Match Theory and the Asymmetry Problem
An example from Stockholm Swedish
Ishihara, Shinichiro; Myrberg, Sara

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Asymmetry Problem and Match Theory

An example from Stockholm Swedish

Shinichiro Ishihara & Sara Myrberg, SOL, Lund University
International Conference on Tone and Intonation TIE 2018, University of Gothenburg

Extending the core idea of Match Theory, we propose the Minimal Interface Hypothesis (MIH). It states that Match be the sole constraints referring to syntactic XPs. MIH raises several theoretical questions, including the Asymmetry Problem. This poster illustrates how the Asymmetry Problem can be solved in Stockholm Swedish.

1. INTRODUCTION

The Asymmetry Problem

Alignment Theory (McCarthy & Prince 1993, Selkirk 1996) allows separate ranking of L- and R-alignment w.r.t. relevant PWCs (e.g., ALIGN-R >> PWC >> ALIGN-L).

Such asymmetry is not possible in Match Theory.

When separate ranking of L- and R-edge mapping is called for, how can i it be dealt with in Match Theory?

2. DATA

PWCs related to prosodic heads cause the asymmetry

An i cannot be inserted if it triggers the insertion of an additional i-head.

i-insertion to the right of an embedded i does not add an additional i-head (1c), while insertion to the left does add an additional i-head (2c).

This is because i-heads are right aligned in SSW.

3. ACCOUNT

1-phrasing options in SSW

(1) \([\ldots \text{CP} \ldots \text{CP}] \)
 a. \(\{\ldots \times \}\)
 b. \{ \ldots \times \}
 c. \{ \ldots \}

(2) \(\ldots \text{CP} \ldots \text{CP} \)
 a. \{ \ldots \}
 b. \{ \ldots \times \}
 c. \{ \ldots \times \}

PWCs

ALIGN-HEAD(i)-R

Align the right boundary of every i with its head.

*P-HEAD(i)

Avoid i-heads.

Crucial rankings

\(\text{ALIGN-HEAD}(i)-R\) \(\text{MATCH-SP}\) \(\text{MATCH-PS}\) \(\text{*P-HEAD}(i)\)

\(\text{EQUALSISTERS}\)

Below is the ranking where (1) and (2) render divergent results. Other rankings in the handout.

This research is partly funded by The Swedish Research Council.