Cloud droplet activity measurements of coated soot particles

Wittbom, Cerina; Poulsen, M B; Pei, Xianqyu; Pathak, Ravi; Hallquist, Mattias; Eriksson, Axel; Nordin, Erik; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Svenningsson, Birgitta

Published in:
Proceedings of the NOSA-FAAR Symposium 2015

2015

Link to publication

Citation for published version (APA):
Absorption and chemical properties of combustion cycle resolved in-cylinder diesel soot

V. Berg Malmborg1, M. Shen2, A. C. Eriksson3, B.B.O Waldheim4, Y. Gallo5, J. Martinsson5, P. Nilsson1, O. Andersson2, B. Johansson2, J. H. Pagels1

1Division of Ergonomics and Aerosol Technology, Lund University, Box 118, SE-22100, Lund, Sweden
2Division of Combustion Engines, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
3Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden
4Scania CV AB, Sodertalje, Sweden and Dep. Mech. Eng., Imperial College London, UK

Keywords: Diesel Soot, Soot Formation, Black Carbon, Absorption Ångström exponent

INTRODUCTION
Soot or black carbon (BC) emissions reduce air quality and increase the absorption of solar radiation in the atmosphere. Diesel engines contribute to approximately 20% of the global BC emissions (Bond et al., 2013).

Engine operating conditions alter the magnitude of particle emissions and may drastically change soot characteristics, such as light absorbance and scattering. The mechanisms and time scales of soot formation, oxidation and the transformation of soot properties in the cylinder are poorly understood.

In this project, in-cylinder particle properties are analyzed with the aim to improve soot emission modelling and to reduce toxic and climate relevant particle emissions from combustion engines.

METHOD
A heavy duty diesel engine was operated at a low load, 1200 rpm and at three levels of exhaust gas recirculation (EGR) corresponding to 21%, 15% and 13% inlet oxygen concentration (C(O2)). A method based on a fast sampling valve was used to extract a small semi-continuous aerosol flow (1lpm) from the in-cylinder gas mixture.

The aerosols were extracted at well-defined stages of the combustion cycle, measured as the crank angle (CA) position after the piston top dead center (ATDC) at 0°CA. The sampling resolution depends on the in-cylinder pressure, with a 1°CA sampling window near 10°CA (ATDC).

The diluted sample was analyzed with three on-line techniques: a Soot-Particle Aerosol Mass Spectrometer (SP-AMS), an SMPS and a 7-wavelength Aethalometer.

CONCLUSIONS
The observed in-cylinder BC mass concentration was found to be heavily dependent on the combustion cycle and EGR level (figure 1, main graph). At lower EGR, i.e. 21% and 15% inlet C(O2), the soot concentration varies more than two orders of magnitude over the combustion cycle. Furthermore, the oxidation of soot is very fast at low EGR resulting in low net soot emissions.

The absorption Ångström exponent (αabs) was determined at each sampled point of the combustion cycle. Late in the cycle, the αabs is low and the particles are “black” or graphite-like. At an early stage of combustion, there is an increase in particle “brownness” with high αabs, possibly due to absorbing organic carbon. Increasing the EGR also tends to result in more “brown” particles throughout the combustion cycle.

The SP-AMS analysis indicates that the increased particle brownness is associated with an increased polyaromatic hydrocarbon (PAH) to BC ratio (figure 1, sub-graph).

ACKNOWLEDGEMENTS
This work was supported by the Generic Diesel Combustion (GenDies) project at KCFP, Lund University. The authors wish to acknowledge the support by Scania CV AB and the Volvo Group.

REFERENCES