Tests of CALIFA Barrel modules at CCB in Krakow


Published in:
GSI-FAIR Scientific Report

DOI:
10.15120/GR-2018-1

2018

Citation for published version (APA):

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Tests of CALIFA Barrel modules at CCB in Kraków


1Lund University, 2TU München, 3TU Darmstadt, 4University of Santiago de Compostela, 5Chalmers University of Technology, 6Universidade de Vigo, 7LIP Lisbon, 8CSIC Madrid, 9IFJ PAN Kraków

CALIFA (CALorimeter for In-Flight gamma-ray and pArticle detection) [1] is dedicated to the detection, tracking and energy determination of light charged particles and γ rays emerging from Rb experiments. Significant progress has been made on the Barrel section [2] of CALIFA, which consists of ~2000 CsI(Tl) scintillator crystals that provide a high angular resolution needed for effective Doppler corrections.

For the Phase-0 experiments at GSI in 2018, a substantial part of the CALIFA Barrel detectors will be installed and operated in the Demonstrator [3] configuration. An extensive preparatory work in detector performance, stability and data acquisition is required to provide a sound and effective experimental campaign at GSI. To that end, in-beam tests at the Bronowice Cyclotron Center (CCB) at IFJ PAN in Kraków were carried out. The cyclotron at CCB provided proton beams with energies up to 225 MeV, which enabled experiments for (p,2p) quasifree scattering (QFS) reactions on stable targets.

A laminar water jet, with a small diameter of 0.46 mm was used to provide well-defined tracking correlations for the reactions at the target, and give an energy straggling below the expected resolution limit for the total energy reconstruction of the scattered protons with CALIFA. Other targets such as graphite, polypropylene, 112,124Sn and 208Pb were also irradiated. The proton beam energy was 200 MeV for over 95% of the total beam time. Other beam energies ranged from 70 to 225 MeV.

For the Phase-0 experiments at GSI in 2018, a substantial part of the CALIFA Barrel detectors will be installed and operated in the Demonstrator [3] configuration. An extensive preparatory work in detector performance, stability and data acquisition is required to provide a sound and effective experimental campaign at GSI. To that end, in-beam tests at the Bronowice Cyclotron Center (CCB) at IFJ PAN in Kraków were carried out. The cyclotron at CCB provided proton beams with energies up to 225 MeV, which enabled experiments for (p,2p) quasifree scattering (QFS) reactions on stable targets.

A preliminary analysis of (p,2p) data from the water target revealed a γ-ray peak at 6.3 MeV (see Fig. 2), corresponding to the known transition from the first excited state to the 1/2 ground state in 15N. More sophisticated energy calibration, event selection cuts and simulations are being developed to refine and extend the analysis to the data from other targets. We acknowledge the local support at CCB with logistics and beam delivery.

Figure 1: Detectors seen during mounting at CCB for the (p,2p) experiment. Three CALIFA Barrel petals (one placed below the target later), two DSSSD tracking detectors, and one CEPA4 detector were tested.

The experimental setup at CCB is shown in Fig. 1. Two petals were positioned on a horizontal plane with a polar angular coverage of 25° < θ < 58° to detect the scattered particles. One petal was deployed at its nominal CALIFA position (43° < θ < 82°) to detect γ rays. Two double-sided silicon strip detectors (DSSSDs) were also employed as particle trackers. A CEPA4 [4] prototype detector for the CALIFA Forward Endcap was placed at θ ~ 11° for its performance test. Data from the petals and the DSSSD trackers were read out with the MBS system featuring FEBEX3B cards [5]. The calibration data from a 60Co γ-ray source was analysed with the UCESB/RBRoot software [6].

Figure 2: γ-ray energy spectrum following (p,2p) reactions on the water target. The 6.3-MeV transition in 15N is clearly visible. The inset shows the proton tracking data from a DSSSD-petal pair used in the event selection cut.

References


Experiment beamline: none
Experiment collaboration: NUSTAR-R3B
Experiment proposal: none
Accelerator infrastructure: CCB at IFJ PAN in Kraków
PSP codes: none
Grants: EU H2020 contract No. 654002, BMBF 05P15WOFNA
Strategic university co-operation with: none