An Eye Tracking Study of Swedish Filler-Gap Dependencies: Processing Relative Clause Extractions

Tutunjian, Damon; Heinat, Fredrik; Klingvall, Eva; Wiklund, Anna-Lena

2015

Document Version:
Publisher’s PDF, also known as Version of record

Link to publication

Citation for published version (APA):
An eye-tracking study of Swedish filler-gap dependencies: Processing relative clause extractions
Damon Tutunjian*, Fredrik Heinat**, Eva Klingvall*, and Anna-Lena Wiklund*
Lund University and Linnaeus University**
daamon.tutunjian@england.lu.se, fredrik.heinat@imu.se, eva.klingvall@englund.lu.se, anna.lenawiklund@lunduniversity.lu.se

Introduction

Complex noun phrases involving relative clauses (1) are standardly treated as instances of “strong islands” structural configurations into which a filler-gap dependency (FGD) cannot be formed between the filler (those kinds of flowers) and the gap (3) (Ross, 1967, den Dikken & Szabolcsi, 2002). This constraint is widely assumed to be universal.

Unexpectedly, Swedish and the other Mainland Scandinavian languages allow relative clause extractions (RCEs) (2) (Engdahl & Ejerhed, 1982; Eretckh-Shir, 1975), thus presenting a challenge to the universality of island constraints.

Existing accounts for the Swedish data

• Discourse-organizational factors (Eretckh-Shir & Lapin, 1979)
• Island oblivion by way of covert resumption (Cirque, 1986)
• Structural reanalysis during parsing (Kush et al., 2013)

Unfortunately, none of these accounts stands up under closer scrutiny (see Christensen & Nyvad, 2014; Engdahl, 1997; Heinat & Wiklund, 2015; Lindahl, 2015; Müller, 2015). Thus, what drives the apparent felicity of Swedish RCEs remains unidentified.

Approaching the question via processing

• No on-line processing data exists for Swedish.
• Not clear whether processing patterns track intuitive well-formedness.

First step:
• Look for basic differences in processing between Swedish RCEs and other FGDs at the embedded verb (tvättade) and the following PP region (på bensinmacken) (see examples 34) where integration is presumed to occur, while controlling for the possible influence of non-structural factors (e.g., working memory), which might affect the processing of FGDs.

Second step:
• Two studies suggest that in acceptability judgments and in online processing, only non-island should show any modulating effects from plausibility and working memory on any primary manipulation.
• Sprouse et al. (2012) found no evidence that acceptability-based island-effects show any modulation from individual differences in general processing resource capacity, as measured via two Working Memory Span (WMS) tasks and grammaticality judgement data (cf. Hofmeister & Sag, 2010).
• Traxler and Pickering (1996) demonstrated via eye tracking that manipulations to the plausibility of a filler as a continuation of a verb only affected integration for non-island structures, with no differences being found for island structures.

If correct, the presence of an interaction between structural and non-structural factors on Swedish RCEs could then serve as a positive heuristic for non-island status. This would help to confirm that processing of such structures is in-line with their intuitive acceptability.

Method

Eye-tracking While Reading (Eyelink 1000 tower mount)

Reversal Digit Span (DS) (adapted into Swedish from MacWhinney et al., 2001).
Participants hear a series of digits (3-9 infinite set size) and then enter them on a computer keyboard in reverse.

Automated O-span task (OS) (adapted into Swedish from Unsworth, et al., 2005). Mouse-driven recall task.
Participants complete three interleaved sets: math operation and letter recall, each set size (3-7 count). Total of 75 letters and 75 math problems.

Participants:
48 native Swedish speakers

Materials

Eighty long-distance FSG sentence items (constructed using the Korg corpus), each appearing in four structural variants (Structure) (3-6) and sixty distractors items rotated over four lists.

(3) That-clause extraction (TCE) (non-island)
Såna där gamla skottkärnor såg jag en man alltid
such old wheelbarrows saw I that a man always washed [-] at gas-station-the when

(4) Restrictive relative clause extraction (RCE) (7-island)
Såna där gamla skottkärnor såg jag en man som förstannat
such old wheelbarrows saw I a man that always washed [-] at gas-station-the when

(5) Non-restrictive relative clause extraction (nRCE) (island)
Såna där gamla skottkärnor såg jag en man som tvättade
such old wheelbarrows saw I a man that by-the-way washed [-] at gas-station-the when

(6) Pseudo-coordinated relative clause extraction (pRCE) (7-island with intransitive light verb as a control) Såna där gamla skottkärnor såg jag en man som tvättade och förstannat [ipt] på bensinmacken [-] such old wheelbarrows saw I a man that always stood and washed [-] at gas-station-the when

Eye-tracking while reading experiment

Analysis

Linear mixed models (Bates et al., 2014) to analyze log residualized fixations durations in two regions (verb and PP) for four eye-tracking measures: First Fixation Duration, Gaze Duration, Regression Path Duration (note: this measure did not produce interpretable results), and Total Duration, as well as four non-structural predictors. Translational probability of embedded verb and filler (Freux). Pragmatic coherence/contextual fit rating for non-extracted versions of each sentence (7-point scale; 24 participants) (Prag): O-span (DS); and Reverse digit span (DS)

Research goals and predictions

Use eye-tracking to test whether:
• Swedish RCEs elicit processing costs similar to locit or illicit long-distance FGDs at the embedded verb (tvättade) and the following PP region (på bensinmacken).
• Any basic structural differences are modulated by non-structural factors (e.g., pragmatic fit, and working memory).

Possible outcomes:
• Swedish RCEs will pattern more like non-islands, in line with their intuitive acceptability. Such a finding would leave us with at least two possible interpretations:
  • Swedish RCEs do not involve island structures, and thus a structural account is still needed.
  • True variation exists in island constraints
• Swedish RCEs, although intuitively acceptable will pattern more like island structures. Such a finding would disfavor “deep variation” in the island constraints themselves (see Phillips, 2013).

Conclusions

Early measures:
• RCE and TCE show similar facilitation relative to nRCE in early measures (First Fixation and Gaze Duration) at the verb (Region 1). This similarity was also present in one early measure (Gaze Duration) at the PP (Region 2). In Region 1, RCE also showed additional facilitation against the pRCE control as OS and Prag increased.

Interpretation: RCEs are processed more similarly to TCEs and are modulated by non-structural factors. They thus exhibit non-island like behavior during the first stages of filler-gap integration.

Late measures:
• For both late measures of processing in Region 1, and for Total Durations in Region 2, RCEs were processed with more ease than nRCEs, patterned more similarly to TCEs as both OS and Prag increased. In Region 1 Total Durations, nRCE also showed some facilitation against the pRCE control as Prag increased, but this could just be reflective of a late repair mechanism.

Interpretation: Swedish RCEs are processed more similarly to non-island TCEs during late stages of integration.

Summary:
• RCEs appear to be easier to process than nRCEs. Facilitation is dependent in part on non-structural factors (working memory span and pragmatic fit).
• Our study thus provides novel evidence that Swedish RCEs are not processed like syntactic islands, in line with offline intuitions.

References

This research was conducted at the Lund University Humanities Lab and was funded by a grant from the Crafoord Foundation and the Bank of Sweden Tercentenary Foundation. We thank Joost van de Weijer for his assistance with our statistical analysis.

Acknowledgements

The authors thank the funding bodies: the Swedish Research Council (Grant 621-2011-3641), the Bank of Sweden Tercentenary Foundation, and the Carlsberg Foundation. Special thanks to Silvia Amorim de Sá, Lina Atz, Liliana Braga, and Nathalie Depauw for their support throughout the project.

Table 1

<table>
<thead>
<tr>
<th>Region</th>
<th>Measure</th>
<th>Structure (Structure/OS)</th>
<th>Subject (Subject</th>
<th>Item)</th>
<th>Item</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1 (verb)</td>
<td>Fixation Duration</td>
<td>Structure/P = 0.00</td>
<td>(1 + Structure</td>
<td>Subject)</td>
<td>(1 + Item)</td>
<td>(1 + Item)</td>
</tr>
<tr>
<td></td>
<td>Gaze Duration</td>
<td>Structure/P = 0.00</td>
<td>(1 + Structure</td>
<td>Subject)</td>
<td>(1 + Item)</td>
<td>(1 + Item)</td>
</tr>
<tr>
<td></td>
<td>Regression Path Duration</td>
<td>Structure/P = 0.00</td>
<td>(1 + Structure</td>
<td>Subject)</td>
<td>(1 + Item)</td>
<td>(1 + Item)</td>
</tr>
<tr>
<td></td>
<td>Total Duration</td>
<td>Structure/P = 0.00</td>
<td>(1 + Structure</td>
<td>Subject)</td>
<td>(1 + Item)</td>
<td>(1 + Item)</td>
</tr>
</tbody>
</table>

*Note: model specifications represent the first converging model minus predictors that did not improve model fit.