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Finding a P ath of Sup erlogarithmic Length

Andreas Björklund and Thore Husfeldt

Departmen t of Computer Science, Lund Univ ersit y

Abstract. W e consider the problem of �nding a long, simple path in an

undirected graph. W e presen t a p olynomial-time algorithm that �nds

a path of length 

�

(log L= log log L )2
�

, where L denotes the length of

the longest simple path in the graph. This establishes the p erformance

ratio O
�

jV j(log log jV j= log jV j)2
�

for the Longest P ath problem, where

V denotes the graph's v ertices.

1 In tro duction

Giv en an un w eigh ted, undirected graph G = ( V; E) the longest p ath problem is to

�nd the longest sequence of distinct v ertices v1 � � � vk suc h that vi vi +1 2 E . This

is a classical NP-hard problem (n um b er ND29 in Garey and Johnson [5]) with

a considerable b o dy of researc h dev oted to it, y et its appro ximabilit y remains

elusiv e:

�F or most canonical NP-hard problems, either dramatically impro v ed ap-

pro ximation algorithms ha v e b een devised, or strong negativ e results ha v e

b een established, leading to a substan tially impro v ed understanding of the

appro ximabilit y of these problems. Ho w ev er, there is one problem whic h has

resisted all attempts at devising either p ositiv e or negativ e results � longest

paths and cycles in undirected graphs. Essen tially , there is no kno wn algo-

rithm whic h guaran tees appro ximation ratio b etter than jV j=p olylog jV j and

there are no hardness of appro ximation results that explain this situation.� [4]

Indeed, the quoted ratio has b een obtained only for sp ecial classes of graphs

(for example, Hamiltonian graphs), while in the general case the b est kno wn

ratio prior to the presen t pap er w as of order jV j=log jV j.

W e presen t a p olynomial-time algorithm for the general case that �nds a

path of length 

�
(log L= log logL )2

�
in a graph with longest path length L ; the

b est previous b ound w as 
(log L ). This corresp onds to a p erformance ratio of

order

O
�

jV j
�
log logjV j

� 2

log2 jV j

�
: (1)

F or b ounded degree graphs w e impro v e the ratio to O
�
jV j log logjV j=log2 jV j

�
.

F or three-connected graphs w e establish the p erormance ratio (1) for the longest

cycle problem.
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Previous w ork

The �rst appro ximation algorithms for longest path are due to Monien [7] and

Bo dlaender [2], b oth �nding a path of length 
(log L= log logL ). Neither of these

algorithms can b e used to �nd a log jV j path if it exists, but P apadimitriou

and Y annak akis conjectured that suc h a p olynomial-time algorithm exists [8].

This w as con�rmed b y Alon, Y uster, and Zwic k [1], in tro ducing the imp ortan t

metho d of c olour-c o ding . Esp ecially , this algorithm �nds an 
(log L )-path and

corresp onds to a p erformance ratio of

O
�

jV j
log jV j

�
;

whic h is the b est ratio kno wn prior to the presen t pap er.

The problem has receiv ed additional study for restricted classes of graphs,

where the � log jV j -barrier� has b een brok en b y Vish w anathan [9]. His algorithm

ac hiev es the same p erformance ratio (1) as ours, but w orks only for Hamiltonian

graphs. In sp arse Hamiltonian graphs, F eder, Mot w ani, and Subi [4] �nd ev en

longer paths.

The hardness results for this problem are mainly due to Karger, Mot w ani,

and Ramkumar [6]: The longest path problem do es not b elong to APX and

cannot b e appro ximated within 2log1� � jV j
unless NP � DTIME

�
2O(log 1=� n )

�
for

an y � > 0.

2 Preliminaries

In the remainder, w e consider a connected graph G = ( V; E) with n = jV j
v ertices and e = jE j edges. W e write G[W ] for the graph induced b y the v ertex

set W .

P aths and cycles

The length of a path and a cycle is its n um b er of edges. The length of a cycle C
is denoted l (C). A k -cycle is a cycle of length k , a k+

-cycle is a cycle of length

k or larger. A k -path and k+
-path is de�ned similarly . F or v ertices x and y, an

xy -path is a (simple) path from x to y, and if P is a path con taining u and v
w e write P [u; v] for the subpath from u to v. W e let L G (v) denote the length

of the longest path from a v ertex v in the graph G, and sometimes abbreviate

L W (v) = L G[W ](v). The p ath length of G is maxv2 V L G(v).

W e need the follo wing result, Theorem 5.3(i) of [2]:

Theorem 1 (Bo dlaender) Given a gr aph, two of its vertic es s; t , and an inte ger

k , one c an �nd a k+
-p ath fr om s to t (if it exists) in time O

�
(2k)!22k n + e

�
.

Corollary 1 A k+
-cycle thr ough a given vertex c an b e found in time t (k) =

O
�
((2k)!22k n + e)n

�
, if it exists.



Pr o of. Let s b e the giv en v ertex. F or all neigh b ours t of s apply the Theorem

on the graph with the edge st remo v ed. ut

W e also need the follo wing easy lemma.

Lemma 1 If a c onne cte d gr aph c ontains a p ath of length r then every vertex is

an endp oint of a p ath of length at le ast

1
2 r .

Pr o of. Giv en v ertices u; v 2 V let d(u; v) denote the length of the shortest path

b et w een u and v.

Let P = p0 � � � pr b e a path and let v b e a v ertex. Find i minimising d(pi ; v).

By minimalit y there is a path Q from v to pi that con tains no other v ertices

from P . No w either QP [pi ; pr ] or QP [pi ; p0] has length at least

1
2 r . ut

The next lemma is cen tral to our construction: Assume that a v ertex v orig-

inates a long path P and v lies on a cycle C ; then the remo v al of C decomp oses

G in to connected comp onen ts, one of whic h m ust con tain a large part of P .

Lemma 2 Assume that a c onne cte d gr aph G c ontains a simple p ath P of length

L G (v) > 1 originating in vertex v. Ther e exists a c onne cte d c omp onent G[W ] of

G[V � v] such that the fol lowing holds.

1. If G[W + v] c ontains no k+
-cycle thr ough v then every neighb our u 2 W of

v is the endp oint of a p ath of length

L W (u) � L G(v) � k:

2. If C is a cycle in G[W + v] thr ough v of length l (C) < L G[W + v](v) then ther e

exists a c onne cte d c omp onent H of G[W � C] that c ontains a neighb our u of

C � v in G[W + v]. Mor e over, every such neighb our u is the endp oint of a

p ath in H of length

L H (u) �
L G(v)
2l (C)

� 1:

Pr o of. Let r = L G(v) and P = p0 � � � pr , where p0 = v. Note that P [p1; pr ] lies

en tirely in one of the comp onen ts G[W ] of G[V � v].

First consider statemen t 1. Let u 2 W b e a neigh b our of v. Since G[W ] is

connected, there exists a path Q from u to some v ertex of P . Consider suc h a

path. The �rst v ertex pi of P encoun tered on Q m ust ha v e i < k since other-

wise the three paths vu, Q[u; pi ] and P [p0; pi ] form a k+
-cycle. Th us the path

Q[u; pi ]P [pi ; pr ] has length at least r � k + 1 > r � k.

W e pro ceed to statemen t 2. Consider an y cycle C in G[W + v] through v.

Case 1. First assume that P \ C = v, so that one comp onen t H of G[W � C]
con tains all of P except v. Let N b e the set of neigh b ours of C � v in H . First

note that N is nonempt y , since G[W ] is connected. F urthermore, the path length

of H is at least r � 1, so Lemma 1 giv es L H (u) � (r � 1)=2 for ev ery u 2 N .

Case 2. Assume instead that jP \ Cj = s > 1. En umerate the v ertices on P
from 0 to r and let i 1; : : : ; i s denote the indices of v ertices in P \ C, in particular



i 1 = 0 . Let i s+1 = r . An a v eraging argumen t sho ws that there exists j suc h

that i j +1 � i j � r=s. Consequen tly there exists a connected comp onen t H of

G(W � C) con taining a simple path of length r=s � 2. A t least one of the i j th or

i j +1 th v ertices of P m ust b elong to C � v, so the set of neigh b ours N of C � v in

H m ust b e nonempt y . As b efore, Lemma 1 ensures L H (u) � r=2s � 1 for ev ery

u 2 N , whic h establishes the b ound after noting that s � l (C). ut

3 Result and Algorithm

The construction in this section and its analysis establishes the follo wing theo-

rem, accoun ting for the p erformance ratio (1) claimed in the in tro duction in the

w orst case.

Theorem 2 If a gr aph c ontains a simple p ath of length L then we c an �nd a

simple p ath of length



� � logL

log logL

� 2
�

in p olynomial time.

3.1 Construction of the Cycle Decomp osition T ree

Giv en a v ertex v in G, our algorithm constructs a ro oted no de-w eigh ted tree Tk =
Tk (G; v), the cycle decomp osition tree. Ev ery no de of Tk is either a singleton or a

cycle no de: A singleton no de corresp onds to a single v ertex u 2 G and is denoted

hui , a cycle no de corresp onds to a cycle C with a sp eci�ed v ertex u 2 C and

is denoted hC; ui . Ev ery singleton no de has unit w eigh t and ev ery cycle no de

hC; ui has w eigh t

1
2 l (C).

The tree is constructed as follo ws. Initially Tk con tains a singleton no de hvi ,

and a call is made to the follo wing pro cedure with argumen ts G and v.

1. F or ev ery maximal connected comp onen t G[W ] of G[V � v], execute step 2.

2. Searc h for a k+
-cycle through v in G[W + v] using Theorem 1. If suc h a cycle

C is found then execute step 3. Otherwise pic k an arbitrary neigh b our u 2
G[W + v] of v, insert the no de hui and the tree edge hvihui , and recursiv ely

compute Tk
�
G[W ]; u

�
.

3. Insert the cycle no de hC; vi and the tree edge hvihC; vi . F or ev ery connected

comp onen t H of G[W � C] c ho ose an arbitrary neigh b our u 2 H of C � v, and

insert the singleton no de hui and the tree edge hC; vihui . Then, recursiv ely

compute Tk (H; u ).

Note that eac h recursiv e step constructs a tree that is connected to other

trees b y a single edge, so Tk is indeed a tree. Also note that the ancestor of ev ery

cycle no de m ust b e a singleton no de. The ro ot of Tk is hvi .



3.2 P aths in the Cycle Decomp osition T ree

The algorithm �nds a path of greatest w eigh t in Tk . This can b e done in linear

time b y depth �rst searc h. The path found in Tk represen ts a path in G, if w e

in terpret paths through cycle v ertices as follo ws. Consider a path in Tk through

a cycle v ertex hC; ui . Both neigh b ours are singleton no des, so w e consider the

subpath huihC; uihvi . By construction, v is connected to some v ertex w 2 C
with w 6= u. One of the t w o paths from u to w in C m ust ha v e length at least

half the length of C , call it P . W e will in terpret the path huihC; uihvi in Tk as a

path uP v in G. If a path ends in a cycle no de hC; ui , w e ma y asso ciate it with a

path of length l (C) � 1, b y mo ving along C from u in an y of its t w o directions.

Th us a path of w eigh t m in Tk from the ro ot to a leaf iden ti�es a path of length

at least m in G.

W e need to sho w that Tk for some small k has a path of su�cien t length:

1

Lemma 3 If G c ontains a p ath of length r � 28
starting in v then Tk = Tk (G; v)

for

k =
�

2 logr
log logr

�

c ontains a weighte d p ath of length at le ast

1
8 k2 � 1

4 k � 1.

Pr o of. W e follo w the construction of Tk in Ÿ3.1.

W e need some additional notation. F or a no de x = hwi or x = hC; wi in Tk

w e let L (x) denote the length of the longest path from w in the comp onen t G[X ]
corresp onding to the subtree ro oted at x . More precisely , for ev ery successor y of

x (including y = x), the set X con tains the corresp onding v ertices w0
(if y = hw0i

is a singleton no de) or C0
(if y = hw0; C0i is a cycle no de).

F urthermore, let S(n) denote the singleton no de c hildren of a no de n and let

C (n) denote its cycle no de c hildren. Consider an y singleton no de hvi .

Lemma 2 asserts that

L (v) � max
�

max
w2 Shvi

L (w) + k; max
hC;v i2 C hvi
w2 ShC;v i

�
2L (w) + 2

�
l (C)

�
: (2)

De�ne n(v) = w if hwi maximises the righ t hand side of the inequalit y (2)

and consider a path Q = hx0i � � � hxt i from hvi = hx0i describ ed b y these hea vy

no des. T o b e precise w e ha v e either n(xi ) = xi +1 or n(xi ) = xi +2 , in the latter

case the predecessor of hxi +2 i is a cycle no de.

W e will argue that the gaps in the sequence

L (x0) � L (x1) � � � � � L (xt ):

1

All logarithms are to the base 2 and the constan ts in v olv ed ha v e b een c hosen aiming

for simplicit y of the pro of, rather than optimalit y .



cannot b e to o large due to the inequalit y ab o v e and the fact that L (xt ) m ust b e

small (otherwise w e are done), and therefore Q con tains a lot of cycle no des or

ev en more singleton no des.

Let s denote the n um b er of cycle no des on Q. Since ev ery cycle no de has

w eigh t at least

1
2 k the total w eigh t of Q is at least

1
2 sk + ( t � s) = s( 1

2 k � 1) + t .

Consider a singleton no de that is follo w ed b y a cycle no de. There are s suc h

no des, w e will call them cycle p ar ents . Assume hxj i is the �rst cycle paren t no de.

Th us according to the �rst part of Lemma 2 its predecessors hx0i ; : : : ; hxj i satisfy

the relation L (xi +1 ) � L (xi ) � k, so

L (xj ) � r � jk � r � 1
8 k3 � 7

8 r;

since j � t � 1
8 k2

(otherwise w e are �nished) and r � k3
.

F rom the second part of Lemma 2 w e ha v e

L (xj +2 ) �
7r

16l(C)
� 1 �

r
k2 :

where w e ha v e used l (C) � 1
4 k2

(otherwise w e are �nished) and r � 4
3 k2

.

This analysis ma y b e rep eated for the subsequen t cycle paren ts as long as

their remaining length after eac h cycle no de passage is at least k3
. Note that Q

m ust pass through as man y as s0 � d 1
4 k � 1e cycle no des b efore

r
k2s0 < k 3;

at whic h p oin t the remaining path ma y b e shorter than k3
. Th us w e either ha v e

visited s � s0
cycle no des, amoun ting to a w eigh ted path Q of length at least

s( 1
2 k + 1) � 1

8 k2 � 1
4 k � 1

(remem b ering that an y t w o consecutiv e cycle no des m ust ha v e a singleton no de

in-b et w een), or there are at most s < s 0
cycle no des on Q. In that case there is a

tail of singleton no des starting with some L (x) � k3
. Since L (xj ) � L (xj +1 ) + k

for the no des on the tail, the length of the tail (and th us the w eigh t of Q) is at

least k2
. ut

3.3 Summary

Our algorithm divides the input graph in to its connected comp onen ts and p er-

forms the follo wing steps for eac h. It pic ks a v ertex v in the comp onen t and con-

structs cycle decomp osition trees Tk for all k = 6 ; : : : ; d2 logn= log logne. Corol-

lary 1 tells us that this is indeed a p olynomial time task. Moreo v er, Lemma 1

ensures that v originates a path of at least half the length of the longest path

in the comp onen t. The algorithm then �nds paths in G iden ti�ed b y the longest

w eigh ted paths in Tk in linear time. Finally , Lemma 3 establishes the desired

appro ximation ratio.



4 Extensions

4.1 Bounded Degree Graphs

As in [9], the class of graphs with their maxim um degree b ounded b y a constan t

admits a relativ e log logn-impro v emen t o v er the p erformance ratio sho wn in

this pap er. All paths of length logn can b e en umerated in p olynomial time for

these graphs. Consequen tly , w e can replace the algorithm from Theorem 1 b y

an algorithm that e�cien tly �nds cycles of logarithmic length or larger through

an y giv en v ertex if they exist.

Prop osition 1 If a c onstant de gr e e gr aph c ontains a simple p ath of length L then

we c an �nd a simple p ath of length



�

log2 L
log logL

�

in p olynomial time.

This giv es the p erformance ratio O
�
jV j log logjV j=log2 jV j

�
for the longest

path problem in constan t degree graphs.

4.2 Three-Connected Graphs

Bondy and Lo c k e [3] ha v e sho wn that ev ery 3-connected graph with path length

l m ust con tain a cycle of length at least 2l=5. Moreo v er, their construction is

easily seen to b e algorithmic and e�cien t. This implies the follo wing result on

the longest cycle problem:

Prop osition 2 If a 3-c onne cte d gr aph c ontains a simple cycle of length L then

we c an �nd a simple cycle of length



� � logL

log logL

� 2
�

in p olynomial time.

This giv es the p erformance ratio O
�
jV j(log log jV j=log jV j)2

�
for the longest

cycle problem in 3-connected graphs. Note that for 3-connected cubic graphs,

[4] sho w a consib erably b etter b ound.
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