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Abstract 

An increasing demand on load flexibility in power 
supply networks is the motivation to look at flexible, 
and possibly optimal control systems for power 
plants with carbon capture units. Minimizing the 
energy demand for carbon dioxide removal under 
these circumstances reduces the cost disadvantage of 
carbon capture compared to conventional production. 
In this work a dynamic model in Modelica of a 
chemical absorption process run with an aqueous 
monoethanolamine (MEA) is developed, and used 
for solving optimal control problems. Starting from a 
rather detailed dynamic model of the process, model 
reduction is performed based on physical insight. 
The reduced model computes distinctly faster, shows 
similar transient behavior and reflects trends for op-
timal steady-state operations reported in the litera-
ture. The detailed model has been developed in Dy-
mola, and the reduced model is used in JModeli-
ca.org, a platform supporting non-linear dynamic 
optimization. First results are shown on the dynamic 
optimization of the desorption column, the main 
cause of energy usage in the process. 
 
Keywords: CO2, absorption, model, optimization, 
nonlinear model predictive control, Modelica, JMo-
delica,org 

1 Introduction 

Carbon dioxide (CO2) removal from a gas mixture 
using aqueous amine solutions is a well established 
process that previously has mainly been applied to 
gas sweetening of natural gas in refineries. Although 
the focus there lies primarily on the removal of hy-
drogen sulfide, it is equally applicable to flue gas 
from fossil-fuel fired power plants.   

Figure 1 shows a schematic of the process. The 
CO2 from the flue gas is absorbed by the liquid sol-
vent in the absorber column. The cleaned gas is re-

leased to the environment, while the rich solution is 
pumped to the stripper column passing through a 
heat exchanger on the way. In the stripper at elevated 
temperatures, the CO2 in the solution is released to a 
steam flow from the reboiler, which is driven by bled 

steam from the power generation process. Leaving 
the stripper at the top the product stream is after wa-
ter separation compressed and stored. The overall 
power plant efficiency is expected to be reduced by 
at least 10 %, the solvent regeneration being respon-
sible for more than half of this [1].  Minimizing the 
amount of steam required in the reboiler is therefore 
the task with highest priority in the optimization of 
this process.  

With an increasing demand on the plant’s flexible 
operation in the face of frequent load changes and an 
increased fraction of the generation capacity ex-
pected to come from renewables, dynamic simula-
tion and optimization have become important tools 
to ensure an efficient incorporation of the carbon 
capture into the power generation. At the same time 
a trade-off must be found between efficiency losses 
and removal rate, possibly governed by time-varying 
economic boundary conditions.  

This paper presents the preliminary results 
achieved within a larger project aiming at developing 

Figure 1: Schematic of an absorption/desorption 
process to remove carbon dioxide from power plant 
flue gas. 

 



an optimization technology for advanced model-
based control of the separation plant. It focuses on 
the modeling of the capture plant, briefly presents 
the methods and tools that are used for optimization 
and presents preliminary results of solving an optim-
al control problem for the reduced model presented 
in the first half of the paper.  

2 Background 

2.1 Modeling of carbon dioxide removal with 
chemical absorption 

System simulation models of amine scrubbing 
processes with different levels of detail can be found 
in the literature and as part of commercial toolboxes. 
The most rigorous models are developed for steady-
state system computations with partial differential 
equations for mass transport along bulk flow and 
between the two phases, resulting in a high order 
system. This becomes easily too complex for dynam-
ic system simulations, especially if parts of the pow-
er generation are supposed to be included or if used 
in model based control. Replacing rigorous models 
of multi-component mass transfer between gas and 
liquid with semi-empirical algebraic correlations re-
duces model complexity dramatically and is for ex-
ample applied in [2] for an absorber description. 
Another model aspect with room for different levels 
of detail is the thermodynamic model of the liquid 
phase, describing the non-ideality of the electrolyte 
solution. Tobiesen compares in [3] a more rigorous 
with simpler approaches and concludes that high ac-
curacy is rather a matter of a good data fit than mod-
el complexity. 

Several studies on optimal operation of an amine-
based CO2 capture plant can be found in the litera-
ture. In [4] the effect of variables such as solvent 
circulation rate, stripper pressure or solvent tempera-
ture is investigated. The analysis is however static 
and considered only the variation of one parameter at 
a time, disregarding the multivariable and dynamic 
nature of the process. In [5] control strategies aiming 
at a fast response are developed using offline dynam-
ic simulation of the process. In [6], both optimization 
and control of the plant are studied. The optimal 
conditions for operation are determined offline using 
static models and a suitable control structure to 
maintain the process close to optimal operation in 
spite of disturbances is thereafter derived using dy-
namic models.  

The process industry has up to now not taken up 
the use of Modelica to the same degree as e.g. the 
automotive industry, mainly due a strong market 

presence of domain-specific tools that are only ap-
plicable to process industry problems. Another im-
portant reason is the lack of physical properties for 
substances used in the process industry. There are, 
however, no other languages and tools that are as 
suitable as the combination of Dymola for high-
performance simulation and JModelica.org for dy-
namic optimization for the given project, when the 
threshold of developing the fluid property models 
natively in Modelica is overcome. 

2.2 Model Predictive Control 

Model Predictive Control (MPC) is an advanced 
control method that relies of on-line solution of op-
timal control problems. During recent years, the me-
thod has become increasingly popular, especially in 
the process industry, [7]. The popularity of the me-
thod is attributed to its ability to handle multiple-
input multiple-output (MIMO) systems, as well as 
control and state constraints. These two ingredients 
are common in a broad range of control problems. 
MPC allows the control engineer to tune a cost func-
tion to express the control objectives, typically by 
choosing weights in a quadratic cost function. By 
choosing the weights properly, the significance of 
the control objectives can be balanced. E.g., perfor-
mance can be traded for robustness. In order to cap-
ture limitations in the plant to be controlled, con-
straints can be modeled. Constraints may represent 
tanks that may not over-flow or pressures that may 
not be exceeded for safety reasons. Other examples 
of constraints include limitations in actuators, such 
as limited ranges in valves and limited torques in 
motors. 

In addition to a cost function and constraints, 
MPC relies on a model of the plant to be controlled. 
The model may be derived from first-principles, as is 
the case in this paper, or it may be computed from 
empirical data. Both linear and non-linear models 
can be used. During execution of the MPC control-
ler, the model is used to predict the plant response to 
the future control inputs. 

The key component of an MPC controller is the 
solution of an open loop optimal control problem 
(OCP). Based on the cost function, the constraints, 
the model and measurements, or estimates of the cur-
rent plant state, optimal predicted trajectories for the 
model variables and the control inputs are computed. 
The first part of the optimal control variable trajecto-
ries is then applied to the plant. The procedure is 
then repeated periodically, each time shifting the 
optimal control horizon one step into further. This 
principle is called receding horizon control. 

Solution of optimal control problems may be very 
computationally challenging, in particular for non-
linear models. Application of MPC is therefore more 



common in domains where typical plants have time 
constants in the range of minutes and hours rather 
than seconds. The CCS systems studied in this paper 
falls into this category, which makes MPC a feasible 
choice. 

In addition to industrial use, MPC has also been 
extensively studied in the academic community, 
where a large body of theory has been developed, 
see, e.g., [11,12]. Notably, results for optimality, sta-
bility and robustness are available. 

2.3 JModelica.org, Optimica and Dymola 

In this work, Dymola is used as platform for simu-
lation and as graphical editor while the software plat-
form JModelica.org is used to solve dynamic optimi-
zation problems is JModelica.org. The JModelica.org 
platform has been described earlier [8], and is cur-
rently undergoing rapid development both with re-
spect to the parts of the Modelica language that are 
supported and with respect to the algorithms availa-
ble. The main reason for choosing the JModelica.org 
platform is, however, that it offers strong support for 
solution of dynamic optimization problems, which is 
a key component of executing MPC controllers, as 
discussed above.   

JModelica.org supports an extension of Modelica 
entitled Optimica [9], which allows dynamic optimi-
zation problems to be formulated based on Modelica 
models. Optimica enables the user to express cost 
functions, constraints, and what to optimize in a de-
scription format that is complimentary to Modelica’s 
support for dynamic modeling using high-level lan-
guage constructs. This feature enables shorter design 
cycles since more effort can be put into formulation 
of optimization problems rather than encoding them 
in a specialized format for a particular optimization 
algorithm. This property is valuable in this this work, 
since extensive tuning of the cost functions and the 
constraints has proven necessary. 

A direct collocation method, [10], is implemented 
in JModelica.org for solving large scale dynamic 
optimization algorithms. The method is applicable to 
differential algebraic systems and relies on full dis-
cretization of state, algebraic and control profiles. 
The resulting non-linear program is typically very 
large, but also sparse, which can be exploited by 
numerical software. In JModelica.org, the algorithm 
IPOPT, [11], is used to solve the NLPs resulting 
from collocation. 

In terms of user interaction, JModelica.org offers 
a Python [12] interface. Using Python, Modelica and 
Optimica models can be compiled into executable 
optimization programs, optimization algorithms can 
be invoked and the results can be loaded. Python also 
comes with packages for numerical computations 
and visualization, which makes it a suitable envi-
ronment for scientific computations. It can be noted 

that the capabilities of Python go beyond scripting 
and atomization in that full-fledged applications with 
customized user interfaces can be created. 

3 Dynamic model of an absorption/desorption 
column 

The starting point in the development of a Mod-
elica model suitable to be used in dynamic optimiza-
tion is a model of an absorption unit developed in 
Dymola. The system consists of the main compo-
nents absorber, stripper, reboiler and internal heat 
exchanger as well as auxiliary equipment such as 
pumps, valves, flow resistances, cooled vessels, sen-
sors and reservoirs, as sketched in Figure 1. The sol-
vent is an aqueous MEA solution.  

Each packed section in a column consists of gas 
and liquid bulk flow and a static interface model de-
scribing the two-phase contact. Figure 2 shows the 
diagram layer of the packed section model. Gas and 
liquid phase are treated as separate media, each 
modeled as a separate medium property package. 
Thermodynamic equilibrium is only present at the 
phase interface, while mass and energy storage only 
occurs in the bulk flow.  

 

 

Figure 2: Diagram of the packed section model 

Phase equilibrium at the gas-liquid interface for 
both, water and carbon dioxide, is computed as fol-
lows, assuming the pointing-factors and gas phase 
fugacity coefficients being equal to one. 

 
� �� � � � � �� � � �� � � � �� �  (1) 
� � � � � � � � � � � � � � � � � � ���� � 	 
 � (2) 
 
with the mole fractions in gas and liquid phase � 	  

and � 	 , the Henry-coefficient for dissolution of CO2 
in water He, the vapor pressure of water � 	 �
��  and 
the system pressure � .  

 

3.1 State selection 

Pressure in the column is determined by the gas 
phase, with friction losses along the way through the 
packing material. The space available for the gas 



phase is however dependent on the space occupied 
by the liquid phase. These properties and their deriv-
atives are then passed to the respective other bulk 
component through signal connectors, see green and 
dark blue connections in Temperature and species 
amounts in each phase were chosen as independent 
state variables. Algebraic loops and high index prob-
lems can thus be avoided if 

 
1. gas pressure can be directly computed from 

temperature and species amounts in the gas 
phase, e.g. using the ideal gas law or a cubic 
equation of state, 

2. liquid density is independent of pressure (in-
compressible medium), 

3. energy and species mass balances are formu-
lated in terms of the derivatives of the chosen 
states, 

4. and mass and heat transfer correlate concentra-
tions and temperatures in the two dynamic vo-
lume models, gas and liquid bulk flow 

 
Pressure drop in the gas phase and liquid hold-up 

are determined with literature correlations for packed 
columns, e.g. [Mackowiak], or user-defined nominal 
points, i.e. constant hold-up and gas flow operating 
point. The actual liquid hold-up correlates with the 
static set point via first order dynamics. 

For a stripper column operated with MEA-
solution and under the assumption that MEA is non-
volatile, the number of dynamic  degrees of freedom 
is then equal to 7 per volume segment (CO2 gas, H2O 
gas, CO2 liquid, H2O liquid, MEA, T liquid, T gas). 
In the absorber absorber additional flue gas compo-
nent as oxygen and nytrogen are present. Column 
design, operation and demanded accuracy determine 
the required discretization of the packed sections in 
bulk flow direction, which usually is a number be-
tween 8 and 20.  

3.2 Chemical reactions 

The capacity of amines to absorb carbon dioxide 
is to a large extent based on chemical reactions. In 
the case of MEA as a solvent five main reactions can 
be identified as well as the zero charge condition.  

 
2 H2O «  H3O

+ +OH-  (3) 

CO2 + 2 H2O «  H3O
+ + HCO3

- (4) 

HCO3
- + H2O « H3O

+ + CO3
2-  (5) 

MEAH+ H2O «  H3O
+ + MEA  (6) 

MEACOO- + H2O « MEA + HCO3
- (7) 

 

This leads to a total of nine species in the liquid 
phase including the 6 ions. Throughout the models 
developed within this work, chemical equilibrium is 
assumed to be present, at the phase interface as well 
as in the bulk liquid. This assumption is thought to 
be justified at high temperatures as they are found in 
the stripper. The deviations resulting in the absorber 
are considered acceptable, if taking into account the 
poor availability of reliable kinetic data in the litera-
ture and the amount of additional dynamic states 
saved (5 per volume segment). However, a different 
solvent may demand a different approach. 

3.3 Chemical equilibrium 

The liquid phase speciation is determined by equi-
librium constants Kj from the literature for each reac-
tion j, which are determined empirically and ex-
pressed as polynomial functions of temperature. 
They are defined as 

 
�  �  � � 	 � 	 


� � ��       (8) 
 
where � 	  and � 	  are the activity coefficient and 

molality of component i, respectively. � 	 ��  is the stoi-
chiometric coefficient of component i in reaction j, 
starting materials are considered with a negative 
sign, products with a positive one. Equilibrium con-
stants allow also for an inference on heats of reac-
tion, using the van’t Hoff equation: 

 
����

��
�

� � �

� � �     (9) 

 
where � Hr is the enthalpy of reaction, T the tem-

perature and R the ideal gas constant. The enthalpy 
of physical solution is computed accordingly using 
the temperature dependency of the Henry-coefficient 
[13]. 

 However, a lot of computational time is required 
to solve the non-linear system of equations describ-
ing the speciation. Furthermore, extreme differences 
in ion concentrations by several orders of magnitude 
make a good choice of iteration variables essential 
for robust convergence. 

 
In addition the following assumptions also apply: 

-  the flue gas entering the absorber contains only 
carbon dioxide, water, oxygen and nitrogen 

-  MEA is non-volatile and not present in the gas 
phase 

-  the total amount of liquid in the column is defined 
as the packing hold-up and the sump liquid vo-
lume 



-  the liquid in the column sumps and other large 
volumes is assumed to be ideally mixed 

-  mass and heat transfer between liquid and gas 
phase is restricted to the packed section 

-  negligible temperature difference between liquid 
bulk and interface to gas phase 

-  perfect gas law applies in the gas phase. 
-  phase equilibrium in reboiler and condenser�

�

Table 1: References for physical properties used in 
the model 

 
 
The molecular carbon dioxide concentration cCO2,b is 
then used to compute mass transfer between bulk and 
interface (if).       
 
� �	� � � 	� � 	� � � � 	 �� � � 	 �	� 
   i = CO2  (10) 

� �	� �
� �� � �� � � � �� � � � ��� �

��
 i = CO2, H2O  (11) 

 
where � �	�  and � �	�  denote the molar flows in the liq-
uid and the vapor phase, respectively. � 	�  is the con-
tact area, E is an enhancement factor describing the 
impact of chemical reactions on the concentration 
profile near the interface. k is a mass transfer coeffi-
cient, � 	 �	�  and � 	 ��  are molar concentrations at the 
interface and in the liquid bulk, respectively and � 	 �	�  
and � 	 ��   are correspondingly partial pressures of the 
considered species in the gas phase.  R and T are the 
ideal gas constant and bulk phase temperature, re-
spectively.  
Properties and correlations from the literature used in 
these models are listed in Table 1. 

3.4 Model reduction 

Online optimization as it is used in MPC impli-
cates tighter limitations on the model size than pure 
dynamic simulation or even offline optimization 
would do. The solution of the optimization problem 
for a finite horizon needs to be found between two 
sampling instants and therefore demands a relatively 
low computational effort. But also the available 
memory to store result points for all model variables 
for each time step within the finite horizon limits the 
allowed number of algebraic and differentiated va-
riables. However, exact numbers are hard to define 
in advance. At the same time accuracy demands are 
not as high as the model is updated with measure-
ment values at each sample step. 

 
The following measures are taken in order to re-

duce the model: 
1. Chemical equilibrium computation (and ion 

speciation) was replaced by a spline approxima-
tion of the molecular CO2 concentration in the 
liquid phase as a function of temperature and 
solvent loading with CO2. The mass fraction of 
MEA in the unloaded solution is kept constant at 
30% for this function. 

Property Symbol 
Used in 
reduced 
model 

Reference 

Equilibrium 
constants Ki indirectly 

Collected 
in [14] 

Henry-
coefficient Heco2 yes [14] 

Activity 
coefficients, 
liquid phase 

gi indirectly [14] 

Mass transfer 
coefficients 

kiL, kiV  no [15] 

Diffusivities 
liquid phase DiL no 

[16] + 
Stokes – 
Einstein 
relation 

Diffusivities 
gas phase DiV no 

Fuller’s 
eq.in [17] 

Densities and 
viscosities, 
liquid 

r , m yes [18] 

Enhancement 
factor 

E no [2] 



2. Enthalpy of absorption/desorption is replaced by 
a function of temperature but constant with sol-
vent loading. 

3. Mass transfer coefficients including enhance-
ment by chemical reactions are no longer com-
puted from physical medium properties, but be-
come constant tuning parameters.  

4. Reduction of the number of volumes in bulk 
flow direction to an acceptable minimum (itera-
tive, dependent on application) 

5. Constant specific heat capacities of all species 
and constant liquid density 

3.5 Validation and model comparison 

The total system model is composed of the two 
packed columns and complemented with washers, 
condensers, pumps and valves according to Figure 1. 
The reboiler, which supplies the gas flow to the   
stripper is modeled as a flash stage with phase equi-
librium and uniform temperature. Simulation results 
of the detailed model are compared to experimental 
data from a pilot plant run with open control loops 
[19]. The input variables of the test case are: 

·  fluegas inlet flow and properties 
·  clean gas pressure 
·  liquid recirculation rate 
·  reboiler duty 
·  product stream outlet pressure 

 
All inlet conditions are kept constant except for the 
flue gas rate, which is reduced by 30% after having 
run the plant in steady-state for some time. Figure 3 

shows the CO2 removal rate before and after the step 
change in experiment and simulation. Giving the fact 
that the experiment apparently did not reach steady-
state before the step, the agreement between the two 
curves is satisfactory. 
 
The temperatures at the gas outlet of the stripper col-
umn and at the liquid outlet of the reboiler are plot-
ted in Figure 4.  
Especially the reboiler temperature, which is directly 
coupled to pressure and pressure drop along the gas 
flow path as well as the solvent loading, is in very 
good agreement with the experimental data.  

 
Since liquid phase concentration data is unavailable, 
it can be useful to look at temperatures instead, be-
cause of the direct connection between ab-

Figure 4: Stripper top and reboiler temperatures 

Figure 5: Temperature profile wrt column 
height 

Figure 3: Carbon dioxide removal rate, experi-
ment and simulation of the detailed model 



sorbed/desorbed carbon dioxide and temperature 
changes due to heats of reaction. Figure 5 compares 
the gas temperature profile along the absorber col-
umn height for experiment and simulation at pre-
sumed steady state before and after the flue gas step, 
respectively. The locations of the five measurement 
points were guessed to be equally distributed. The 
simulation captures well the location of the highest 
temperature first in the upper part and later with a 
lower gas flowrate as having moved further down. 
 
 
The optimization problem in the next section is only 
solved for the stripper column including reboiler and 
condenser. A comparison of the detailed and the re-
duced model is therefore only performed for this part 
of the plant. Model assumptions, which affect the 
dynamic behavior of the unit, namely concerning 
liquid volumes and hold-ups, are similar in both 
models. Therefore, the comparison is restricted to 
steady-state operating points. Figure 6 presents the 
liquid lean loading at the stripper outlet as a result of 
reboiler duty under constant liquid inlet conditions 
and stripper top pressure. The results show that the 
energy required to regenerate the solvent to a cer-
tainn lean loading is predicted close to each other 
with the two models.  It can be concluded that the 
complexity of the reduced model is sufficient to in-
vestigate the energy consumption of the reboiler. The 
reduced model performed the stripper unit series 200 
times faster than the detailed model. The simulations 
started at fixed initial states and simulated to steady-
state. Large transients as they occur in the first 
seconds of a simulation demand especially large 
computational efforts, when using the detailed mod-
el. 
 

 

4 Optimization results 

The goal of the project is to apply nonlinear model 
predictive control on the separation plant to minim-
ize its energy usage. As it was mentioned in Section 
2.2, this requires solving a sequence of open-loop 
optimal control problems. The aim of the present 
section is to show how those open-loop control prob-
lems can efficiently and accurately be solved using 
the simplified models and the tools previously de-
scribed. For that purpose, a simple control problem 
using one of the most energy demanding parts of the 
separation plant, namely the stripper unit, will be 
formulated and solved. 

4.1 Process model 

The process to be optimized is the stripper unit 
shown in Figure 7.  

 

 

Figure 7: Graphical representation of the stripper 
unit used for optimization in Dymola 

 
It is composed of: 
 

·  a reboiler 
·  a stripper column with packed sections 

and a sump 
·  a condenser to remove the water from the 

product stream 
·  a pressure control valve together with a 

pressure controller 
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Figure 6: Solvent lean loading as a function of 
reboiler duty, detailed and reduced model 



 
The process model is described by 1493 equations 
and 1493 time-varying variables, including 50 conti-
nuous-time states. This is a larger model size than 
the size of the models reported in [20] for start-up 
optimization of coal fired power plants.  

 

4.2 Control problem 

Objective function. The control problem is formu-
lated as in standard MPC using a quadratic cost func-
tion J penalizing deviations of the controlled variable 
y, as well as variations in the control signal u: 

� � � � � � � � � 	 
 � � � �  � ��� �
�

� � �
��
��

�
�

��
� �

�
 

where 	  and � �are weights that can be tuned to 
achieve a desired dynamic behavior and � � �is the 
prediction horizon.  

 
Controlled variable. The variable to be controlled 

is the removal efficiency �  of the separation plant. It 
is defined as the mass flow ratio of carbon dioxide 
leaving the condenser and carbon dioxide entering 
the absorber column with the fluegas: 

� �
� �	
 � ��������� ��� �

� �	
 � �������� ���
 

Since the absorber column is not included in the 
optimization set-up, the CO2 concentration in the 
rich solution entering the stripper column has been 
assumed to be in equilibrium with the flue gas enter-
ing the absorber column.  

 
Control signal. The chosen control signal is the 

heat flow rate � � to the reboiler. However, the deci-
sion variable of the optimization problem is chosen 

to be its time-derivative 
� � �

��
, which is parameterized 

by a piecewise constant signal taking N values over 
the prediction horizon � � , i.e. for i=0..N-1 

 

�
� � �

��
� � � � � � � � � � � �  

� �

�
� �  � ! �

� �

�
"  

 
 Only the first value of this open-loop optimiza-

tion result, i.e.  � �  would actually be applied to the 
process if the entire MPC algorithm was imple-
mented. 

 
Constraints. As far as the optimization constraints 

are concerned, they may be of both regulatory1 and 
operational nature. The versatile JModelica.org plat-

                                                      
1 Regulatory rules for carbon capture plants are still under 
discussion, but will certainly play a role. 

form allows us to include any constraint that can be 
expressed in terms of process variables. In the 
present example, an upper limit on the reboiler pres-
sure is imposed to avoid MEA degradation occurring 
at high temperatures. 
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A maximal temperature could equivalently be im-
posed since pressure and temperature are coupled in 
the reboiler. 

 
Initial state. The initial state � �  is assumed to be 

known and is computed using Dymola as the statio-
nary point corresponding to a given heat flow rate 
� � � � �� . An implementation of the MPC controller 
would require an observer to compute an estimate of 
the initial state � � �based on the available measure-
ments. 

4.3 Numerical example 

As mentioned in Section 2.3, the JModelica.org plat-
form implements a direct collocation method to 
solve the optimal control problem. This implies that 
optimization is not performed on the continuous 
DAE system mentioned in 4.1, but on a discretized 
version using the Radau quadrature. The trajectory of 
every variable in the dynamic model is approximated 
by piecewise polynomials on each interval of the 
prediction horizon. In each interval, the approxima-
tion is exact at a number &$ of points, the collocation 
points. Choosing &$ � '  and dividing the prediction 
horizon � �  in N=10 intervals of equal length con-
verts the continuous optimization problem to an al-
gebraic nonlinear program with 29824 variables, 
29814 equality constraints and 5646 inequality con-
straints. Most of the inequality constraints originate 
from the max and min attributes associated to the 
physical variables. As the optimization problem is 
most probably non-convex, it is essential to provide 
the solver IPOPT with reasonable guessed trajecto-
ries for the initialization of the iterative optimization 
algorithm. The trajectories were here taken to be 
constant in time and given by the initial state � � , 
computed in Dymola.   
 A step change in the desired removal efficiency is 
now considered. Using the numerical values listed in 
Table 2, the optimization problem is solved in JMo-
delica.org in 36 iterations. The results are shown in 
Figure 8. 
 



Table 2: Parameter values used in the optimization 
problem 

      
1000s 0.1  0.7 M  1.95 

bar 
0.9 

 
At the beginning, the heat flow rate to the reboiler is 
rapidly increased from its start value of 0.7 MW to 
1.05 MW, leading to a removal efficiency of about 
0.8 at time t=400s. At around 500s, the reboiler pre
sure reaches its maximal allowed value of 1.95 bar 
and the heat flow rate decreases slightly to avoid 

Figure 8: Trajectories of the optimized desorber unit. 
100 seconds. From top to bottom: removal efficiency, condenser pressure and reboiler pressure, 

: Parameter values used in the optimization 

At the beginning, the heat flow rate to the reboiler is 
eased from its start value of 0.7 MW to 

1.05 MW, leading to a removal efficiency of about 
0.8 at time t=400s. At around 500s, the reboiler pres-
sure reaches its maximal allowed value of 1.95 bar 
and the heat flow rate decreases slightly to avoid 

constraint violation. Because of the high condenser 
pressure, the target efficiency of 0.9 cannot be 
achieved in this optimization setup. With a different 
column design or different boundary conditions, 
higher efficiency could of course be achieved. 
To evaluate the consistency of the optimization r
sult with respect to the continuous-time model equ
tions, the optimized trajectories have been evaluated 
by applying the optimized heat input to the model 
implemented in Dymola. No difference could be 
served when comparing results from JModelica.org 
and Dymola (results not shown). 

 

Trajectories of the optimized desorber unit. The target efficiency is changed to 0.9 after 
tom: removal efficiency, condenser pressure and reboiler pressure, 

violation. Because of the high condenser 
pressure, the target efficiency of 0.9 cannot be 
achieved in this optimization setup. With a different 
column design or different boundary conditions, 
higher efficiency could of course be achieved.  

consistency of the optimization re-
time model equa-

tions, the optimized trajectories have been evaluated 
by applying the optimized heat input to the model 
implemented in Dymola. No difference could be ob-

esults from JModelica.org 

The target efficiency is changed to 0.9 after 
tom: removal efficiency, condenser pressure and reboiler pressure, 



5 Conclusions 

 
A dynamic model of a post-combustion carbon 

capture process developed in Modelica was 
presented. The main focus lies on the chemical 
absorption of the carbon dioxide by the liquid 
solution in the absorber column. The same model 
can be used for the corresponding desorption process 
in the stripper column, by exchanging the flue gas 
medium for a mixture of water steam and carbon 
dioxide. A comparison of simulation results with 
experiments from a pilot plant showed a good 
agreement. 

In a second step the model was reduced to meet 
the demands of a dynamic optimization. The largest 
performance improvement was achieved with a re-
placement of the chemical reactions in the liquid 
phase by an interpolated table with equilibrium data. 
A comparison of steady-state results from the strip-
per unit modeled with both approaches justified the 
usage of the reduced model for energy optimization 
purposes. 

As a first step toward NMPC, a test case with the 
chosen system model was defined. It demonstrates 
the solution of an optimal control problem with the 
JModelica.org platform while adhering to specified 
variable constraints, in this case set on the reboiler 
pressure. 

By formulating and solving this problem we have 
shown that the JModelica.org platform is a viable 
choice for solving large scale dynamic optimization 
problems, which is a prerequisite for NMPC applied 
to CCS plants. Future extensions include investiga-
tion of how to explore available control variables, 
cost function formulation, and state estimation. 
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