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ABSTRACT

That a load balancing strategy using stale information care-
lessly will incur system performance degradation is easy to
verify. However it is not so obvious that routing a customer
to the expected shortest queue has the same problem when
information for decision is stale. We consider a queueing
system with a load balancer and a pool of identical FCFS
queues in parallel. The arrival process is assumed to be
Poisson and the service times have identical independent
exponential distributions. The pool of servers informs the
load balancer the number of customers in each server at
some regularly spaced time instances. The load balancer
routes each customer to the expected shortest queue based
on available stale information and elapsed time since the
last time instance of system sate information updating. The
system performance analysis of this type of model is usu-
ally difficult because the involved state space is very large.
However when taking the number of servers to the infinite
limit, we have a set of differential equations which is easier
to handle than the finite case. Using the approximation of
infinite number of severs, we show that the average wait-
ing time for the system is not always minimized by routing
each customer to the expected shortest queue when infor-
mation for decision is stale.
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1 Introduction

Load Balancing (LB) improves network performance by
distributing traffic efficiently so that individual servers are
not overwhelmed by sudden fluctuations in activity [3, 13].
In a large Internet web site, balancing incoming requests
evenly among many computers is a critical and sometimes
tricky task [16, 17]. Despite fruitful theoretical results on
both static and dynamic LB strategies[19, 18], current en-
gineering practices, such as web server farm/cluster archi-
tecting, is calling for robust LB algorithms that can exploit
imperfect system state information effectively.

Routing a customer to the shortest queue when some mild
constraint on the service time distribution is satisfied is a
conventional wisdom in LB for identical servers in par-
allel. However sticking to the rule when the assumption
of perfect information is broken will cause performance
troubles as a previous study reveals [14]. In this paper,
a seemly “good” LB algorithm which routes customers to
the expected shortest queue is studied. The queueing sys-
tem under consideration consists a pool of identical servers
in parallel, each with its own queue. Customers arrive ac-
cording to a Poisson process and immediately upon arrival
must join one of the queues thereafter to be served on a
first-come first-served basis, with no jockeying or defec-
tion allowed. The service times have identical indepen-
dent exponential distributions and are independent of the
arrival process and the decisions of customers. The pool of
servers announces the state of the system, i.e. the number
of customers waiting and being served at each server, at
some regularly spaced time instance called state informa-
tion update instance. When a customer arrives, the load
balancer of the system know the elapsed time since the
last announcement plus the stale state information for deci-
sion. The load balancer routs each customer to the expected
shortest queue based on available stale information, which
is called the expected shortest queue strategy (ESQS) here-
after. Other well known strategies include random selection
and round robin.

The problem of deciding which queue to join when the full
and exact state information is available has been studied
by many authors. Haight [8] and Kingman [12] considered
the dynamics of two servers in parallel when arrivals join
the shortest queue. Winston [22] and Weber [20] showed
that the shortest queue strategy for NV servers in parallel
is optimal when the service time distribution has a non-
decreasing failure rate and arbitrary arrival. In practice,
however, the full and exact state information may be dif-
ficult to obtain and maintain, see for example Eager [7]
and Zhou [23]. Hjalmtysson and Whitt [11] studied the
resource sharing of parallel queues by periodically redis-
tribute customers based on fresh state information. Mitzen-
macher [14] considered a system with period state infor-
mation update similar to ours. He showed that joining the



shortest queue based on stale state information is better
than the strategy of random selection when the state infor-
mation is not too old. Motivated by Mitzenmacher’s work,
Dahlin [5] proposed an algorithm to exploit the stale state
information. His simulation results show that the system
employing the algorithm gives shorter waiting times than
joining queues at random. Even when the state information
is very old, his algorithm will not perform worse than the
random strategy.

In the quest for the optimal LB strategy with stale state
information, one may first consider the optimality of the
strategy that minimizes each customer’s expected waiting
time. When the distribution of service times is exponen-
tial, routing a customer to the expected shortest queue will
minimize this customer’s expected waiting time. However
finding the expected shortest queue is usually very com-
putationally demanding as the available state information
is stale. Even if a load balancer has access to unlimited
computational resources, the overall system performance
is still questionable as the following cases suggest. The
fact that decentralized routing based on the expected short-
est delay delay may result in poor performance has been
known for a long time, see for example Cohen and Kelley
[4] and Bersekas [2]. There are several other queueing sce-
narios where individual optimality does not give a system
optimum. Bell and Stidham [1] considered the case that
customers only know the service time distribution and the
cost of waiting in each server upon arrival to N parallel
servers. Whitt [21] found that the average waiting time of
the system is not minimized by having each customer min-
imize his expected waiting time upon arrival to N parallel
servers with a certain service time distribution. In this pa-
per numerical examples show that the average queue length
and average waiting time of the system is not minimized by
routing each customer to the expected shortest queue when
the available system state information for load balancing
is stale. So this is yet another queueing scenario in which
the individual optimum does not coincide with the system
optimum.

The rest of this paper is organized as follows. In Section
2 we derive differential equations for the system dynam-
ics. Both the case of finite and infinite number of servers
are treated. Section 3 contains the numerical results for the
case of infinite number of servers and discussions. Discus-
sions of our result from game theoretical perspective are
offered in Section 4. We summarize the paper in Section 5.

2 Dynamics of the System

2.1 System model

We consider a system consisting N FCFS servers in paral-
lel and a load balancer that dispatches incoming customers
to the servers, as Fig. 1 shows. The service rates are
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Figure 1. A system consisting of a LB and N identical
servers in parallel.
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Figure 2. The servers inform the LB their states at regularly
space SIU instances: t,t + 7, t + 27, t + 37, ....

assumed to be identical and exponential distributed. The
servers inform the LB their state, i.e. the number of cus-
tomers in each server, at some regularly space time in-
stance which is called state information update (SIU) in-
stance subsequently, as Fig. 2 shows. The time between
two SIU instances is denoted as 7 and assumed to be a con-
stant.

We first consider when there are a finite number of servers
in the pool. Because the system of differential equations
is difficult to solve analytically or numerically especially
when the number of server is large, we then consider the
limit situation in which the number of servers is infinite.
Even though the analytical solution is still difficult to ob-
tain, the numerical result reveals some important propri-
eties of the system dynamics. The infinite server system
approximation seems strange at first since an arrival is guar-
anteed to find an empty server when the state information
is fresh. When the state information is stale, an arrival may
join the queue of a busy server due to errors in the predica-
tion regardless the number of servers.

2.2 Finite number of servers

Let V be the total number of servers in the server pool;
k = [k1,k2,...,kn] be the vector of the number of cus-
tomers in each server; k = [I?:l,fcz, ceey I%N] be the vector
of the predicted number of customers in each server. For
convenience, let ¢; denote [0,...,0,1,0,...,0]. The ar-
N’ N

i N—i



rival process is assumed to be Poisson. Let X be the arrival
rate per server to the system. The total arrival rate to the
system is NA.

Since all customers make decisions using prediction, the
arrival rate to a server depends not only on how many cus-
tomers are predicted in this server but also how many cus-
tomers are predicted in other servers. When the predicted
number of customers is distributed as k, the arrival rate to
the server ¢ at time ¢ is given by,

(4) N)\/n ifie A
() = 1
¢k ®) {0 otherwise @)

where A = {i : k; = min(l%l,lgzz,...,léN)} is the set of
servers having less customers than the others in the pool
and n is the number of elements in the set A. When a
few servers are being predicted to have the same number
of customers and to have less customers than any other in
the pool, the total arrival rate IV X is divided into n portions.
Each server that is predicted to have the smallest number of
customers receives a portion of NA/n.

The state of the system is characterized by k and k jointly
because k and k may differ except at the moment when
SIU happens. Let pk,f((t) be the probability that the system

is at the state (k, k). When the system is initially empty,

Pk,l}(o) = )

1 ifk=k=0

0 otherwise
For brevity, we only consider states that are not near the
boundary, i.e. whenk; > 1andk; > 1, k=1,...,Nin
the following discussion.

Conditioned on the current state (k, k), the probability that
the state is unchanged in a small time interval At is

N
1-23" ¢ () At — 2N pAt + o(At).
=1

Conditioned on the current state (k — d;, k), the probability
that the state changes to (k, k) in a small time interval At
is

o) (H)At + o(At).

Conditioned on the current state (k, k — 4;), the probability
that the state changes to (k, k) in a small time interval At
is

o) (DAL + o(Ab).

Conditioned on the current state (k + d;, k) or (k, k +8;),
the probability that the state changes to (k, k) in a small
time interval At is

uAt + o(At).

Conditioned on all other current state, the probability that

the state changes to (k, k) in a small time interval At is
o(At).

Thus the system evolves from time ¢ to ¢t + At according to
the following rule,

N
P i(t + At) =p, (t) (1 -2)" ¢l‘{) (t)At — 2NpAt>
i=1

N
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N
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N
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Moving p, (t) from the right side to the left, dividing both
sides by At and letting At — 0, we have the following
differential equation,

N
2 pri®) =~ 2p, 5 1) (Z op () + Nu)

i=1

N
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At the SIU instance ¢, an arrival will have the full and the
exact information about how many customers are in each
queue, therefore,

limsTt Eh Pk h(s) if l; =k
~(t) = ’ 5
Piei(®) {0 otherwise ®)

The system of differential equation is nonlinear because
Pk depends on the state dependent arrival rate. Like most
nonlinear differential equations, a closed analytical solu-
tion is unlikely to be found. Let us investigate the prospect
of a numerical solution. When the number of servers in
the pool is large, we have a very large state space. As-
sume that the system of differential equations is truncated
so the maximal number of customers per server is kmax-
When we have N servers, the total number of states is
(kmax + 1)2. The number of states increases exponen-
tially as IV increases. Therefore (4) is numerically in-
tractable when N is large.



However when we let N — oo,we can actually have a set
of differential equations that are simpler but yet powerful
enough to reveal the dynamics of the system.

2.3 Approximated analysis using infinite
number of servers

Let p;,;(t) be the percentage of servers having ¢ customers
but being predicted to have j customers at time ¢. Though
we do not explicitly model how many customers, real and
predicted, in each queue, knowing p; ;(t) is enough to de-
rive the average number of customers per server in the sys-
tem.

Let 9;(t) be the arrival rate to servers that are predicted
to have j customers each. Since new arrivals are routed
to servers that are predicted having 0 customers, v (t) is
the ratio between the average arrival rate per server A and
the percentage of servers that are predicted to have 0 cus-
tomers. Thus,

A D ppro(t) ifj=0
i(t) = ’ 6
¥i®) {0 otherwise ©)
When the system is initially empty,
1 ifi=0andj=0
i+ (0) = ] 7
pii(0) {0 otherwise )

The system evolves from time ¢ to time ¢ + At according
to the following rules:

wheni =0and j =0,

Po,0(t + At) =po,o(t) (1 — 2¢o(t)At)
+ p1o(t)pAt + po,1 (t)pAt + o(At);
(8)

wheni =0andj > 1,

Po,;j(t + At) =po ;(t) (1 — 24, (t) At — pAt)
+ po,j—1(t)—1(t)At
+ P15 (t)pAt + Po,j+1 (t)p,At + O(At);
)

when¢ > 1landj =0,

pio(t + At) =p;o(t) (1 — 2¢0(t) At — pAt)
+ pi—1,0(t)o(t)At

+ Pit1,0 (t),U,At + pin (t)/LAt + O(At);
(10)

wheni > 1landj > 1,

pii(t+ At) =p; ;(t) (1 — 2¢;(t) At — 2uAt)
+ pic1,; ()Y (0) At + ps i1 ()1 (¢) At

+ Pit1,; () pAt + p; j1 () pAt + o(At).
(11)

Moving po,o(t), po,;(t), pi,o(t) and p; ;(t) from the right
sides of (8),(9), (10) and (11) to the left sides, dividing both
sides by At and letting At — 0, we have the following
system of differential equations, wheni = 0 and j = 0,

d

apo,o(t) = —2po,0(t)Yo(t) + p1,o(t) 1 + po,1 () (12)

wheni=0andj =1,

4 (6 = — 0 ()20 () + )

dt
+ po,j—1()Yj-1(t) + p1,; () + po,j+1(t)p;
(13)

wheni =1andj =0,

%Pi,o(t) = —pi,o(t)(2¢0(t) + p)
+ pi—1,0(t)%0(t) + Piv10()p + pi ()
(14)
wheni > 1landj > 1,
d
gk () == 2pi;(O)(W¥;(t) + )
+pi-1,; ()¢ () + pij—1(O)j-1(t)
+ Pir1,i (O + pijra () p. (15)

At the SIU instance t, an arrival knows the percentage of
servers having ¢ customers in the system. So,

limsTt Ekpik(s) Ifj =1
i i (t) = ’ . 16
Pii (®) {0 otherwise (16)

The system of differential equations for the case of an in-
finite number of servers is still nonlinear and analytical in-
tractable. But now it is solvable by numerical methods.

3 Numerical Results

We first truncate the system of differential equations (12),
(13), (14) and (15) to a finite number of 4:s and j:s, i.e.
0 <4 < max = 100and 0 < j < Jmax = 100. The
truncated differential equations are then solved numerically
using ODEPACK [10]. For convenience, we assume the
service rate of each server u = 1 in the following discus-
sion. For stability reasons, both for the system itself and



the numerical solutions, we choose to show the result when
A =0.5.

We are interested in the average number of customers per
server fi(t) which can be calculated as follows once the
distribution of the system states [p; ;(t)] is known,

tmax Jmax

ﬁ(t) = Z zpi’j(t) (17)

i
=0 j=

Fig. 3 shows the transient behavior of 7(t) for different
SIU intervals 7 when the system is initially empty. From
Fig. 3, we see that i(¢) oscillates. The period of oscillation
is equal to the period of the SIU updates. The amplitude of
oscillation increases as SIU interval increases.

Fig. 4 shows the transient behavior of 7(t) between two
SIU updates for different SIU intervals = when the influ-
ence of the initial state can be neglected. We scale different
SIU intervals to 1 in order to reveal the trend in the curves.
From Fig. 4 we see that just before each SIU update in-
stance 7i(t) reaches maximum, and 7i(t) starts to drop right
after each SIU update instance. Fig. 4 also shows that for
the fixed arrival rate A = 0.5, the maximum of 7(t) in-
creases, but not indefinitely, as the SIU update interval in-
creases.

When the SIU interval is large, the average number of cus-
tomers in the system is not minimized by routing each cus-
tomer to the expected shortest queue. In Fig. 4(b) the min-
imum of the average queue length per server 7i(t) between
two SIU instances, which is about 1.11 , is greater than
1.0 which can be obtained if random selection strategy is
used. Hence, by Little’s law, the average waiting time for
the system is not minimized by routing each customer to
the expected shortest queue.

Fig. 5 shows how the maximum of 7(¢) increases with ar-
rival rate A when the SIU interval 7 is fixed to 50 seconds.
In the same figure, we also plot the average number of cus-
tomers per server in steady state for the random selection
strategy 1. For the ESQS, the maximum of n(t) increases
faster and is always greater than the average number of cus-
tomers per server for the random selection. Therefore it
suggests that the system using the ESQS becomes unstable
earlier than the system using the random strategy when the
arrival rate per server X is close to 1 or the utilization of
servers is close to 1.

4 Discussions

The system under consideration can also be viewed from
another perspective. Let us call the system described in

1When the random selection is used, the arrival process to each server
is Poisson. Therefore the average number of customers per server i =
A/(1 — ), where X isthe arrival rate per server.
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Figure 3. Transient behavior of the average number of cus-
tomers per server between time 0 second and 200 seconds
for different SIU intervals 7 when the system is initially
empty.
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Figure 4. Transient behavior of the average number of cus-
tomers per server between two SIU instance for different
SIU intervals 7 when the influence of the initial state can
be neglected. We scales different SIU intervals to 1 in order
to reveal the trend in curves.
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Figure 5. The maximum of the average number of cus-
tomers per server for the ESQS vs. arrival rate per server
when the influence of initial state can be neglected. We also
plot the average number of customers per server in steady
state when the random selection strategy is used.

Section 2.1 system A. Consider a similar system B. In sys-
tem B, the load balancer is removed but each arrival decides
which queue to join based on stale state information and the
elapsed time since last SIU update instance. Now we have a
queueing game that will be played by all customers. Every
customer tries to minimize his own waiting time. Clearly
the optimal decision of each customer also depends on all
early arrivals. When almost everyone joins the expected
shortest queue based on stale information, no one will ben-
efit a shorter waiting time by deviating the common strat-
egy. In game theory literatures [9, 6, 15], such a situation
is refereed as Wardrop equilibrium (for infinite numer of
players) or Nash equilibrium (for finite number of players).
By definition, system B in Wardrop equilibrium is equiva-
lent to System A.

From game theory point of view, that minimizing the ex-
pected waiting time of each customer is not equivalent to
minimizing the average waiting time of the system is clear.
However when there are finite numer of servers in our sys-
tem, this fact is difficult to verify through equations that
governs the system dynamics. The approximation using
infinite number of servers turns out be effective to reveal
that in our system Wardop equilibrium does not bring the
system optimal solution.

5 Conclusions

This article studies a LB strategy of routing an arrival to the
expected shortest queue among a pool of identical servers
in parallel when the available state information is stale.
When the number of servers is finite, we derive differen-
tial equations that reflect the system dynamics. Because of
the analytical and numerical intractability of these differen-
tial equations, we consider the limiting situation in which
the number of servers is infinite. It turns out that the set
of differential equations for an infinite number of servers
can be solved numerically. The numerical solution presents
some expected behaviors of the system dynamics such as
the oscillation and some unexpected behaviors such as the
extreme of the average number of customers per server in-
creases as the SIU interval grows. The numerical solution
also shows that LB through routing each customer to the
expected shortest queue is not always a good strategy in or-
der to achieve the minimum of average waiting time when
the available information for decision is stale. However for
the system under consideration the optimum load balanc-
ing strategy that minimizes the average waiting time is still
unresolved and is a subject of future work.
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