^n - 1}{i(1+i)^n} 
\]  

Kapitalvärdesmetoden kan exempelvis användas för att demonstrera en enkel investeringskalkyl för ett skyddssystem. Grundinvesteringen är 500 tkr och det årliga underhållet för systemet beräknas till 20 tkr. Förutom detta kommer systemet minska skadorna av bränder, vilket resulterar i lägre förväntad årlig skadekostnad. Sänkningen i förväntad skadekostnad har beräknats till 150 tkr/år. Av utrymmesskäl antas systemets tekniska livslängd vara begränsad till tio år; kalkylräntan antas vara 10%.

I Tabell 6 visas investeringskalkylen för skyddssystemet; det framgår att reduceringen i förväntad skadekostnad betraktas som en årlig inbetalning och då detta värde minskats
med underhållskostnaden erhålls det årliga inbetalningsöverskottet. Inbetalnings-
överskottet nuvärdesberäknas sedan, och summan av alla nuvärdesberäknade årliga
inbetalningsöverskott utgör tillsammans med grundinvesteringen kapitalvärdet för
investeringen, d.v.s. 299 tkr.

Tabell 6 Investeringskalkyl för ett skyddssystem. Enhet tkr.

<table>
<thead>
<tr>
<th>År</th>
<th>Grundinvestering</th>
<th>Underhåll</th>
<th>Skadekostnad</th>
<th>Inbet. överskott</th>
<th>Nuvärde</th>
<th>Kapitalvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-500</td>
<td>-20</td>
<td>150</td>
<td>-500</td>
<td>-500</td>
<td>299</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-20</td>
<td>150</td>
<td>130</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Kapitalvärdet är större än noll innebär att investeringen är lönsam, d.v.s. nyttan med
investeringen är positiv. Beslutsteoretiskt uttryckt innebär det att den förväntade nyttan
med en investering i skyddssystemet är större än om man i stället investerade pengarna
som systemet kostar med en avkastning på 10%. I beräkningen har det antagits att
beslutsfattaren är riskneutral (se föregående kapitel).

I den kalkyl som precis genomförts används kalkyräntan för att ta hänsyn till att
inbetalningar (och utbetalningar) som uppkommer efter grundinvesteringen inte är lika
mycket värda i nuläget som om de uppkommit vid tidpunkten för grundinvesteringen.
Vad som däremot inte tagits hänsyn till är att prisnivån kanske inte är konstant, d.v.s.
underhållskostnaden kan eventuellt förväntas öka för varje år, alternativt kan
sänkningen av skadekostnaden förändras. När man gör kalkyler och tar hänsyn till att
prisnivån ändras använder man begreppen nominell och real prisnivå. Nominell prisnivå
är prisnivån i löpande priser, d.v.s. det pris som faktiskt betalas ett visst år. Real
prisnivå innebär att betalningarna varje år anges i det penningvärde som gäller ett visst

Sambandet mellan reala och nominella prisförändringar anges i ekvation [3.3] där \( p_r \) är
den reala prisförändringen, \( p_n \) den nominella prisförändringen och \( q \) inflationen.

\[
(1 + p_n) = (1 + p_r) \cdot (1 + q)
\]\n
Inflationen är ett mått på den genomsnittliga prisförändringen och innebär en generell
prishöjning. För investeringskalkylen innebär detta att till exempel 100 kr som erhålls
om fem år inte är lika mycket värda som 100 kr som erhåll idag, förutsatt att det råder
inflation, beroende på att köpkraften är lägre. För en investeringskalkyl med relativt kort
perspektiv torde inte detta få så stor effekt, men de investeringar som skall behandlas i
detta avsnitt kan ha en teknisk livslängd på till exempel 30 år, vilket innebär att
prisförändringar kan få stor effekt på resultatet.

Hänsyn till prisförändringar i investeringskalkyler tas genom att man inför real ränta
och nominell ränta, vilkas samband erhålls genom ekvation [3.4], där \( i_r \) är den reala
räntan, \( i_n \) den nominella räntan och \( q \) är inflationen.
(1 + i_n) = (1 + i_q) \cdot (1 + q) \quad [3.4]

Givetvis kan det vara svårt att skatta inflationen under 30 år, men denna typ av parameterosäkerhet kan hanteras på samma sätt som övriga osäkra parametrar, nämligen genom osäkerhetsanalys.

Som ett exempel på en investeringskalkyl med hänsyn tagen till prisförändringar används samma exempel som tidigare, d.v.s. en grundinvestering på 500 tkr med en underhållskostnad på 20 tkr/år och en sänkning av den förväntade årliga skadekostnaden med 150 tkr. Den reala kalkylräntan antas vara 10% och de reala ökningarna för underhållskostnaderna och reduceringen av skadekostnaderna antas vara 2 procent per år respektive 4 procent per år.

De årliga reala betalningarna samt nuvärdet av dessa kan ses i Tabell 7. I tabellen framgår också att kapitalvärdet av investeringen ökade från 299 till 481 tkr på grund av att hänsyn till prisförändringar togs. I tabellen redovisas endast reala betalningsflöden; det går även att genomföra beräkningen med nominella betalningsflöden, och resultatet blir då detsamma. I detta kapitel kommer dock endast reala betalningsflöden att användas.

Tabell 7 Investeringskalkyl med hänsyn tagen till prisförändringar. De årliga betalningarna anges i reala värden. Enhet tkr.

<table>
<thead>
<tr>
<th>År</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundinvestering</td>
<td>-500</td>
<td></td>
</tr>
<tr>
<td>Underhåll</td>
<td>-20</td>
<td>-21</td>
<td>-21</td>
<td>-22</td>
<td>-22</td>
<td>-23</td>
<td>-23</td>
<td>-23</td>
<td>-24</td>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>Skadekostnad</td>
<td>156</td>
<td>162</td>
<td>169</td>
<td>175</td>
<td>182</td>
<td>190</td>
<td>197</td>
<td>205</td>
<td>213</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Inbet. överskott</td>
<td>136</td>
<td>141</td>
<td>148</td>
<td>154</td>
<td>160</td>
<td>167</td>
<td>174</td>
<td>182</td>
<td>190</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Nuvärdet</td>
<td>-500</td>
<td>123</td>
<td>117</td>
<td>111</td>
<td>105</td>
<td>100</td>
<td>94</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>76</td>
</tr>
</tbody>
</table>

Kapitalvärdet 481

Skattningar av reala prisförändringar är naturligtvis svåra att göra, men samma sak gäller för dessa skattningar som för skattningar av sannolikheter; det finns metoder att hantera osäkerheter. Den enklaste torde vara att ange det värde man finner mest troligt och sedan genomföra en känslighetsanalys med avseende på detta värde. I fallet med investeringskalkylen ovan skulle detta kunna genomföras på följande vis. Först skattas det mest troliga värdena på prisförändringen, d.v.s. 2 respektive 4 procent per år, och kapitalvärdet beräknas. Därefter justeras prisförändringen för underhållskostnaden till det värde som bedöms som det maximala, och prisförändringen för skadekostnaden justeras till det värde som bedöms som det minsta. Om det kapitalvärdet som beräknas med dessa nya värden fortfarande är positivt har inte osäkerheten angående dessa två prisförändringar ensamt någon roll för beslutet. Exempelvis kan det tänkas att det största värdena för prisförändringen av underhållskostnaden är fyra procent och det minsta värdena för förändringen i sänkningen av skadekostnaden är minus två procent. Detta resulterar i ett kapitalvärd på 190 tkr, vilket betyder att investeringen är lönsamt trots att prisförändringsparametrarna valts på det, för investeringen, minst gynnsamma viset.

Det finns även andra metoder än kapitalvärdesmetoden för att bedöma lönsamheten hos en investering. Exempelvis kan nämnas pay-backmetoden, annuitetsmetoden och
Internärentemetoden\(^5\). Ingen av dessa metoder ger dock mer lättolkade resultat för den typ av investeringar som behandlas i denna rapport, varför det inte finns något skäl att också redovisa dessa metoder till fullo. Endast kapitalvärdesmetoden kommer att användas i denna rapport.

I investeringskalkyler kan även hänsyn till skatt tas. Detta innebär dock att beräkningsarbetet blir mer komplicerat, och om målet endast är att kunna rangordna alternativ, exempelvis att kunna uttala sig om huruvida en investering är lönsam eller ej, är i regel skattehäuser inte nödvändig. Detta kan dock behöva verifieras i det enskilda fallet. I denna rapport redovisas endast ett enkelt exempel på hur hänsyn till skatt kan tas; beräkningarna bygger på räkenskapsenliga avskrivningar enligt ”20-regeln” (Persson & Nilsson, 1999). Detta innebära att grundinvesteringen får skrivas av med 20% varje år under en period av fem år, vilket betyder att företaget får minska sin vinst med detta belopp och på så sätt minska sin skattebetalning under fem år. I kalkylen tas hänsyn till avskrivningar genom att skattereduktionen betraktas som en årlig intäkt, vilken nuvärdesberäknas med hjälp av den nominella kalkylräntan efter skatt. Den nominella kalkylräntan efter skatt (\(i_{n,\text{after}}\)) kan beräknas genom sambandet i ekvation \[3.5\] där \(i_{n,\text{fore}}\) är den nominella kalkylräntan före skatt och \(s\) är skattesatsen (0,28).

\[ i_{n,\text{after}} = (1-s) \cdot i_{n,\text{fore}} \]

Den reala kalkylräntan efter skatt kan sedan beräknas med hjälp av ekvation \[3.4\]. Förutom att hänsyn skall tas till avskrivningar skall också alla in- och utbetalningar multipliceras med 0,72 (1-skattesatsen) och nuvärdesberäknas med hjälp av nominell eller real kalkylränta \(\text{efter skatt}\).

Som exempel visas en kalkyl med hänsyn tagen till skatt för samma investering som betraktats tidigare, d.v.s. en grundinvestering på 500 tkr där den årliga reduktionen av skadekostnaden är 150 tkr och drift- och underhållskostnaden är 20 tkr/år. Prisförändringen för reduktionen av skadekostnaden är 4% per år och för drift- och underhållskostnaden 2% per år.

I Tabell 8 visas kalkylen för skyddssystemet, och där framgår att kapitalvärdet för investeringen är 421 tkr, d.v.s. investeringen är lönsam med hänsyn tagen till skatt. I kalkylen innebär ”Nuvärde av skattereduktion” nuvärdesberäkningen av skatte-reduktionen under fem år på grund av avskrivningar.


Internärentemetoden innebär att den ränta där en investerings kapitalvärde är noll kallas internräntan. Beslutskriteriet vid användandet av internärentemetoden är att internräntan skall vara större än en på förhand bestämd kalkylränta för att investeringen skall genomföras.
3. Investeringskalkyler


<table>
<thead>
<tr>
<th>År</th>
<th>Grundleverans</th>
<th>Underhåll</th>
<th>Skadekostnad</th>
<th>Inbet. överskott</th>
<th>Nuvärde</th>
<th>Nuvärde av skattereduktion</th>
<th>Kapitalvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-500</td>
<td>-15</td>
<td>112</td>
<td>98</td>
<td>-500</td>
<td>91</td>
<td>421</td>
</tr>
<tr>
<td>1</td>
<td>-15</td>
<td>-16</td>
<td>117</td>
<td>102</td>
<td>91</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-15</td>
<td>-16</td>
<td>121</td>
<td>106</td>
<td>89</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-16</td>
<td>-16</td>
<td>126</td>
<td>111</td>
<td>86</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-16</td>
<td>-16</td>
<td>131</td>
<td>115</td>
<td>84</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-17</td>
<td>-17</td>
<td>137</td>
<td>120</td>
<td>82</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-17</td>
<td>-17</td>
<td>142</td>
<td>126</td>
<td>79</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-17</td>
<td>-17</td>
<td>148</td>
<td>131</td>
<td>77</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-18</td>
<td>-18</td>
<td>154</td>
<td>137</td>
<td>75</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-18</td>
<td></td>
<td>160</td>
<td>142</td>
<td>73</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3. Osäkerheter

Osäkerheter i skattningar har nämnts tidigare i detta avsnitt, och då diskuterades möjligheten till känslighetsanalyser av kapitalvärdet genom variation av årliga prisförändringar för underhåll och skadekostnad. Osäkerheterna vid investeringskalkylers kan behandlas som vid vilken annan typ av beslutsanalys som helst, d.v.s. man kan utföra känslighetsanalyser genom att variera en eller ett flertal parametrar, göra osäkerhetsanalyser genom att betrakta parametrarna som stokastiska variabler eller använda någon metod för att hantera parametrar som är svåra att kvantifiera (Gärdenfors & Sahlin metod eller hypermjuk beslutsteori, se föregående kapitel).

Som ett exempel på osäkerhetsanalys av en investeringskalkyl utförs en Monte Carlo-simulering för den investeringskalkyl som tidigare använts som exempel. I investeringskalkylen är grundinvesteringen 500 tkr, vilken betraktas som säker; den årliga underhållskostnaden är 20 tkr och betraktas också som säker. Förutom dessa säkra parametrar finns det några som bedöms vara förknippade med osäkerhet, d.v.s. beslutsfattaren är osäker på vilket värde som skall användas. Denna osäkerhet beskrivs genom att parametrarna representeras av en sannolikhetsfördelning som visar beslutsfattarens preferenser angående vilka parametervärden som är mest troliga. Sänkningen i skadekostnad representeras med en triangelfördelning där 0 tkr per år är det minsta värde, 500 tkr per år det största och 150 tkr per år det mest troliga. Prisförändringen för underhåll representeras av en triangelfördelning med noll procent per år som minsta värde, fyra procent pro år som största värde och två procent pro år som mest troliga värde. Förändringen för skadekostnaden representeras av en triangelfördelning med noll procent per år som minsta värde, sex procent per år som största värde och fyra procent per år som mest troliga värde. Resultatet från en Monte Carlo-simulering där 10.000 beräkningar använts visas i Figur 18. I figuren framgår att kapitalvärdet med stor sannolikhet är större än noll; medelvärdet av alla beräkningar är ungefär 930 tkr. Resultatet från Monte Carlo-simuleringen ger inte bara ett mått på det förväntade kapitalvärdet för investeringen, utan den ger också en uppfattning om osäkerheten i kapitalvärdet.
Det går alltså att utföra osäkerhetsanalyser för investeringskalkyler precis på samma sätt som för vanliga riskanalyser, d.v.s. genom Monte Carlo-simulering. En beslutsfattare kan med hjälp av resultatet från en osäkerhetsanalys göra en bedömning huruvida investeringen skall genomföras eller inte, och i denna bedömning måste han/hon göra en subjektiv värdering av de eventuella övriga faktorer som inte har beaktats i investeringskalkylen. Ett exempel på övriga faktorer skulle kunna vara flexibiliteten i byggnaden, d.v.s. huruvida brandskyddsinvesteringen gör att det blir svårt att ändra om i byggnadens inre utformning.

I investeringskalkyler för brandskydd kan det vara så att man måste värdera ekonomiska skador som är mycket stora (i förhållande till företagets resurser). Hittills i kapitlet har beslutsfattaren betraktats som riskneutral då investeringskalkylen genomsört, och då värderas den ekonomiska skadan som lika stor som den faktiska skadan. Om man däremot antar att beslutsfattaren är riskundvikande, d.v.s. vill att stora skador skall ha större vikt i värderingen av de olika beslutsalternativen än små skador, kan man ta hänsyn till detta och beräkna det riskjusterade kapitalvärdet.

### 3.4. Riskjusterat kapitalvärde

På grund av att värderingen av säkerhetshöjning bygger på sannolikheter och konsekvenser för händelser som kan vara mycket allvarliga, d.v.s. konsekvenserna är stora, kan företagens riskattityd påverka beslut om investeringar. Riskattityd förklarades i förra kapitlet och innebär i korthet att skador som är mycket stora har större vikt i analysen än små skador. Riskattityden framgår av en nyttofunktion där formen på nyttofunktionen avspeglar en beslutsfattares riskattityd.

I förra kapitlet diskuterades ett mått för osäkra situationer, ”certainty equivalent” (CE), vilket är den summa pengar som en beslutsfattare tycker är likvärdig med en osäker situation. Detta kan exemplifieras genom följande situation: om en person äger en lottsedel som med 50 procent sannolikhet ger en vinst på 1000 kr och med 50 procent
sannolikhet inte ger något alls kan hans CE för denna osäkra situation vara 400 kronor (detta beror på vilken riskattityd personen har). Detta innebär att personen skulle sälja lottsedeln om någon erbjuder honom 400 kronor eller mer för lottsedeln, men inte om de erbjuder honom mindre. Observera att det förväntade monetära utfallet av den osäkra situationen är 500 kronor; att personen är villig att sälja för ett lägre pris än detta innebär att han/hon är riskundvikande, d.v.s. han/hon väljer hellre det säkra alternativet att erhålla 400 kronor än det osäkra där utfallet kan bli antingen 1000 kr eller 0 kr.

Om man gör på samma sätt med den osäkra situationen som berör skadekostnaden innebär detta att CE för den osäkra situationen skulle motsvaras av det monetära värde som företaget är villigt att betala för att slippa osäkerheten. Om detta värde, i stället för den förväntade skadekostnaden, användes i investeringskalkylen skulle kapitalvärdet även avspeglas företagets inställning till risk. Detta innebär att om företaget är riskneutralt skulle kapitalvärdet vara det samma som då ingen hänsyn till riskattityd togs, men om företaget är riskundvikande (vilket är det troliga) skulle kapitalvärdena skilja sig åt.

Cozzolino (1978), definierar ”risk adjusted cost” (RAC) som det negativa CE för en osäker situation, d.v.s. om en osäker situation enbart kan resultera i kostnader och dess CE är −50 tkr är RAC för denna situation 50 tkr. RAC är enklare att arbeta med då endast kostnader beaktas. Om RAC används i investeringskalkylen i stället för förväntad skadekostnad erhålls det riskjusterade kapitalvärdet för investeringen. Det riskjusterade kapitalvärdet står för värdet av en investering där osäkerheten rörande skadekostnad ersatts med värden som bedöms som likvärdiga med den osäkra situationen (RAC). Här följer ett exempel för att visa vad som menas med riskjusterat kapitalvärde.

Situationen är att kapitalvärdet för ett sprinklersystem skall beräknas. I modellen för brand påverkas sprinklersystemet sannolikheten för att en brand skall växa och bli stor, vilket också kan ses i Figur 19 och Figur 20, där modellen för en brand visas före och efter det att systemet installerats. Figurererna visar två enkla händelseträd som beskriver möjliga konsekvenser av en brand i byggnaden.

---

6 Termen riskjusterat kapitalvärde används i analogi med Nilssons (1997?) användning av termen ”riskjusterad exponeringskostnad”.
Beslutsanalys och investeringskalkyler avseende brandskydd

Antingen blir branden liten, och då uppkommer ingen ekonomisk skada alternativet är att branden blir stor, men begränsad till 50 procent av byggnaden. Den värsta konsekvensen är att hela byggnaden förstörs. Kostnaden för en totalförstörd byggnad beräknas vara 800 mkr, och kostnaden om 50 procent av byggnaden förstörs beräknas vara 100 mkr. Dessa konsekvenser gäller oavsett om sprinklersystemet installeras eller ej.

Nu skall en investeringskalkyl genomföras för sprinklersystemet som kostar 10 mkr att installera och som har en beräknad teknisk livslängd på 30 år. Brandfrekvensen i byggnaden har bedömts till mellan 0,1 och 0,5 bränder per år där 0,3 bränder per år är det mest troliga värdet. Den förväntade årliga skadekostnaden på grund av brand i det osprinklade alternativet är 22,5 mkr och i det sprinklade alternativet 11,25 mkr. Om sprinkler installeras i byggnaden sjunker alltså den förväntade årliga skadekostnaden med 11,25 mkr.

Om det antas att drift- och underhållskostnaden för systemet är 100 tkr per år och att kalkylräntan är 10 procent, samt att ingen hänsyn till prisförändringar tas blir kapitalvärdet av investeringen 10,1 mkr.

Om skillnaden i skadekostnad i exemplet ovan byts ut mot skillnad i riskjusterad skadekostnad, d.v.s. RAC, kan det riskjusterade kapitalvärdet för investeringen beräknas. Det riskjusterade kapitalvärdet för investeringen ovan är 19,8 mkr, d.v.s. en ökning med 8,8 mkr gentemot kapitalvärdet. Denna beräkning genomfördes med hjälp av den nyttofunktion som antogs representera Avesta Sheffield, d.v.s. Figur 8.
Det är intressant att undersöka vilken effekt storleken på de ekonomiska skadorna har på skillnaden mellan kapitalvärdet och det riskjusterade kapitalvärdet. Som exempel kan skillnaden i exemplet ovan användas. Från början var skillnaden 8,8 mkr, men om de båda skadeutfallen i Figur 19 och Figur 20 ändras till att vara 80 mkr respektive 10 mkr ändras också skillnaden mellan kapitalvärdet och det riskjusterade kapitalvärdet till 80 tkr. Detta tyder på att skillnaden mellan kapitalvärdet och det riskjusterade kapitalvärdet minskar om konsekvenserna av de möjliga utfallen minskar. Detta beror på att nyttofunktionen som används för att beräkna det riskjusterade kapitalvärdet blir mer och mer lik en linjär funktion då de ekonomiska konsekvenserna minskar. En linjär nyttofunktion innebär att beslutsfattaren är riskneutral, d.v.s. en person som fattar beslut med ledning av förväntat ekonomiskt utfall, alltså kapitalvärdet.

Det är också intressant att notera vad som händer med både kapitalvärdet och det riskjusterade kapitalvärdet då konsekvenserna minskades; båda värdena blev vid denna beräkning negativa (kapitalvärde: -8,54 mkr, riskjusterat kapitalvärde: -8,46 mkr), vilket tyder på att investeringen inte var lönsam. Anledningen till detta är mycket enkel: man investerar inte i dyra skyddssystem om den möjliga ekonomiska förlusten är förhållandevis liten.
4. Praktiska exempel på investeringskalkyler

Detta kapitel behandlar två investeringskalkyler för brandskydd genomförda för två anläggningar som tillhör ABB respektive Avesta Sheffield. Brandskyddssystemen som investeringskalkylerna upprättas för är i båda fallen ett heltäckande sprinklersystem.


Metoden som används för investeringskalkylerna är kapitalvärdesmetoden (nuvärdesmetoden), vilken innebär att de in- och utbetalningar som inträffar på grund av investeringen nuvärdesberäknas och summeras. Denna summa kallas kapitalvärdet för investeringen och om detta värde är positivt är investeringen lönsam med hänsyn till de förutsättningar som använts.

4.1. ABB Automation Products


Den svåra delen i investeringskalkylen är att värdera den säkerhetshöjning som erhållits ned hjälp av sprinklersystemet, d.v.s. att beräkna reduceringen av den förväntade skadekostnaden tack vare systemet. Denna beräkning utförs genom att man använder samma grundmodell som i Johansson (2000). Genom att skapa två modeller, en för byggnaden utan sprinklersystem och en för byggnaden med sprinklersystem, kan den förväntade skillnaden i skadekostnad beräknas. Eftersom beräkningen av skillnaden i

Grundinvesteringen för sprinklersystemet är 10.000 tkr, och den årliga drift- och underhållskostnaden skattas till 100 tkr/år. I investeringskalkylen används en kalkylränta på 15 procent, vilket betyder att om inte sprinklerinvesteringen skulle genomföras skulle 10.000 tkr kunna placeras med en avkastning på 15 procent. Sprinklersystemets ekonomiska livslängd antas vara 40 år. Ingen hänsyn till eventuella förändringar i reduceringen av skadekostnaden eller underhållskostnaden tas.

Resultatet från kalkylen kan ses i Tabell 9, där de förväntade in- och utbetalningarna för de tio första åren (samtliga 40 år kan ses i bilaga 2) illustreras tillsammans med kapitalvärdet som är **31.100 tkr**, d.v.s. investeringen är lönsam.
Tabell 9 Investeringskalkyl för sprinklersystem i byggnad 358. Endas betalningarna de första 10 åren visas. Betalningarna är angivna i mkr.

<table>
<thead>
<tr>
<th>År</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Grundinvestering</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underhåll</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
<td>-0,10</td>
</tr>
<tr>
<td>Skadekostnad</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
<td>6,36</td>
</tr>
<tr>
<td>Inbet. överskott</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
<td>6,26</td>
</tr>
<tr>
<td>Nuvärde</td>
<td>-10</td>
<td>5,44</td>
<td>4,73</td>
<td>4,12</td>
<td>3,58</td>
<td>3,11</td>
<td>2,71</td>
<td>2,35</td>
<td>2,05</td>
</tr>
</tbody>
</table>

Real kalkylränta 0,15
Kapitalvärde 31,1

Även vid en känslighetsanalys av kalkylräntan, d.v.s. en förändring av kalkylräntan, förblir investeringen lönsam enligt Figur 22.

Figur 22 Kalkylräntans påverkan på kapitalvärdet av sprinklerinvesteringen.

Investeringens lönsamhet är i högsta grad beroende av sänkningen av den förväntade skadekostnaden, varför denna parameter också undersöks i en känslighetsanalys. Effekten av en ändring av denna parameter illustreras i Figur 23, där den streckade linjen illustrerar den beräknade sänkningen av skadekostnaden (se föregående sida). I figuren framgår att kapitalvärdet är positivt då sänkningen av den förväntade skadekostnaden är större än ca 2 mkr. Tidigare i detta avsnitt skattades 5 procent kvantilen för sänkningen av den förväntade skadekostnaden till 3.460 tkr, vilket betyder att det är mycket osannolikt att sänkningen underskrider 2.000 tkr. Alltså är rekommendationen att investera i ett sprinklersystem robust enligt metoden som presenterade i avsnitt 2.4.1.
Eftersom analysen av ABB-byggnaden enbart utförts med hjälp av egendoms- och avbrottskostnader, d.v.s. sådana kostnader som ABB får ersättning för vid en eventuell brand, måste en subjektiv värdering av storleken på dessa kostnader i förhållande till de kostnader som verkligen drabbar ABB göras. Antag exempelvis att sänkningen av de verkliga kostnaderna, är hälften av den sänkning av egendoms- och avbrottskostnader som tagits med i kalkylen. Grovt sett skulle detta innebära att sänkningen av den förväntade skadekostnaden minskades till ca 3.000 tkr/år, och enligt Figur 23 är investeringen lönsam då också. Generellt sett måste sänkningen av de verkliga kostnaderna vara större än ca en tredjedel av sänkningen av egendoms- och avbrottskostnaderna för att investeringen skall vara lönsam. Huruvida de är det i fallet med ABB Automation Products verksamhet i byggnad 358 har inte utretts ytterligare.

4.2. Avesta Sheffield

Avesta Sheffield är en av världens största tillverkare av rostfritt stål och producerar årligen omkring 1 miljon ton. Ett av Avesta Sheffield’s kallvalsverk ligger i Nyby utanför Eskilstuna och har tidigare analyserats med avseende på brandrisken (Johansson, 2000). I detta avsnitt redovisas en investeringskalkyl för ett nytt sprinklersystem i anläggningen.

I snitt genomförs är det viktigt att man tänker igenom vilka mål man vill uppnå med investeringen. Med en investering i ett sprinklersystem är det sannolikt att målen är att minska riskerna (mätt i ekonomiska termer) på grund av brand i anläggningen samt att hålla nere kostnaden för investeringen. Eventuella andra mål har inte beaktats i kalkylen, och om en beslutsfattare önskar ta hänsyn till sådana måste detta ske subjektivt i kombination med kalkylresultatet.

Riskreduceringen värderas, på samma vis som för ABB, genom att man skattar reduceringen i den förväntade skadekostnaden på grund av investeringen. Denna reducering av förväntad skadekostnad används sedan tillsammans med investeringskostnaden och drift- och underhållskostnaden för att visa huruvida investeringen är lönsam. De kostnader som används för att skatta sänkningen av den förväntade skadekostnaden är förlust av täckningsbidrag och kostnader för förstörda maskiner och annat materiel.

Den modell som tidigare använts för att beräkna den förväntade skadekostnaden i anläggningen (Johansson, 2000) används för att beräkna skillnaden i förväntad skadekostnad mellan dagens byggnadsutformning och en utformning med ett
heltäckande sprinklersystem. Eftersom det i den tidigare analysen konstaterats att vissa parametrar i stor utsträckning bidrar till osäkerheten i slutresultatet används Monte Carlo-simulering för en undersökning av dessa osäkerheters effekt på skillnaden i förväntad skadekostnad mellan de båda byggnadsutförningarna. Resultatet från Monte Carlo-simuleringsarna illustreras med histogrammet i Figur 24.

![Histogram](image)

Figur 24 Skillnad i förväntad skadekostnad mellan alternativet med respektive utan sprinkler (Avesta Sheffield-byggnaden).


Sprinklersystemets ekonomiska livslängd bedöms vara 40 år, och investeringskostnaden har skattats till 2.500 tkr (ungefär 150 kr/m²). Den årliga kostnaden för drift- och underhåll bedöms vara 50 tkr, och de reala priserna för detta antas vara oförändrade. Kalkyrläntan antas vara 20%. Med dessa förutsättningar resulterar kalkylen i att sprinklerinvesteringen har ett kapitalvärde på **156.000 tkr**. Betalningsflöden samt nuvärdesberäknade årliga inbetalningsöverskott finns, för de tio första åren, redovisade i Tabell 10 (alla 40 åren finns redovisade i bilaga 2).

Kalkylen resulterar alltså i att en investering i ett sprinklersystem kan betraktas som mycket lönsam om man kan anta att reduceringen av den förväntade skadekostnaden på grund av verkliga kostnader är lika stor som reduceringen beräknad med hjälp av egendoms- och avbrottskostnader. Slutsatsen att investeringen är lönsam är också robust enligt metoden i avsnitt 2.4.1 eftersom kapitalvärdet aldrig bli negativt för något av värdena för sänkningen av den förväntade skadekostnaden i Figur 24.
<table>
<thead>
<tr>
<th>År</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundinvestering</td>
<td>-2,5</td>
<td></td>
</tr>
<tr>
<td>Underhåll</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td>-0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skadekostnad</td>
<td>31,80</td>
<td></td>
</tr>
<tr>
<td>Inbet. överskott</td>
<td>31,75</td>
<td></td>
</tr>
<tr>
<td>Nuvärde</td>
<td>-2,5</td>
<td>26,46</td>
<td>22,05</td>
<td>18,37</td>
<td>15,31</td>
<td>12,76</td>
<td>10,63</td>
<td>8,86</td>
<td>7,38</td>
<td>6,15</td>
<td>5,13</td>
</tr>
</tbody>
</table>

Real kalkylränta 0,2  
Kapitalvärde 156

Liksom i analysen av ABB-byggnaden är det i analysen av kallvalsverket intressant att redovisa vad en förändring av kalkylräntan innebär för lönsamheten i investeringen, varför kapitalvärdet presenteras i Figur 25 som en funktion av kalkylräntan. I figuren framgår att investeringen är lönsam även om en hög kalkylränta används.

I Figur 26 illustreras kapitalvärdet som funktion av sänkningen av den förväntade skadekostnaden. Detta diagram kan användas vid en subjektiv bedömning av de verkliga kostnaderna i förhållande till egendoms- och avbrottsskadorna. Exempelvis kanske den verkliga sänkningen av den förväntade skadekostnaden bedöms vara en tredjedel av sänkningen av kostnaden då egendoms- och avbrottsskostnader använts. I så fall kan Figur 26 användas för undersöka vad detta innebär för kapitalvärdet av investeringen. I figuren finns den sänkning av kapitalvärdet som används i kalkylen markerad (31.000 tkr/år). Det framgår av figuren att investeringen kan betraktas som lönsam även vid mycket måttliga sänkningar av den förväntade skadekostnaden.
Detta resultat indikerar att en investering i ett sprinklersystem betyder mycket för säkerheten i kallvalsverket, d.v.s. systemet sänker brandrisken avsevärt i byggnaden. När man använder resultatet (kapitalvärdet 156.000 tkr) kan det förefalla som om detta är en enormt lönsam investering – vilket den också är med hänsyn till riskreduceringen – men man skall då komma ihåg att man aldrig kan veta vad den verkliga återbetalningstiden för investeringen är. Detta innebär att det mycket väl kan gå många år innan sprinklersystemet behöver användas, och det är inte heller säkert att sprinklersystemet behöver användas någon gång, vilket betyder att investeringen – med facit i handen – varit olönsam. Den andra extrema situationen är en brand som uppstår under första året som systemet installerats och som, om inte systemet funnits, hade förstört hela anläggningen. I detta fall räddade en investering på ungefär 2,5 mkr värden för ungefär 4.000.000 tkr. Slutsatsen man kan dra är att eftersom man aldrig kan veta vad som kommer att hända i framtiden kan man bara utgå ifrån den information man har i nuläget, och med hjälp av denna information framstår sprinklerinvestering som långsiktigt mycket lönsam.

4.3. Sammanfattning

I investeringskalkylen för både ABB-byggnaden och Avesta Sheffield-byggnaden har det kunnat konstaterats att en investering i ett heltäckande sprinklersystem är lönsam med de förutsättningar som antagits. Lönsamhet skall i detta sammanhang tolkas som att den förväntade nyttan med investeringen är positiv, d.v.s. de positiva effekterna av investeringen (sänkning av förväntad skadekostnad) är större än de negativa (investeringskostnad samt drift- och underhållskostnad). För sprinklerinvesteringen i ABB-byggnaden blev kapitalvärdet för investeringen 31.000 tkr och för och för Avesta Sheffield-byggnaden 156.000 tkr. Anledningen till skillnaden i lönsamhet är bland annat att i ABB-fallet användes endast kostnader som drabbar företaget ABB Automation Products och inte hela ABB-koncernen, medan det i kalkylen för Avesta Sheffield användes kostnader som drabbar hela koncernen. Dessutom är det övriga brandskyddet (brandcellsgränser, personalens möjklighet till släckning, m.m.) generellt sett bättre i ABB-byggnaden, vilket innebär att den risksänkande effekt som sprinklersystemet har betyder mer för den totala risken i Avesta Sheffields byggnad än i byggnaden som tillhör ABB.
5. Sammanfattande diskussion

Denna rapport behandlar beslutsfattande avseende brandskydd. Rapporten fokuserar på besluts situationen då man skall avgöra huruvida det är ekonomiskt lönsamt att investera i ett brandskyddssystem. Rapporten inleds med en genomgång av några teorier för beslutsfattande, vilka syftar till att visa hur man på ett generellt sätt kan resonera om beslut.

I kapitel 2 behandlas den klassiska bayesianska beslutsteorin, som innebär att en beslutsfattare skall fatta beslut enligt principen att välja det alternativ som maximerar det förväntade nyttan. I fallet med brandskydd skulle detta innebära att det alternativ som minimerar det förväntade värdet av summan av kostnader för brandskydd och kostnader för bränder skulle väljas (förutsatt att beslutsfattaren är riskneutral, se avsnitt 2.3). I kapitlet redovisas också en del kritik mot denna teori för beslutsfattande. Kritiken riktar sig mot att de flesta människor bryter mot dessa regler i vissa typer av situationer. Den kritik som är viktigast för analyser rörande brandskydd är att personer verkar ta hänsyn till säkerheten i sina sannolikhetsskattningar när de fattar beslut. När det gäller val mellan olika brandskyddsalternativ finns det stora osäkerheter som påverkar beslutet, d.v.s. säkerheten i en skattning av en sannolikhet är sällan tillfredsställande för beslutsfattaren. Detta är anledningen till att även metoder för att hantera skattningar av sannolikhet och konsekvenser där mycket lite information finns tillgänglig behandlas i rapporten. Tre metoder av denna typ berörs, och en av dessa metoder används i de praktiska exempel på beslutsanalyser som redovisas i rapporten (kapitel 4).

I kapitel 3 och 4 redovisas hur investeringskalkyler kan användas vid presentation av resultatet från en beslutsanalys rörande brandskydd. Avsikten med att använda investeringskalkyler för att presentera beslutsunderlag rörande brandskydd är att investeringskalkyler är ett etablerat begrepp även hos personer som saknar utbildning inom brandskydd och kan alltså användas för att på ett kvantitativt sätt motivera en investering i brandskydd.


Lönsamheten i dessa investeringar kan tyckas mycket hög, speciellt i Avesta Sheffield-fallet. Visserligen är det motiverat att installera dessa system i båda byggnaderna, men man måste komma ihåg att vid beräkningen av kapitalvärdet har sänkningen av den förväntade årliga skadekostnaden till följd av brand använts. För det första är skadekostnaden per år mycket osäker, vilket betyder att även om kapitalvärdet är
156.000 tkr kan det dröja många år innan investeringen lönar sig i verkligheten, d.v.s. innan den verkligen släcker en brand som annars skulle blivit stor. För det andra har egendoms- och avbrottskostnader använts vid beräkningen av den förväntade skadekostnaden. Detta innebär att man måste göra en subjektiv värdering av de verkliga kostnaderna i förhållande till de kostnader som använts. Om dessa bedömts vara lika stora, vilket de har gjort i Avesta Sheffield-fallet, gäller det kapitalvärde som beräknats, men annars måste kapitalvärdet justeras enligt de diagram som presenterats i kapitel 4.

Den praktiska användningen av investeringskalkyler för brandskydd har bland annat att göra med hur lång tid en kalkyl kan förväntas ta. I de fall som studerats i denna rapport (ABB och Avesta Sheffield) är den totala tiden för en kalkyl omkring 200 timmar, och då innefattas också modelleringen av möjliga brandförlopp. Troligtvis kommer den totala tiden för en investeringskalkyl att vara någonstans mellan 100 och 200 timmar beroende på byggnadens storlek och tillgången till relevant information om förhållandena i byggnaden. Den förhållandevis korta analysiden tyder på att investeringskalkyler kan bli praktiskt användbara vid beslutsfattande angående olika brandskyddsstystem. Om det dessutom är så att ett företag har flera byggnader som liknar varandra kan tiden per analys kortas ner väsentligt genom att man utformar mallar för hur en kalkyl skall utföras.

Genom att utveckla ett datorbaserat verktyg för hypermjuk beslutsteori (se avsnitt 2.4.3) kan även denna analysmetodik bli praktiskt användbar. I så fall skulle en analys kunna inledas med en grov beslutsanalyse utförd med den hypermjuka beslutsteorin som har fördelen att man inte behöver känna till speciellt mycket om problemet eftersom man kan ange exempelvis sannolikhet som intervall, och dessutom går relativt snabbt att genomföra. Om denna inledande analys visar på att investeringen bör genomföras kan man gå vidare med en investeringskalkyl, av den typ som redovisas i denna rapport, för att få ett mått på lönsamheten i investeringen.

Slutligen kan det konstateras att investeringskalkyler kan användas för att illustrera den långsiktiga lönsamheten med en investering i brandskydd. Förutsättningarna för detta är att beslutsfattaren accepterar principen om maximerad nytta som en sund beslutsregel. Detta innebär i investeringskalkylen att han/hon skall genomföra en investering om kapitalvärdet för investeringen är positivt. Den metod som presenterats i denna rapport kan användas för investeringskalkyler avseende brandskydd. Metoden är lämplig inom det aktuella området eftersom (i) den är uppbyggd på väletablerade koncept som händelseträd och sannolikhet, vilket gör det lätt att följa en beräkning; (ii) den har en grund i beslutsanalyse genom att den använder en etablerad beslutsregel; (iii) det finns ett formellt sätt att kombinera objektiv statistik med subjektiva bedömningar i metoden och (iv) den ger resultat som kan användas för att avgöra huruvida en investering skall genomföras eller ej.
6. Referenser


**Bilaga 1, SSD-beräkningar**

Alternativ 1: Installera inte sprinklersystem.
Alternativ 2: Installera sprinklersystem

Konsekvenser:
o1,1: Inget sprinklersystem installeras. Ingen brand uppstår.
o2,1: Sprinklersystem installeras. Ingen brand uppstår.
o1,2: Inget sprinklersystem installeras. Brand uppstår.
o2,2: Sprinklersystem installeras. Brand uppstår.

Nyttan med de olika konsekvenserna uttrycks i form av $x$ och $y$.

\[
\begin{align*}
U(o_{1,1}) &= 2x + y = 1 \quad [1] \\
U(o_{2,1}) &= x + y \\
U(o_{1,2}) &= x \\
U(o_{2,2}) &= 0
\end{align*}
\]

$p_1$: Sannolikheten för stor brand givet att inget sprinklersystem installeras.
p$_2$: Sannolikheten för stor brand givet att sprinklersystem installeras.

$0,05 < p_1 < 0,15$
$0,01 < p_2 < 0,05$


\[y > 20x\] [2]

Den förväntade nyttan kan tecknas för båda alternativen:

\[
\begin{align*}
E(U_1) &= p_1 \times U(o_{1,2}) + (1 - p_1) \times U(o_{1,1}) \\
E(U_1) &= p_1 \times x + (1 - p_1) \\
E(U_2) &= p_2 \times U(o_{2,2}) + (1 - p_2) \times U(o_{2,1}) \\
E(U_2) &= (1 - p_2) \times (x + y) \\
E(U_2) &= x + y - p_2 \times (x + y)
\end{align*}
\]

På grund av de uttalanden angående skillnaden mellan de olika konsekvenserna måste y-värdet vara inom ett visst intervall:


$y > 0,909$

Alltså måste $y$ vara mellan 0,909 och 1.

**Kriterium 1: MAX (Maximala förväntade nyttan)**

Först beräknas maximala förväntade nyttan med avseende på sannolikheterna ($p_1$ och $p_2$), d.v.s. både $p_1$ och $p_2$ antar sina minsta värden. Resultatet blir två linjära uttryck av $x$ och $y$. 
Max_p(E(Alt1)) = 0,05x + 0,95  
Max_p(E(Alt2)) = 0,99x + 0,99y

Skillnaden mellan de maximala förväntade nyttorna blir också ett linjärt uttryck av x och y.

Max_p(E(Alt1)) – Max_p(E(Alt2)) = 0,05x + 0,95 - 0,99x - 0,99y = 0,95 – 0,94x – 0,99y

Om detta uttryck är större än 0, innebär detta att alternativ 1 är bäst enligt kriterium 1 och om det är mindre än 0, är alternativ 2 bäst enligt kriterium 1.

Om: 0 < 0,95 – 0,94x – 0,99y  
⇒  Alt1 är bäst.

0 < 0,95 – 0,94x – 0,99y

[1] ⇒ 0 < 0,48 – 0,52y 
y < 0,923

Man vet sedan tidigare att y är begränsad av antagandena till att vara mellan 0,909 och 1. Tillsammans med informationen att y måste vara mindre än 0,923 för att alternativ 1 skall vara det bästa enligt kriterium 1 framgår det att både alternativ 1 och alternativ 2 kan vara det bästa alternativet enligt kriterium 1.

_Det går inte att säga vilket alternativ som är bäst._

**Kriterium 2: MIN (Minsta förväntade nyttan)**

Den minsta förväntade nyttan med avseende på p1 och p2 beräknas på samma sätt som för max, men sannolikheterna tilldelas nu sina största värden.

Min_p(E(Alt1)) = 0,15x + 0,85  
Min_p(E(Alt2)) = 0,95x + 0,95y

Skillnaden mellan alternativen beräknas som ett linjärt uttryck av x och y.

Min_p(E(Alt1)) – Min_p(E(Alt2)) = 0,15x + 0,85 - 0,95x - 0,95y = 0,85 – 0,8x – 0,95y

Om detta uttryck är positivt är alternativ 1 det bästa alternativet enligt kriterium 2.

Om: 0 < 0,85 – 0,8x – 0,95y  
⇒  Alt1 är bäst.

Genom att utnyttja ekvation [1] erhålls:

[1] ⇒ 0 < 0,45 – 0,55y  
y < 0,818

Alltså måste y vara mindre än 0,818 för att alternativ 1 skall vara bäst enligt kriterium 2, men eftersom y enligt förutsättningarna måste vara större än 0,909, innebär detta att alternativ 2 är bättre än alternativ 1 enligt kriterium 2.

_Altalativ 2 är bäst._
Kriterium 3: MEDEL (Det medelvärdet av den förväntade nyttan)
Först måste ett linjärt uttryck för medelvärdena av den förväntade nyttan för båda alternativen skapas.

\[
\text{Medel(E(Alt1))} = 10 \int (p_1 * x + (1 - p_1)) \, dp_1 = 10 \left[ \frac{p_1^2 x}{2} + \frac{p_1^1 p_1^1}{2} \right]_{0.05}^{0.15} = 0.15 x + 0.05 y = 10 + 0.15 - 0.05 = 11
\]

\[
\text{Medel(E(Alt1))} = 10 \left( \frac{0.15^2 x}{2} + 0.15 - \frac{0.05^2 x}{2} + 0.05 \right) = 10 (0.01x + 0.09) = 0.1x + 0.9
\]

\[
\text{Medel(E(Alt1))} = 25 \int x + y - p_2 (x + y) \, dp_2 = 25 \left[ \frac{p_2^2 (x+y)}{2} \right]_{0.01}^{0.05} = 25 (0.05(x+y) - 0.01(x+y)) = 25 (0.0388(x+y)) = 0.97(x+y)
\]

Nu kan man uttrycka skillnaden mellan de båda alternativen.

\[
\text{Medel(E(Alt1))} - \text{Medel(E(Alt2))} = 0.1x + 0.9 - 0.97(x+y) = 0.9 - 0.87x - 0.97y
\]

Om skillnaden mellan alternativen är positiv är alternativ 1 bäst.

Om: \(0 < 0.9 - 0.87x - 0.97y\) \(\Rightarrow\) Alt1 är bäst.

\(\Rightarrow 0 < 0.465 - 0.535y\)
\(y < 0.869\)

Alltså måste \(y\) vara mindre än 0.869 för att alternativ 1 skall vara bäst enligt kriterium 3, men eftersom man sedan tidigare vet att \(y\) inte kan ha värden lägre än 0.909 är alternativ 2 det bästa alternativet enligt kriterium 3.

\textit{Alternativ 2 är bäst.}
Bilaga 2, Betalningsflöden för investeringskalkyler

Denna tabell finns endast med i den tryckta versionen av rapporten!
Investeringskalkyl för sprinklersystem i Avesta Sheffield's kallvalsverk. Alla in- och utbetalningar är i enheten mkr. ”Skadekostnad” innebär en sänkning av skadekostnaden.

Denna tabell finns endast med i den tryckta versionen av rapporten!
Bilaga 3, Exempel på ”The Dutch Book Theorem”

Antag att den avgörande matchen i SM-finalen i hockey mellan Djurgården och Brynäs skall spelas i morgon och att en vän säger att sannolikheten att Djurgården vinner är 0,7 (sannolikheten att Djurgården förlorar är 0,3) och sannolikheten att Brynäs vinner är 0,25 (sannolikheten att Brynäs förlorar är 0,75). Om detta vore personens subjektiva sannolikheter skulle han/hon gå med på följande två vad:

Vad 1    Han/hon vinner 700 SEK om Djurgården förlorar.
        Du vinner 300 SEK om Djurgården vinner.

Vad 2    Du vinner 750 SEK om Brynäs vinner.
        Han/hon vinner 250 SEK om Brynäs förlorar.

Notera att personens förväntade värde i båda vaden är 0 (700 ⋅ 0,3 – 300 ⋅ 0,7 = 0 och 250 ⋅ 0,75 – 750 ⋅ 0,25 = 0). Resultatet av vadslagningen kommer att bli positivt för dig; om Djurgården vinner får du 300 SEK från första vadet och din vän får 250 kronor genom det andra vadet. Alltså tjänar du 50 SEK då. Om däremot Brynäs skulle vinna erhåller din vän 700 SEK genom första vadet, men du erhåller 750 SEK genom det andra vadet alltså tjänar du även då 50 kr. Genom att inte ange sannolikheterna enligt de regler som precis redovisats har din vän alltså förvandlats till en vinstmaskin, för dig.

Denna typ av ofördelaktiga vad går att formulera om någon bryter mot de regler som redovisats ovan för hur sannolikhet skall anges. Eftersom det är logiskt att en beslutsfattare undviker en säker förlust i sitt agerande kan man förutsätta att han/hon anger sannolikheter i enlighet med de ovan presenterade reglerna.