Match Theory and the Asymmetry Problem
An example from Stockholm Swedish
Ishihara, Shinichiro; Myrberg, Sara

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Background

In Match Theory (Selkirk 2011), the syntax–prosody mapping constraints per se never allow non-isomorphism between syntax and prosody. Non-isomorphism arises exclusively through the interaction with other constraints (Prosodic Wellformedness Constraints, PWC, or other interface constraints, e.g., information structure-related constraints).

Minimal Interface Hypothesis (MIH)

Match constraints are the sole constraints which refer to syntactic categories (i.e., No constraints like ALIGN-XP, WRAP-XP and STRESS-XP).

1 INTRODUCTION

2 DATA

The Asymmetry Problem

Alignment Theory (McCarthy & Prince 1993, Selkirk 1996) allows separate ranking of L- and R-alignment w.r.t. relevant PWCs (e.g., ALIGN-R >> PWC >> ALIGN-L).

Such asymmetry is not possible in Match Theory.

When separate ranking of L- and R-edge mapping is called for, how can it be dealt with in Match Theory?

Asymmetry in Stockholm Swedish (SSw)

Embedded clauses (ECs) may or may not be realized as an (embedded) i, as in (1a)/(2a) and (1b)/(2b), respectively.

Main clause material to the right of an EC may form an additional i, as in (1c).

Main clause material to the left of an EC does not form an additional i, as in (2c).

c. *{ { . . . } } i

3 ACCOUNT

i-phrase options in SSw

(* i-head)

(1) \{ . . . CP . . . \}

a. \{ . . . x . . . \}

b. \{ . . . x . . . \}

c. \{ { . . . } \}, \{ { . . . } \}

(2) \{ . . . CP \}

a. \{ . . . \}

b. \{ . . . \}

c. *\{ { . . . } \}, \{ { . . . } \}

PWCs related to prosodic heads cause the asymmetry

An i cannot be inserted if it triggers the insertion of an additional i-head.

i-insertion to the right of an embedded i does not add an additional i-head (1c), while insertion to the left does add an additional i-head (2c).

This is because i-heads are right aligned in SSw.

3 PWCs

ALIGN-HEAD(i)-R

Align the right boundary of every i with its head. (Truckenbrodt 1995:119, Féry 2013:696)

*P-HEAD(i)

Avoid i-heads.

EQUALSiSTERS

Sister nodes in prosodic structure are instantiations of the same prosodic category. (Myrberg 2010, 2013)

Crucial rankings

\[\text{ALIGN-HEAD(i)-R} \]

\[\text{MATCH-SP} \]

\[\text{MATCH-PS} \]

\[\text{*P-HEAD(i)} \]

\[\text{EQUALSiSTERS} \]

Below is the ranking where (1) and (2) render divergent results. Other rankings in the handout.

This research is partly funded by the Swedish Research Council.