Diagnostic quality in computed tomography angiography after EVAR

Lehti, Leena

2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Diagnostic quality in computed tomography angiography after EVAR

LEENA LEHTI
DEPARTMENT OF DIAGNOSTIC RADIOLOGY | LUND UNIVERSITY
Diagnostic quality in computed tomography angiography after EVAR

Leena Lehti

DOCTORAL DISSERTATION
by due permission of the Faculty Medicine, Lund University, Sweden.
To be defended at Lilla Aulan, SUS Malmö, June 13th 2019 at 9 am.

Faculty opponent
Professor Lars Lönn, MD PhD, University of Copenhagen
Diagnostic quality in computed tomography angiography after EVAR

Abstract

Background: Follow-up of endovascular aortic aneurysm repair (EVAR) with life-long computed tomography angiography (CTA) surveillance exposes patients with impaired renal function to repeated high doses of iodine contrast medium and significant levels of radiation. Endoleaks are complications after EVAR that can be treated with Onyx\(^\circ\) causing severe artefacts in CTA follow-up impairing diagnostic reliability.

Aims: The specific aims of this thesis were to:
- Assess image quality in CTA after EVAR with halved contrast medium dose in azotemic patients using 80-kVp CT technique (paper I).
- Compare image quality of virtual non-contrast (VNC) images reconstructed from arterial (paper II) or both arterial and venous phase (paper III) dual-energy CTA to true non-contrast (TNC) images, and assess whether they can replace TNC images.
- Assess whether post-processing of CTA images using iterative metal artefact reduction can reduce severe artefacts caused by Onyx\(^\circ\), and improve diagnostic quality compared to standard image reconstructions (paper IV).

Material and methods: A total of 80 patients (40 with 80-kVp technique and 40 with 120-kVp technique) were studied after EVAR, and CT image quality was assessed (paper I). Thirty patients with suspected aortic aneurysm, aortic dissection, or undergoing subacute control after EVAR were examined with dual-energy CT. VNC images were reconstructed from the arterial phase scan. Attenuation values, image noise, and subjective image quality were assessed (paper II). Sixty-three patients were examined with dual-energy CTA at EVAR follow-up. Attenuation values and images noise were assessed in VNC images reconstructed both from arterial and venous phase scans, and compared to those in TNC images (paper III). Twelve patients were examined with dual-energy CTA after Onyx\(^\circ\) embolization of type 2 endoleaks following EVAR. A standard image dataset without iMAR and eight image datasets with different iMAR algorithms were reconstructed per patient. Attenuation values and image noise were measured in aorta or iliac arteries and muscle tissue close to Onyx\(^\circ\), and compared to a reference level at the diaphragm. Subjective image quality and severity of artefacts were assessed (paper IV).

Results:
- 80-kVp technique with halved contrast media dose may provide satisfactory diagnostic results for CTA follow-up of EVAR compared to common standards, and lower the risk of contrast medium induced nephropathy (CIN) in patients with BMI below 35 kg/m\(^2\) (paper I).
- VNC images reconstructed from arterial phase CTA scans are not suitable replacements for TNC images (paper II). VNC images reconstructed from venous phase CTA scans, on the other hand, can more accurately replace TNC images (paper III).
- iMAR algorithms can significantly reduce metal artefacts and improve diagnostic quality in CTA in patients treated with Onyx\(^\circ\) for endoleaks following EVAR (paper IV).

Conclusion: New CT techniques and image reconstruction methods can improve patient safety and reduce radiation doses with maintained or even improved image quality.

Keywords
Abdominal aortic aneurysm, EVAR, computed tomography angiography, contrast medium induced nephropathy, dual-energy computed tomography, image reconstruction, attenuation values, metal artefact reduction.

Language
Enlish

ISSN and key title 1652-8220

ISBN 978-91-7619-2

Recipient’s notes
Number of pages 65

Signature

Date 2019-04-24
Diagnostic quality in computed tomography angiography after EVAR

Leena Lehti
To Olivia and Max
Table of contents

Abbreviations ... 8
Original papers ... 9
Summary .. 10

Introduction .. 13
Abdominal aortic aneurysm .. 14
 Definition, diagnosis, epidemiology and screening .. 14
 Indications for treatment .. 16
 Endovascular treatment ... 16
 Complications ... 17
 Follow-up after EVAR .. 18
Contrast media induced nephropathy .. 20
CT principles .. 21
 Dual energy CT ... 21
Radiation dose and image quality ... 22
Image reconstruction .. 23
 Reconstruction algorithms .. 23
 Reconstruction of virtual non contrast images .. 24
 Metal artefacts and metal artefact reduction methods 25

Aims ... 27
General aims ... 27
Specific aims .. 27

Material and methods .. 28
Patients ... 28
Ethical considerations .. 30
CT parameters ... 30
Radiation dose ... 31
Image reconstructions ... 32
Image quality assessment ... 33
Statistical evaluation .. 36
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>CIN</td>
<td>contrast medium induced nephropathy</td>
</tr>
<tr>
<td>CNR</td>
<td>contrast to noise ratio</td>
</tr>
<tr>
<td>CTA</td>
<td>computed tomography angiography</td>
</tr>
<tr>
<td>CTDI</td>
<td>computed tomography dose index</td>
</tr>
<tr>
<td>DECT</td>
<td>dual-energy computed tomography</td>
</tr>
<tr>
<td>DLP</td>
<td>dose length product</td>
</tr>
<tr>
<td>EVAR</td>
<td>endovascular aortic aneurysm repair</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield units (attenuation)</td>
</tr>
<tr>
<td>iMAR</td>
<td>iterative metal artefact reduction algorithm</td>
</tr>
<tr>
<td>kVp</td>
<td>peak kilovoltage (tube voltage)</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere (tube current)</td>
</tr>
<tr>
<td>mAs</td>
<td>milliampere seconds (tube load)</td>
</tr>
<tr>
<td>mGy</td>
<td>milligray (radiation absorbed dose)</td>
</tr>
<tr>
<td>mSv</td>
<td>millisievert (radiation effective dose)</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>TNC</td>
<td>true non-contrast</td>
</tr>
<tr>
<td>VNC</td>
<td>virtual non-contrast</td>
</tr>
</tbody>
</table>
Original papers

I. 80-kVp CT angiography for endovascular repair follow-up with halved contrast medium dose and preserved diagnostic quality.

II. Reliability of virtual non-contrast computed tomography angiography: comparing it with the real deal.

III. Comparing arterial- and venous-phase acquisition for optimization of virtual non-contrast images from dual energy computed tomography angiography.

Leena Lehti, Marcus Söderberg, Peter Höglund, Johan Wasselius. In manuscript.

IV. Metal artefact reduction in aortic computed tomography after EVAR and Onyx®-embolization.

Leena Lehti, Marcus Söderberg, Peter Höglund, Johan Wasselius. In manuscript.
Summary

Follow-up of endovascular aortic aneurysm repair (EVAR) with life-long computed tomography angiography (CTA) surveillance exposes patients with impaired renal function to repeated high doses of iodine contrast medium and significant levels of radiation. Endoleaks are complications after EVAR that can be treated with Onyx®, causing severe artefacts in CTA follow-up impairing diagnostic reliability.

The specific aims of this thesis were to:

- Assess image quality in CTA after EVAR with halved contrast medium dose in azotemic patients using 80 kVp CT technique (paper I).
- Compare image quality of virtual non-contrast images reconstructed (VNC) from arterial (paper II) or both arterial and venous phase (paper III) dual-energy CTA to true non-contrast images (TNC), and assess if they are suitable to replace TNC images.
- Assess whether post-processing of CTA images using iMAR algorithms can reduce severe artefacts caused by Onyx®, and improve diagnostic quality compared to standard image reconstructions (paper IV).

A total of 80 patients (40 with 80 kVp technique, 40 with 120 kVp technique) were studied after EVAR, and CT image quality was assessed (paper I). Thirty patients with suspected aortic aneurysm, aortic dissection, or undergoing subacute control after EVAR were examined with dual-energy CT. VNC images were reconstructed from the arterial phase scan. Attenuation values, image noise, and subjective image quality were assessed (paper II). Sixty-three patients were examined with dual-energy CTA at EVAR follow-up. Attenuation values and images noise were assessed in VNC images reconstructed both from arterial and venous phase scans, and compared to those in TNC images (paper III). Twelve patients were examined with dual-energy CTA after Onyx® embolization of type 2 endoleaks following EVAR. One standard image dataset without iMAR and eight image datasets with different iMAR algorithms were reconstructed per patient. Attenuation values and image noise were measured in the aorta or iliac arteries and muscle tissue close to the Onyx®, and were compared to a reference level at the diaphragm. Subjective image quality and severity of s were assessed (paper IV).
Results:

- 80 kVp technique with halved contrast media dose for CTA follow-up of EVAR may provide satisfactory diagnostic results compared to common standards, and lower the risk of contrast induced nephropathy (CIN) in patients with BMI below 35 kg/m² (paper I).

- VNC images reconstructed from arterial phase CTA scan are not suitable replacements for TNC images (paper II). VNC images reconstructed from venous phase CTA scan, on the other hand, can more accurately replace TNC images (paper III).

- The iMAR algorithms can significantly reduce metal artefacts and improve diagnostic quality in CTA in patients treated with Onyx® for endoleaks following EVAR (paper IV).

In conclusion, new CT techniques and image reconstruction methods can improve patient safety and reduce radiation dose with maintained or even improved image quality.
Introduction

The aorta is the main artery of the body, ascending from the heart and supplying oxygenated blood to all body organs via its branches. An abdominal aortic aneurysm (AAA), a dilatation of the abdominal aorta, is defined as a maximal infrarenal aortic diameter of 30 mm or more, representing a 50% increase of the normal (20 mm) maximal abdominal aortic diameter (1, 2). Dilatation of the aorta gradually leads to weakening of the aortic wall, a process which might lead to rupture if left untreated. This dilatation process is usually asymptomatic.

Endovascular aortic aneurysm repair (EVAR) is a minimally invasive surgical method for treatment of abdominal aortic aneurysms. A stent graft is deployed through femoral access inside the aneurysm, excluding the aneurysm sac from the blood circulation. Rapid development of endovascular techniques and materials during the last two decades have enabled this treatment for larger numbers of patients. Potential advantages of EVAR compared to open aneurysm repair include reduced operative time, less surgical trauma and post-operative pain, and reduced length of stay in both hospital wards and intensive care units (3-6). The method also has disadvantages, however, including immediate and late complications such as incomplete aneurysm sac sealing, with continuous refilling of the aneurysm sac or backfilling of the aneurysm from small vessels in the aneurysm wall (7). To monitor such potential complications after EVAR, patients usually need to undergo repetitive evaluations with contrast computed tomography angiography (CTA), the most reliable imaging technique (8).

A major drawback of serial CTA, however, is the risk of contrast medium induced nephropathy (CIN) (9, 10). Patients undergoing EVAR quite commonly have several different risk factors for CIN; impaired renal function, diabetes mellitus, and congestive heart failure. Furthermore, repetitive imaging with CTA in EVAR patients exposes them to cumulative doses of radiation.
Abdominal aortic aneurysm

Definition, diagnosis, epidemiology and screening

An abdominal aortic aneurysm (AAA) is a dilatation of the infrarenal aorta, which has a multifactorial etiology featuring proteolytic enzymes causing chronic weakening of the arterial wall, inflammatory processes, and many of the classical risk factors for atherosclerosis. It is defined as a dilatation of the aorta 1.5 times the normal size or more, or as an aortic diameter of ≥ 30 mm in anterior-posterior measurement. The diameter of the aneurysm is a significant and independent risk factor for AAA rupture (11).

Table 1.
12-month AAA rupture risk by aortic diameter.

<table>
<thead>
<tr>
<th>AAA diameter (mm)</th>
<th>Annual rupture risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>0</td>
</tr>
<tr>
<td>40-49</td>
<td>1</td>
</tr>
<tr>
<td>50-59</td>
<td>1-11</td>
</tr>
<tr>
<td>60-69</td>
<td>10-22</td>
</tr>
<tr>
<td>>70</td>
<td>30-33</td>
</tr>
</tbody>
</table>

In most cases, an AAA is asymptomatic and the disease might therefore progress over many years before it is diagnosed. The aneurysm is often found en passant at an unrelated radiological examination, or by detecting a pulsatile mass in the abdomen at physical examination of the patient.

Abdominal ultrasound has both high sensitivity and specificity for detection of AAA, and is therefore used as a screening method in both several European countries and the United States (12-14). This study method provides an accurate measurement of the infrarenal aortic diameter, and allow detection of aortic wall lesions and mural thrombus. Furthermore it is painless, not dependent on ionizing radiation, and carries low costs. An AAA diagnosis with ultrasound is performance-dependent, however, and does not provide the detailed anatomical information needed to establish the optimal treatment of the aneurysm.
Figure 1.
CT angiography reveals the aortic anatomy in details.

Contrast enhanced CTA is the most common imaging method for thorough evaluation of aortic anatomy and morphology, and provides the detailed information needed to plan operative aortic repair (11, 15-22). One of the major drawbacks of CTA is the need for administration of iodinated contrast agent, which can cause both CIN and allergic reactions (9, 23). The use of ionizing radiation may also limit the use of the method, especially in younger patients needing serial radiological follow-up.

Magnetic resonance angiography (MRA) of the aorta provides highly detailed information on anatomical features and blood flow properties, but the use of the
method is limited by its high costs and lower availability compared to CTA (24). The drawbacks of MRA are difficulties to use the method in unstable or restless patients, and the contraindication for use in patients with pacemakers or ferromagnetic metal implants. On the other hand, MRA does not require ionizing radiation and is therefore suitable for serial follow-up studies in younger patients with known aortic disease.

Risk markers for development of AAA are advanced age, male gender, cigarette smoking, family history, arterial hypertension, hypercholesterolemia, and other cardiovascular diseases such as coronary artery disease or cerebrovascular disease (25).

With declining autopsy rates, population-based screening programs for AAA are now the most reliable way to estimate AAA prevalence. In the four randomized trials of AAA screening, aneurysm prevalence varied between 4.0% and 7.6% in men, and was estimated to 1.3% in women (12-14, 26). As 400 to 500 deaths in men ≥ 65 years of age were annually attributed to ruptured AAA in Sweden, a nationwide AAA screening program was started in 2006. The Swedish Aneurysm Screening Study group has integrated the screening system into the existing public healthcare system, and coordinates scientific projects related to the program. Today all Swedish men aged 65 years are consecutively identified through the national population registry, and invited to ultrasound examination of the abdominal aorta (27), regardless of whether they have any previously known AAA or not.

Indications for treatment

According to recommendations from the European Society of Cardiology, men with an AAA size of 5.5 cm and women with an AAA size of 5.0 cm should be referred to a vascular surgeon for evaluation concerning operative treatment (8).

Endovascular treatment

The first successful EVAR was completed by Nicholas Volodos in 1987, and thereafter Parodi and Palmaz published their first experiences in Argentina in 1991 attracting more attention to this less invasive treatment method (28, 29). In the standard EVAR technique, the main stentgraft part is introduced from one femoral artery using Seldinger (30) technique and stiff guidewires with positioning of the fabric-covered part of the stentgraft just below the renal arteries under fluoroscopy. The main stentgraft has one leg extending to the common hypogastric artery, which usually must be combined with another leg introduced from the contralateral femoral artery.
Fig. 2. Standard aortic stentgraft with modular leg.

This standard endovascular aortic treatment method has become popular due to its lower frequency of immediate complications, and its association with shorter in-hospital stay (3, 6, 31). The standard technique is feasible when the distance from the renal and other visceral arteries to the neck of aortic aneurysm is 1.0 cm or more, depending on the angulation of the infrarenal aorta (16, 32). For patients with more complicated aortic anatomy with visceral artery insertions closer to or in the aneurysm sac, new techniques using fenestrated or branched stentgrafts have been developed (33).

Complications

Several studies have proven that endovascular aortic repair is associated with a higher incidence of reinterventions compared to open surgical aneurysm treatment (3, 34). Endoleaks, stentgraft migration, stentgraft kinking, thromboses in the stentgraft, and stentgraft infections are different potential complications after endovascular aortic treatment necessitating regular postoperative follow-up of patients.

Endoleaks

An endoleak is defined as persistent blood flow in the aortic aneurysm outside the stentgraft lumen (35). The incidence of endoleaks during postoperative follow-up after EVAR has been reported to 15%-25% (36). Incomplete sealing of the aneurysm, like in type 1 or type 3 endoleaks causes continuous blood flow to the
aneurysm sac and a remaining rupture risk. Retrograde blood flow to the aneurysm sac from patent lumbar arteries, the inferior mesenteric artery, or other collateral arteries causes type 2 endoleaks. A type 4 endoleak is related to the porosity of the graft fabric with remaining blood passage through the implant. Endotension, or type 5 endoleak is defined as a continuous growth of the aneurysm sac without any apparent endoleak. This can be caused by a slow remaining endoleak not detectable by any radiographic methods, pressure changes in thrombus formation, or by stentgraft infection (36).

Table 2. Classification of endoleaks.

<table>
<thead>
<tr>
<th>Type of endoleak</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flow into the aneurysm sac due to incomplete sealing. 1a proximal and 1b distal flow.</td>
</tr>
<tr>
<td>2</td>
<td>Reversed blood flow into the aneurysm sac from lumbar arteries, accessory renal arteries, or the inferior mesenteric artery.</td>
</tr>
<tr>
<td>3</td>
<td>Inadequate seal within overlap between stentgraft components causing flow into the aneurysm sac.</td>
</tr>
<tr>
<td>4</td>
<td>Blood flow through porosity of the stentgraft material.</td>
</tr>
<tr>
<td>5</td>
<td>Endotension, expansion of the aneurysm sac without any obvious endoleak origin.</td>
</tr>
</tbody>
</table>

The incidence of type 2 endoleak at one year after EVAR is 18.9%. This figure decreases spontaneously during further follow-up, however, usually by a spontaneous thrombotic process in the lumbar arteries, and the incidence after the second year of follow-up is 10.2% (37). An observed aneurysm sac expansion of ≥ 5 mm during follow-up is considered as an established indication for treatment of type 2 endoleak.

ONYX® embolization

Endovascular embolization is the method of choice for treatment of type 2 endoleak. There are two main possible approaches for embolization: transarterial and translumbar puncture. When using the transarterial approach, the inferior mesenteric artery or the lumbar arteries are selectively catheterized and embolized with small metallic spirals, coils, or a liquid embolic agent like Histoacryl®(n-butyl-2-cyanoacrylate) or Onyx®(tantalum powder and ethylene-vinyl-alcohol copolymer dissolved in dimethyl sulfoxide liquid) (38, 39).

Follow-up after EVAR

Because of the importance of excluding the aneurysm effectively and the continuous pulsation and blood flow in the aorta, the stentgraft and its components can change
their configuration during follow-up after endovascular aortic treatment. It is therefore essential to verify patency of the stentgraft radiologically. Reintervention rate is approximately up to 20% during the first 5 years after intervention (34), corroborating this need for regular radiological follow-up.

Plain radiography
In plain radiography the metallic parts of the stentgraft are clearly visualized, and potential complications such as stent migration, angulation, kink, and breakage can be evaluated. This method can be combined with ultrasound during postoperative follow-up (40).

Ultrasound imaging
The diameter of the aneurysm sac can be assessed with ultrasound and potential endoleak can be visualized with duplex (41-43). With modern ultrasound systems, contrast media based on microbubbles can be used to improve visualisation of blood flow and reveal potential endoleak (42, 44). Important advantages of ultrasound are the absence of radiation exposure and for the fact that no nephrotoxic iodine contrast media is needed. The visual accuracy of the method is poor in obese patients, however, and the method is operator dependent.

Computed tomography angiography
CTA is the method of choice due to its high accuracy for detection of endoleaks, demonstration of aneurysm growth, and potential stentgraft migration (45). Major drawbacks with CTA, on the other hand, are the need for intravenous contrast media and radiation. High flow endoleaks will be detected with arterial phase scans, whereas slow flow endoleaks may need to be visualized with venous phase scans. In case of calcification in the aneurysm sac, the pre contrast media scan is helpful to differentiate this feature from endoleaks.

Magnetic resonance angiography
MRA has a limited use in endoleak detection because of the metal artefacts caused by stentgraft material. Stentgrafts with nitinol are generally more suitable for MRA imaging, whereas those made of stainless steel might cause enormous artefacts (46, 47). In patients treated with nitinol stentgrafts, MRA is at least as sensitive as CTA to reveal endoleaks, and in some cases even better. MRA is also equally reliable as CTA for measurement of aneurysm sac size and stentgraft position (48, 49). Other advantages of MRA are the lack of ionizing radiation radiation, and the reduced dose of nephrotoxic contrast media. Disadvantages of MRA, on the other hand, are the fact that the method is contraindicated in patients with pacemakers or other electronic implants, and the relatively high costs incurred by this method.
Contrast media induced nephropathy

CIN is defined as an absolute (≥0.5 mg/dl) or relative increase (≥25%) in serum creatinine at 48-72 hours after exposure to a contrast agent compared to baseline serum creatinine values, after exclusion of alternative explanations for renal function impairment (9). The increasing number of diagnostic and interventional radiological procedures performed has resulted in an increasing incidence of renal function impairment, and radiographic contrast media have been estimated to be responsible for 11% of cases of hospital-acquired renal insufficiency. Different risk factors for CIN are listed in table 3.

Table 3.
Risk factors for the development of CIN.

<table>
<thead>
<tr>
<th>Fixed (non-modifiable) risk factors</th>
<th>Modifiable risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old age</td>
<td>Volume of contrast media</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Hypotension</td>
</tr>
<tr>
<td>Pre-existing renal failure</td>
<td>Anemia and blood loss</td>
</tr>
<tr>
<td>Advanced congestive heart failure</td>
<td>Dehydration</td>
</tr>
<tr>
<td>Low left ventricular ejection fraction</td>
<td>Low serum albumin level (<35g/l)</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>Angiotensin-convertin enzyme inhibitors</td>
</tr>
<tr>
<td>Cardiogenic shock</td>
<td>Diuretics</td>
</tr>
<tr>
<td>Renal transplantant</td>
<td>Non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td></td>
<td>Nephrotoxic antibiotics</td>
</tr>
<tr>
<td></td>
<td>Intra-aortic balloon pump</td>
</tr>
</tbody>
</table>
A high prevalence of AAA has been established in meta-analyses of patients with coronary heart disease (50-54). Among men undergoing coronary artery bypass or with three vessel disease, the prevalence of AAA has been estimated to be as high as 11.4%. Coronary artery disease can cause congestive heart failure and cardiorenal syndrome, featuring renal function impairment (55). Considering this fact, it is of special importance to minimize iodine contrast media use for repetitive AAA follow-up in patients with coronary heart disease, while maintaining a sufficient diagnostic level.

CT principles

In CT, a rotating x-ray source (x-ray tube) is used to generate images in three dimensions. During scanning the x-ray tube continually rotates around the imaging subject, during which a detector on the opposite side records the beam intensity passing the subject, i.e. how much the subject attenuates the x-rays. The attenuation describes the radiodensity of the object, and is expressed in Hounsfield units (HU) or CT number. During spiral or helical scanning, the subject simultaneously moves perpendicular to the plane of rotation of the x-ray tube and detector.

Dual energy CT

Multidetector CT systems use an array of detector rows, allowing simultaneous acquisition of image data from multiple parallel slices thus reducing examination time. Modern CT systems have 16 to 320 rows or slices. One of the latest technical CT advances is dual energy CT (DECT) or multi energy CT (56-58).

Most of the tissue in the human body consists of atoms like hydrogen, oxygen, carbon, and nitrogen with stable photoelectronic interaction with x-ray beams. Calcium in bone and iodine in intravenous contrast agents have different attenuation properties at different x-ray energies, and this is being utilized in dual or multi energy CT. This capacity allows to highlight or subtract different tissues or structures in the images in dual or multi energy CT (59).

At present, there are several different dual energy CT equipment commercially available. In dual-source CT, two separate x-ray tubes rotate at different voltages with two corresponding detectors. Another diagnostic approach is a rapid voltage switching CT tube with somewhat less hardware requirements. In this model, the tube potential follows a pulsed curve, and acquired photon data is collected twice for every projection. A third diagnostic approach consists of two detector layers with their maximum sensitivity for different photon energies. In a fourth application, two rapid sequential scans with two different tube potentials are used to obtain the
data set (60). As the data is not produced simultaneously, patient motion between the two scans can cause severe degradation of the resultant images. To minimize the time-delay a different approach has been invented, where one axial scan is performed at each tube potential prior to table incrementation.

Novel techniques have been developed for multi-energy data acquisition with energy-resolving photon counting detectors. These semiconducting detectors are capable to count discrete photon interactions by converting the absorbed x-ray energy directly into electrical charge. Improved spectral separation and increased radiation dose efficiency are potential advantages of this technique (60-62).

Radiation dose and image quality

The main disadvantage of CT is the need for use of ionizing radiation, which can cause direct tissue damage or changes in the human genome and increasing risk of carcinogenesis. In CT, the radiation dose is dependent on the same factors as the image quality: tube current (mA), slice scan time (s), and peak tube voltage (kVp) (63).

Before CT came into more popular clinical use, planar radiography and fluoroscopy constituted almost all radiological imaging used. Therefore, it was meaningful to measure the radiation entering to the patient surface (referred to as entrance skin exposure). During CT scanning the x-ray beams reach the patient from all directions, and it is therefore difficult to approximate where in the tissue the maximal radiation dose occurs. This fact has necessitated the development of more reliable radiation exposure measurement methods.

Presently, two standard CT dosimetry phantoms are used to measure CT radiation dose: a 32 cm-diameter cylindric acrylic phantom to represent the body, and a 16cm-diameter version to represent the head. The radiation quantity in spiral CT is the computed tomography dose index by volume (CTDIvol), expressed in milligray (mGy). CTDIvol calibrated with CT phantoms is a measure of the radiation output, and not a direct radiation dose measure for a particular patient. Patient dose (mGy) is dependent on CTDIvol, and both patient composition and volume. The total radiation exposure of a CT examination is defined by the dose-length product (DLP = CTDIvol × scan length in centimetres) (64). An estimate of the effective dose expressed in millisievert (mSv) can be obtained by multiplying DLP by a conversion factor appropriate for different anatomical regions. The effective dose reflects the stochastic risk of radiation-induced complications, such as cancer induction.

Image quality in CT, as in all radiography, depends on four fundamental components: image contrast, spatial resolution, image noise, and artefacts.
• Image contrast is determined by an attenuation differential in the image object. In other words, the differences in x-ray attenuation by absorption or scattering in different types of tissue.

• Spatial resolution in CT is the ability to distinguish small, closely spaced objects on an image. This is determined by the distance between the object and the CT detector, focal spot size, detector size, reconstruction matrix resolution, and slice thickness (63).

• Image noise is the fluctuation in CT numbers of homogenous tissue in the CT image, the graininess in the image. This is due to the limited number of photons producing the image. By increasing the tube current, the number of x-ray photons are increased. Scan (rotation) time changes detect x-rays proportionally. Changing the nominal slice thickness changes the beam width entering each detector. Increasing peak tube voltage increases the number of x-rays penetrating the patient and reaching the detectors.

• Image artefacts can be defined as any structure that is seen on an CT image which is not representative of actual patient anatomy. Artefacts can be caused by the patient (e.g. metal and motion artefacts), by radiation physics (e.g. beam hardening, photon starvation, partial volume), or by the CT system (e.g. ring and distortion artefacts) (65).

In clinical CT imaging, the aim is to produce images of diagnostic quality using the lowest possible radiation exposure. This can be summarized with the acronym ALARA, “As Low As Reasonably Achievable” (66).

Image reconstruction

Over the past years, development of the computational capacities of CT systems in clinical use have provided opportunities for both improvements of image quality and simultaneous reductions of radiation doses (67-70). Image reconstructions using different mathematical algorithms play important roles in this process.

Reconstruction algorithms

Filtered backprojection
The CT scanner produces images of different body parts from multiple angles or projections around the body (64). For any given projection there is a line of lighter or darker pixels, i.e. different attenuation depending upon how much of the x-ray beams that passes through the examined body. This pixel volume is called the
projection domain, the raw data of CT numbers, and has sinusoidal undulations as the CT tube rotates around the patient during horizontal movement of the CT table. Such raw CT data with sinusoidal form are also called a sinogram. The standard method of reconstructing CT images is backprojection, in which the CT data is mathematically projected back at the angle from which it was acquired, resulting in an image of this data, also called image domain. This backprojected image is blurry as the image pixels do not appear exactly where they belong. The image domain is therefore mathematically filtered back, resulting in more accurate placement of image pixels and thus a sharper image. This method is called filtered backprojection (FBP) (71).

Iterative reconstruction (IR) methods

When FBP is based on only a single image reconstruction, iterative reconstruction algorithms use multiple repetitions of the image reconstructions for a more accurate result. CT manufacturers have nowadays developed their own specific solutions, offering very little official information on algorithm principles and details (72). IR algorithms can be differentiated in three major subgroups, however: pure iterative methods without any modelling, statistical methods with modelling of the photon counting statistics, and model-based methods which go beyond statistical modelling (73).

- All pure iterative reconstruction methods consist of three major steps which are repeated multiple times until a satisfactory image quality is reached. The first step is a forward projection of the current volumetric image. The second step is comparison of the measured raw data volume. In the third step, this updated image is projected back to the current volumetric image and compared again. These steps are repeated until the current volumetric image reaches a predefined quality criterion.

- Statistical methods incorporate counting of detected photons, and use statistics in the image reconstruction process. Statistical methods can work either in the projection domain or in the image domain.

- Model-based methods attempt to model the acquisition process and use image domains as three-dimensional objects (geometric modelling), or use photon interactions in the addressed object (physical modelling).

Reconstruction of virtual non contrast images

In a DECT system, one scan results in two sets of projection volume where the voxels containing iodine (contrast media) differ from each other. Using mathematical algorithms, iodine can been subtracted from the final image creating a virtual non contrast image (VNC), i.e. an image without contrast material.
enhancement of the tissues (60). If the VNC images are of sufficient quality, the true non contrast (TNC) images can be replaced (74). In CT studies after EVAR, this could be helpful to differ an endoleak from the calcium in the aneurysm sac and thereby allow the examiner to omit the TNC scan. This would result in significant radiation dose reduction during repetitive EVAR follow-up CT studies (75).

![Figure 4.](image)
The left panel shows a TNC image, the middle panel a VNC image derived from an arterial phase scan, and the right panel shows a VNC image derived from a venous phase scan.

Metal artefacts and metal artefact reduction methods

As photons in x-ray beams behave remarkably different in metal objects compared to in human tissue, orthopaedic implant or vessel stents often cause artefacts in the form of streaks, dark shadows, or increased noise. This is due the much higher atomic numbers of metal materials compared to body tissue, and the usually sharply defined borders of medical implants (65). Such phenomena result in decreasing image quality, and causes that important structures like tumours or broken stents can be covered by artefacts. To overcome this problem many different computational methods has been developed. These methods can be roughly divided into the following groups:

- Sinogram inpainting methods, where metal artefact corrupted data is replaced using interpolation.
- Forward projection methods, where metal affected values are treated as missing data (76) and replaced with the value of soft tissue.
- Filtering methods, which try to use all the available information and to not replace metal affected data (77).
- Iterative methods incorporating physics behind the acquisition process, and photon statistics to complete metal affected data (78, 79). Combined use of several of these artefact reduction methods lead to better image quality and diagnostic certainty (80, 81). In most modern CT systems, several of these methods are combined into an iterative loop for maximal diagnostic benefit (82).

![Figure 5](image)

Figure 5.
In the left panel streak artefacts from stent material and Onyx® embolization material is visualized. In the right panel a metal artefact reduction algorithm is used and less streak artefacts therefore appear in the surrounding structures. Images were reconstructed in the CT system Siemens Somatom Definition Flash.
Aims

General aims
The main objectives of this thesis were to assess techniques to improve patient safety, to assess possibilities to reduce radiation dose, and to evaluate possibilities to improve image quality by using metal artefact reduction techniques in CT follow-up after EVAR.

Specific aims

Paper I
- To retrospectively compare vascular attenuation, image noise, image-to-noise ratio, subjective image quality, and radiation effective dose for CTA at 80 kVp after EVAR using a contrast medium dose which is half of that used at 120 kVp.

Paper II
- To compare image quality of virtual non contrast (VNC) images reconstructed from arterial phase dual-energy CTA to true non contrast (TNC) images.
- To assess whether VNC images are of sufficient quality to replace TNC images.

Paper III
- To compare image quality of VNC images reconstructed from arterial and venous phase dual-energy CTA to TNC images.
- To assess which of the above that is most suitable to replace TNC images.

Paper IV
- To evaluate whether post-processing of CT images using metal artefact reduction algorithms can reduce artefacts caused by Onyx® embolization material, and improve diagnostic quality compared to standard image reconstructions.
Material and methods

Patients

Paper I

All patients included in this study were referred for EVAR follow-up by CTA on clinical grounds and were examined as part of a routine program. Two different CT study protocols were used depending on estimated glomerular filtration rate (eGFR); an 80-kVp protocol for those with eGFR < 45 mL/min and a 120-kVp protocol for those with eGFR ≥ 45 mL/min.

Table 4. Basic characteristics of patients in paper I undergoing 80 and 120 kVp CTA with a 16-multirow detector system for follow-up after EVAR. Median values (2.5 and 97.5 percentiles) presented unless otherwise stated. GFR = glomerular filtration rate, kVp = peak kilovoltage.

<table>
<thead>
<tr>
<th>Variables</th>
<th>80 kVp cohort</th>
<th>120 kVp cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Men, number (percent)</td>
<td>27 (68)</td>
<td>35 (89)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>74 (67-86)</td>
<td>75 (60-82)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80 (56-102)</td>
<td>77 (64-110)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>172 (160-183)</td>
<td>177 (160-188)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27 (20-35)</td>
<td>24 (19-34)</td>
</tr>
<tr>
<td>Plasma creatinine (µmol/L)</td>
<td>139 (76-220)</td>
<td>89 (53-132)</td>
</tr>
<tr>
<td>Estimated GFR (mL/min)</td>
<td>38 (22-49)</td>
<td>62 (45-100)</td>
</tr>
</tbody>
</table>

Paper II

Thirty consecutive patients were examined by dual-energy CT and included in the study. Twenty-five patients underwent examination for suspected acute aortic disease and five patients were examined due to a suspected acute complication after abdominal EVAR.
Table 5.
Basic characteristics of the study patients in paper II. Median values (2.5 and 97.5 percentiles) are given unless otherwise stated.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>30</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65 (37-89)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77 (53-126)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171 (158-193)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26 (19-34)</td>
</tr>
<tr>
<td>Plasma creatinine (μmol/L)</td>
<td>81 (46-122)</td>
</tr>
</tbody>
</table>

Paper III
Between May 2014 and April 2015, 63 patients (53 men and 10 women) were examined by dual-energy CT for routine follow-up after EVAR, and included in the study. Patients with a body mass index (BMI) > 35 kg/m² were excluded because of the presumed insufficient transmission of 80 kVp quanta. Patients with impaired renal function (glomerular filtration rate < 45 ml/min) were examined with a reduced contrast medium dose.

Table 6.
Basic characteristics of the study patients in paper III. Median values (2.5 and 97.5 percentiles) are given unless otherwise stated.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>63</td>
</tr>
<tr>
<td>Age (years)</td>
<td>73 (63-84)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>78 (60-106)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>175 (160-186)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25 (20-35)</td>
</tr>
<tr>
<td>Plasma creatinine (μmol/L)</td>
<td>87 (50-136)</td>
</tr>
</tbody>
</table>

Paper IV
Twelve patients (1 woman and 11 men) referred for follow-up CT angiography after Onyx® embolization for endoleaks following EVAR were recruited for the study between December 2014 and December 2018. Patients with impaired renal function (glomerular filtration rate < 45 ml/min) were excluded. Embolization areas were in the aortic aneurysm sac, the lumbar arteries, the inferior mesenteric artery, and/or in the hypogastric artery aneurysm sac.
Table 7.
Patient characteristics in paper IV (median and range).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Patients (n)</th>
<th>Age (years)</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
<th>Body mass index (kg/m²)</th>
<th>Plasma creatinine (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>74 (44-87)</td>
<td>86 (60-132)</td>
<td>177 (160-191)</td>
<td>27 (21-41)</td>
<td>87 (49-110)</td>
</tr>
</tbody>
</table>

Ethical considerations

Paper I was a register study of patients included in the clinical quality assurance program of Skåne University Hospital. No informed consent was therefore required, and the local ethics committee waived ethical approval for publication of the results. The ethical committee of Lund approved the studies reported in papers II, III, and IV (#2014/811).

CT parameters

All the study protocols in papers I-IV were those used for routine clinical studies at Skåne University Hospital. Triphasic (one phase without contrast media, arterial and venous phases with contrast media) study protocols were used except in paper II, in which 25 patients were studied with a diphasic study protocol (one without contrast media and one with arterial phase contrast media) and five patients were studied with a triphasic study protocol. The first study reported in paper I was performed with a 16-row detector CT system, whereas the three following studies (papers II-IV) were carried out with a 128-row, dual-energy CT system.

Table 8.
Sacanning parameters in the studies in contrast phase scan.

<table>
<thead>
<tr>
<th></th>
<th>Paper I</th>
<th>Paper II</th>
<th>Paper III</th>
<th>Paper IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT system</td>
<td>Siemens Somatom Sensation 16</td>
<td>Siemens Somatom Definition Flash</td>
<td>Siemens Somatom Definition Flash</td>
<td>Siemens Somatom Definition Flash</td>
</tr>
<tr>
<td>Source</td>
<td>Single</td>
<td>Dual</td>
<td>Dual</td>
<td>Dual</td>
</tr>
<tr>
<td>Tube voltage (kV)</td>
<td>120 or 80</td>
<td>80/Sn140</td>
<td>80/Sn140</td>
<td>80/Sn140</td>
</tr>
<tr>
<td>Reference tube load (mAs)</td>
<td>100 or 30</td>
<td>210/81</td>
<td>210/81</td>
<td>210/81</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.0 or 0.5</td>
<td>0.85</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Detector configuration</td>
<td>16 × 0.75/16 × 1.5</td>
<td>128 × 0.6</td>
<td>128 × 0.6</td>
<td>128 × 0.6</td>
</tr>
<tr>
<td>Rotation time (s)</td>
<td>0.5</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Matrix</td>
<td>512 × 512</td>
<td>512 × 512</td>
<td>512 × 512</td>
<td>512 × 512</td>
</tr>
<tr>
<td>Reconstructed slice thickness (mm)</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Automatic dose modulation</td>
<td>CareDose 4D™</td>
<td>CareDose 4D™</td>
<td>CareDose 4D™</td>
<td>CareDose 4D™</td>
</tr>
<tr>
<td>Convolution kernel</td>
<td>B30F</td>
<td>D26f</td>
<td>I30f</td>
<td>I30f</td>
</tr>
</tbody>
</table>
Radiation dose

For all acquisitions, the effective dose was calculated from the dose-length product registered by the CT system, and multiplied by the mean of the conversion factor for abdomen/pelvis in three of the studies (papers I, III, and IV), and for chest/abdomen/pelvis in paper II based on the tissue weighting factors of the International Commission on Radiological Protection 2007 (83). In papers III and IV both the arterial and venous phase scans were performed with dual source system mode, whereas in paper III both contrast media scans were reconstructed and evaluated. In paper IV only arterial phase images were reconstructed and evaluated. In paper IV the radiation parameters were not stated in the ordinary manuscript, as the study aim was to compare standard reconstruction in the arterial phase scan to several reconstructions with metal artefact reduction algorithms produced from already existing arterial phase scans.

Radiation parameters paper I

Table 9.
Radiation parameters in arterial phase scans with 16-slice multirow CT system. Median values (2.5 and 97.5 percentiles) presented unless otherwise stated.

<table>
<thead>
<tr>
<th>Variable</th>
<th>80 kVp cohort</th>
<th>120 kVp cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan time (s)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Scan length (cm)</td>
<td>46 (39-58)</td>
<td>47 (39-53)</td>
</tr>
<tr>
<td>CTDIvol (mGy)</td>
<td>7.7 (5.1-9.1)</td>
<td>6.3 (5.0-9.9)</td>
</tr>
<tr>
<td>Dose-length product (mGy*cm)</td>
<td>366 (246-459)</td>
<td>320 (207-527)</td>
</tr>
<tr>
<td>Effective dose (mSv)</td>
<td>5.1 (3.4-6.4)</td>
<td>4.5 (2.9-7.4)</td>
</tr>
</tbody>
</table>

Radiation parameters paper II

Table 10.
Radiation parameters of true non-contrast (TNC) acquisitions and virtual non-contrast (VNC) acquisitions. Median values (2.5 and 97.5 percentiles) presented unless otherwise stated.

<table>
<thead>
<tr>
<th>Variables</th>
<th>TNC</th>
<th>VNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan time (s)</td>
<td>6 (5-7)</td>
<td>4 (4-7)</td>
</tr>
<tr>
<td>Scan length (cm)</td>
<td>67 (55-77)</td>
<td>64 (55-73)</td>
</tr>
<tr>
<td>CTDIvol (mGy)</td>
<td>7.2 (4.3-11.3)</td>
<td>6.5 (5.6-9.6)</td>
</tr>
<tr>
<td>Dose-length product (mGy*cm)</td>
<td>492 (262-875)</td>
<td>460 (380-760)</td>
</tr>
<tr>
<td>Effective dose (mSv)</td>
<td>9.0 (4.8-16.1)</td>
<td>8.4 (7.0-13.9)</td>
</tr>
</tbody>
</table>
Radiation parameters paper III

Table 11.
Radiation parameters of true non-contrast (TNC) acquisition and virtual non-contrast arterial phase (A-VNC) and venous phase (V-VNC) reconstructions. Median values (2.5 and 97.5 percentiles) are given unless otherwise stated. CTDI\text{vol}, volume computed tomographic dose index; mGy, milliGray; mSv, milliSievert.

<table>
<thead>
<tr>
<th>Variables</th>
<th>TNC</th>
<th>A-VNC</th>
<th>V-VNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan time (s)</td>
<td>7 (6-8)</td>
<td>7 (6-8)</td>
<td>7 (7-8)</td>
</tr>
<tr>
<td>Scan length (cm)</td>
<td>48 (41-54)</td>
<td>48 (41-54)</td>
<td>48 (41-54)</td>
</tr>
<tr>
<td>CTDI\text{vol} (mGy)</td>
<td>5.1 (3.6-7.9)</td>
<td>4.9 (3.4-8.4)</td>
<td>4.9 (3.4-8.4)</td>
</tr>
<tr>
<td>Dose-length product (mGy*cm)</td>
<td>267 (166-403)</td>
<td>269 (171-429)</td>
<td>257 (162-420)</td>
</tr>
<tr>
<td>Effective dose (mSv)</td>
<td>3.7 (2.3-5.6)</td>
<td>3.6 (2.3-5.9)</td>
<td>3.6 (2.3-5.9)</td>
</tr>
</tbody>
</table>

Radiation parameters paper IV

Table 12.
Radiation parameters of arterial phase contrast acquisitions. Median values (minimum and maximum) are given unless otherwise stated.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Arterial contrast phase acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan time (s)</td>
<td>7 (7-12)</td>
</tr>
<tr>
<td>Scan length (cm)</td>
<td>50 (43-75)</td>
</tr>
<tr>
<td>CTDI\text{vol} (mGy)</td>
<td>6.0 (3.7-9.6)</td>
</tr>
<tr>
<td>Dose-length product (mGy*cm)</td>
<td>335 (165-600)</td>
</tr>
<tr>
<td>Effective dose (mSv)</td>
<td>5.2 (2.6-9.2)</td>
</tr>
</tbody>
</table>

Image reconstructions

In paper I, arterial phase 3 mm thick axial images were reconstructed automatically by the CT system for both the 80 kVp and 120 kVp patient cohorts. In paper II the 5 mm thick axial TNC images were automatically reconstructed by the dual-energy CT system, whereas Siemens Syngo.via software was used in the radiological workstation to reconstruct the 5 mm thick axial VNC images. For TNC images, the iterative reconstruction algorithm SAFIRE was used at level one. In papers III and IV, true non contrast (TNC) axial images and standard arterial phase axial images were automatically produced by the CT system. Virtual non-contrast (VNC) axial images and images with different Siemens metal artefact reduction algorithms (iMAR) were reconstructed at the workstation of the CT system.
Table 13.
Overview of the image reconstruction process in papers I-IV. VNC = virtual non-contrast, A-VNC = VNC image from arterial phase acquisition, V-VNC = VNC image from venous phase acquisition. MAR = metal artefact reducing algorithm.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens Sensation 16, consol</td>
<td>Siemens Syngo.via software</td>
<td>Siemens Definition Flash, consol</td>
<td>Siemens Definition Flash, consol</td>
<td></td>
</tr>
<tr>
<td>Slice thickness</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Iterative algorithms</td>
<td>-</td>
<td>SAFIRE®, level 1</td>
<td>SAFIRE®, level 1</td>
<td>SAFIRE®, level 1</td>
</tr>
<tr>
<td>VNC</td>
<td>-</td>
<td>A-VNC</td>
<td>A-VNC, V-VNC</td>
<td>-</td>
</tr>
<tr>
<td>MAR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8 different variants</td>
</tr>
</tbody>
</table>

Image quality assessment

The image quality was evaluated with both objective measurements (papers I-IV), and subjective assessment (papers I, II, and IV). The radiological PACS workstation (IDS7, Sectra Imtec AB, Linköping, Sweden) was used to measure mean attenuation values (HU) and noise (standard deviation, HU) in the images (papers I-IV). Mean attenuation values and image noise were measured in the aorta at the levels of the hemidiaphragms, the renal arteries, and the aortic bifurcation (papers I-II). Identical mean vascular attenuation were measured at the levels of the hemidiaphragms, the renal arteries, the right lobe of the liver, the retroperitoneal fat, and the psoas muscle (paper III), or at the aorta at the level of the hemidiaphragms, and the aorta or iliac arteries close to the Onyx® embolization material (paper IV). The regions of interest (ROI) in the arteries were made as large as possible while avoiding calcifications, plaques, and stent material. In paper I, contrast-to-noise ratio (CNR) was calculated to evaluate the sensitivity to detect potential endoleak in the aneurysm sac and thrombus.
Figure 6.
The upper panel shows the ROI in the aorta at the level of diaphragm, and the lower panel shows the ROI in aorta in the level of renal arteries. The maximum diameter of the ROI is measured avoiding contact with the stent.
Table 14.
Overview of objective and subjective image quality assessment methods used in the different studies.

<table>
<thead>
<tr>
<th>Method</th>
<th>Paper I</th>
<th>Paper II</th>
<th>Paper III</th>
<th>Paper IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT numbers (HU)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Noise (HU)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Contrast-to-noise ratio</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall image quality</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Feasibility to detect vessel patency</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Assessment of artefacts</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Feasibility to detect endoleaks</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Residual contrast (VNC)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtracted calc</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Subtracted stents</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ability to see adjacent structures</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>close to Onyx®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-observer agreement</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Subjective evaluation was performed independently and blinded by using ViewDEX, a computer software developed for randomized analysis of digital images (84, 85). Assessments were made by two radiologists in papers I, II, and IV, and by one radiologist and one vascular surgeon in paper I. A four-point scale was used (4 = excellent; 3 = good; 2 = moderate quality but sufficient for diagnosis; 1 = non-diagnostic) with more specific criteria for each point assessed.
Statistical evaluation

Statistical analysis was performed using the statistical software SPSS (version 24.0-25.0; SPSS Inc, Chicago, IL, USA).

In paper I the Mann-Whitney U-test was used to compare differences between the two cohorts regarding the ratio used gram iodine/GFR, scan time and length, vascular attenuation, thrombus attenuation, noise, CNR, radiation doses, and subjective evaluation of image quality. A p-value < 0.05 was considered significant.

In paper II the Mann-Whitney U-test was used to compare differences between the TNC and VNC datasets regarding vascular attenuation, noise, and radiation dose. Wilcoxon’s signed-rank test was used to compare the subjective evaluations of image quality. In both tests a p-value < 0.05 was considered significant. Interobserver agreement regarding overall image quality was assessed using the intra-class correlation coefficient (ICC).

In paper III median, minimum and maximum were used to describe the distribution of attenuation and noise differences, and the Wilcoxon’s signed-rank test was used.
to determine differences between the TNC and VNC datasets. A p-value < 0.05 was considered significant.

In paper IV median, minimum and maximum were used to describe the distribution of attenuation and noise differences. The Wilcoxon signed-rank test for paired samples was used to assess statistical significances and to compare outcomes of the subjective evaluation of image quality. The level of significance was set to $p < 0.05$.
Results

Paper I

Aortic attenuation using the 80-kVp protocol with halved contrast media dose was not inferior compared to the 120-kVp protocol. With both protocols only a weak correlation between mean aortic attenuation and body weight was demonstrated, as could be expected with the used contrast medium injection protocol, i.e. tailoring contrast media dose to body weight and using a fixed injection time.

The only statistically significant differences between the two protocols were higher aortic attenuation at the level of the renal arteries, higher image noise, and higher CTDIvol in the 80-kVp cohort. However, this did not result in any statistically significant differences in aortic CNR, DLP, or effective dose between the 80-kVp and 120-kVp cohorts.

Image noise in the aneurysm thrombus was higher using the 80-kVp protocol compared with the 120-kVp protocol. Despite the differences in image noise between these two protocols, however, there was no statistically significant difference in median aortic CNR. Nevertheless, CNR showed a clear negative correlation with increasing body weight, which is shown in table 3 in the original article.

Correlations between aortic mean attenuation and body weight, and between aortic CNR and body weight are illustrated in Fig. 8.
The mean overall quality scores in the 80 and 120 cohorts were 3.0 and 3.5, respectively, for reader # 1, and 3.0 and 3.3, respectively, for reader # 2. Overall image quality (p= 0.003) as well as image quality at the aortic bifurcation (p = 0.002) were significantly better in the 120 than the 80-kVp cohort for reader # 1, but no difference was seen at the diaphragmatic level (p = 0.084). For reader # 2 there were no significant differences in image quality between the two protocols, overall (p = 0.11) or at any specific level (p > 0.23).

In the 120-kVp cohort no examination was rated as poor concerning overall quality or quality at any of the individual vascular segments. In the 80-kVp cohort one examination was rated as poor concerning overall image quality by one reader and as of moderate quality by the other reader. Both readers rated the examination as being of poor quality at the level of the aortic bifurcation. This examination was performed on a patient with BMI of 37 kg/m² (body weight 94 kg), had the highest image noise (82 HU), and an aortic CNR of 4.1. One reader rated another 80-kVp examination as being of poor quality at the level of the renal arteries, whereas the other reader rated it as being of moderate quality. CNR was 2.8 and the only aortic mean attenuation < 200 HU (159 HU). The iliac arteries could be assessed in all patients.
At all aortic levels the VNC images had significant higher attenuation ($p < 0.001$) and image noise ($p < 0.001$). This is shown in table 4 in the original article. When comparing the VNC images to the TNC images, side-by-side artefacts in major thoracic vessels could be demonstrated in VNC images (Fig 9, pulsation). Removal of minor arterial calcifications occurred in 22 out of 30 VNC images. In all cases, these removed calcifications were small, 1-3 mm, and located at the aortic or iliac wall (Fig 9, calcification). Partial removal of stent structures occurred in the VNC images of two patients, one stent was partially subtracted from the left renal artery, and in another case an aortic stent was partially subtracted (Fig 9, stent). In five cases, significant noise was demonstrated in the VNC images (Fig 9, noise). These patients had BMI of 26, 24, 33, 26, and 33 kg/m2, respectively, three were women and two were men. One of these five patients had undergone fenestrated EVAR, and four had been referred to the study because of suspected aortic rupture.

In subjective image quality evaluation, all TNC images were rated as being of good or excellent quality. The mean image quality scores were 3.6 for reader # 1 and 3.7 for reader # 2. All VNC images were rated as being of moderate to excellent quality, with a mean image quality score of 3.0 for reader # 1 and 3.2 for reader # 2. There was a significant ($p < 0.001$) difference in subjective image quality between the TNC and VNC datasets. For the overall image quality, the inter-observer agreement was moderate with average ICC value of 0.743.
Figure 9.
Paper III

This prospective study showed that in terms of aortic attenuation values, VNC images reconstructed from venous phase CT angiography (V-VNC) represent a better approximation of TNC images than those reconstructed from arterial phase (A-VNC) scans. Attenuation differences were significant between the TNC and both the VNC images at the level of the diaphragmatic aorta, whereas there were no significant difference between TNC images and V-VNC images at the level of the renal arteries. In both VNC images, the attenuation values in liver and fat tissue were significantly higher compared to TNC images. In muscle (psoas) tissue, attenuation values were higher in A-VNC images compared to TNC images, whereas no significant differences were demonstrated between V-VNC and TNC images. Neither were there any significant differences in image noise between the TNC and both the VNC images. Differences in attenuation values and image noise are presented in Table 17.

Table 17.
Differences in attenuation (HU) and image noise (1 SD, HU) between the true non-contrast (TNC) acquisition and the virtual non-contrast images acquired from arterial (A-VNC) and venous phase acquisition (V-VNC) at the levels of the diaphragma and the renal arteries. Statistical significance (p-values) between differences in attenuation was calculated using Wilcoxon Signed Rank test.

<table>
<thead>
<tr>
<th>Anatomic position</th>
<th>\triangle A-VNC - TNC</th>
<th>\triangle V-VNC - TNC</th>
<th>\triangle A-VNC - V-VNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorta at diaphragmatic level</td>
<td>44 (p < 0.001)</td>
<td>8 (p < 0.001)</td>
<td>36 (p < 0.001)</td>
</tr>
<tr>
<td>Attenuation (HU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image noise (HU)</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aorta at renal artery level</td>
<td>32 (p < 0.001)</td>
<td>3 (p = 0.13)</td>
<td>35 (p < 0.001)</td>
</tr>
<tr>
<td>Attenuation (HU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image noise (HU)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Paper IV

In all iterative MAR (iMAR) reconstructions the differences in attenuation between the reference level (diaphragmatic aorta) and the vessel lumen affected by metal artefacts were significantly smaller than in the standard images. The same finding could be demonstrated for psoas muscle. The study showed that iMAR reconstructions constitute better representation of vessels and muscles than standard images of areas affected by metal artefacts from Onyx®.

The smallest attenuation differences, i.e. the most accurate representation, were seen in reconstructions tailored for Pacemaker, Shoulder implants, and Dental fillings, as shown in Table 18. Attenuation reduction was significantly different between the standard image and iMAR reconstructions for Neuro coils (p = 0.005), Shoulder
implants (p = 0.006), Pacemaker (p = 0.015), Thoracic coils (p = 0.006), Hip implants (p = 0.021), and Extremity implants (p = 0.019). The smallest attenuation differences between the reference ROI in the psoas muscle at the level of the diaphragm compared to the ROI at the level of the Onyx® were seen in iMAR reconstructions tailored for Spine implants, Shoulder implants, and Thoracic coils.

Table 18.
Attenuation differences between artefact-affected and non-affected vessel lumen and psoas muscle. Median and range for attenuation (HU) and noise (SD) differences for vessel lumen and psoas muscle at the level of Onyx®, compared to reference levels.

<table>
<thead>
<tr>
<th>Reconstruction</th>
<th>Δ HU/SD aorta/artery</th>
<th></th>
<th>Δ HU/SD psoas diaph/Onyx</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ HU</td>
<td>Δ SD</td>
<td>Δ HU</td>
<td>Δ SD</td>
</tr>
<tr>
<td>Neuro coils</td>
<td>151 (43-475)</td>
<td>79 (7-172)</td>
<td>16 (1-27)</td>
<td>4 (0-83)</td>
</tr>
<tr>
<td>Dental fillings</td>
<td>122 (21-306)</td>
<td>82 (7-264)</td>
<td>15 (2-30)</td>
<td>9 (1-107)</td>
</tr>
<tr>
<td>Spine implants</td>
<td>191 (52-598)</td>
<td>39 (3-157)</td>
<td>12 (6-27)</td>
<td>12 (1-77)</td>
</tr>
<tr>
<td>Shoulder implants</td>
<td>119 (47-554)</td>
<td>89 (3-145)</td>
<td>13 (3-27)</td>
<td>6 (0-26)</td>
</tr>
<tr>
<td>Pacemaker</td>
<td>112 (24-437)</td>
<td>68 (1-161)</td>
<td>14 (6-26)</td>
<td>6 (1-29)</td>
</tr>
<tr>
<td>Thoracic coils</td>
<td>140 (39-377)</td>
<td>74 (13-122)</td>
<td>13 (1-27)</td>
<td>5 (1-29)</td>
</tr>
<tr>
<td>Hip implants</td>
<td>137 (1-368)</td>
<td>70 (12-147)</td>
<td>16 (5-30)</td>
<td>6 (0-27)</td>
</tr>
<tr>
<td>Extremity implants</td>
<td>127 (17-443)</td>
<td>65 (8-186)</td>
<td>15 (5-36)</td>
<td>5 (2-28)</td>
</tr>
</tbody>
</table>

The iMAR reconstructions were all rated with higher scores by both readers for overall image quality compared to the standard images. The standard images were generally rated as non-diagnostic or acceptable, whereas images reconstructed with iMAR algorithms were rated as acceptable or good. The most prominent difference in subjective overall image quality as judged by both readers, was seen for iMAR reconstructions tailored for Hip implants and Extremity implants compared to the standard images.
Discussion

Potential complications occurring after EVAR mandate regular follow-up examinations with CT angiography, but these patients may have several important risk factors for contrast media induced renal function impairment. Therefore, attempts to individually optimize contrast media and reduce radiation dose in CT angiography are highly desirable.

In CT angiography both timing and concentration of the intravenous contrast media infusion are crucial to enable diagnostic coverage of the anatomic vascular area of relevance. When decreasing the contrast media dose, the imaging time needed for optimal coverage of the area of interest becomes limited. When decreasing the tube voltage, the image noise increases. These facts are both of clinical relevance when planning the optimal quality in CT angiography. In CT angiography, the contrast agent usually infused in the upper extremities passes fast through the right heart before entering to the pulmonary tree. To cover the abdominal aorta, contrast media has to pass also the left heart, creating a delay which is variable and related to the cardiac output of the individual patient (86). Several previous studies in pulmonary (87-90) or abdominal CT angiography (91) show how the contrast media dose can be reduced through reduction of tube voltage with preserved diagnostic quality. These previously published results gave us reason to believe that this technique would potentially be adequate also in patients treated with EVAR, and served as a basis for paper I. The results of this study have subsequently been introduced in more general clinical use, and have even been included in commercial recommendations (92).

Using the widely accepted tri-phasic CT study protocol repetitively after EVAR results in a substantial radiation dose. By eliminating the first scan without intravenous contrast media, and thus significantly reducing the radiation dose, seemed attractive in the CT follow-up study.

The basic principles for creation of VNC images are widely known, but each CT system manufacturer has its own commercially protected methods to construct VNC images. Applying these methods in a clinical environment is always somewhat dubious. Several previous studies (74, 75) had shown promising results using the VNC technique, and gave us the basic ideas behind papers II and III. The results showing high aortic attenuation values and high noise in VNC images compared to TNC images in paper II were a disappointment, however. This prompted a more
detailed study set up in paper III, using VNC derivatives both from arterial and venous phase scans.

There are some important technical differences to take into account when comparing these two studies. In paper II we used a CT angiography protocol for imaging the entire aorta, whereas in the subsequent paper III a CT protocol aimed for the abdominal aorta was utilized. For paper II, VNC images were reconstructed at a PACS workstation using Syngo.via software (MMWP, version 20; Siemens Healthineers, Forchheim, Germany), whereas the images in paper III were reconstructed at the workstation of the CT system (Somatom Definition Flash, Syngo). Furthermore, convolution kernel D26f was used in paper II and I30f in paper III. The use of iterative reconstruction kernel I30f in paper III can partly explain the differences in noise values in these two studies. In paper II image noise was remarkably higher compared to in paper III, in which image noise was equal to that recorded in TNC images. It might therefore be questioned whether the quality of the available raw CT data is more superior at the CT system compared to the CT image reconstruction performed in the PACS workstation with Syngo.via software. The latter study showed that VNC images derived from venous phase scans constitute a more acceptable substitute for TNC images than images from arterial scans.

As paper III was focused upon evaluation of attenuation values and image noise in VNC images, no subjective image evaluation was performed.

In paper IV we approached the clinically important problem of using highly x-ray positive vessel glue Onyx® to embolize type 2 endoleak after EVAR. Metal artefact reducing algorithms are mathematically very complex and demand high computation capacity, and each CT system manufacturer have therefore developed their own commercially protected algorithms. How these algorithms can be optimally applied in clinical use is a highly relevant question. As these algorithms are optimized to be suitable for most of the currently used medical implants (93-95) made of metals with lower atomic numbers compared to the tantalum in Onyx®, they may not always be effective enough to get rid of the artefacts caused by this agent. The results of this study are comforting, however, as they showed that iMAR might help making the nearly useless standard CT angiography acceptable for diagnosis.

The patient material in paper IV was small, mostly due to the fact that only few patients in the follow-up program at our hospital undergo embolization with Onyx® after EVAR treatment. Paper IV was planned as a pilot study, which might give valuable information for planning a future study project with the purpose to evaluate more metal artefact reducing algorithms in detail in a larger patient material.
Efficient and reliable methods for subjective image quality evaluation enabling true blinding and randomization of images are essential for research. ViewDEX is free to use for non-commercial purposes, and is applicable in a normal radiological workstation. This method was used in papers I, II, and IV for subjective image evaluation. In papers II and II, the use of this software was fluent and rendered reliable pictures for adequate evaluation of the vascular structures of interest. In paper IV on the other hand, this software suffered from several interruptions during image assessment, making subjective image evaluation less optimal than in the previous studies. This fact might partly explain the relatively low inter-observer correlation in this study.
Clinical impact

All the study projects included in this thesis have been conducted in a clinical radiology department. The insights gained from the study reported in paper I have already been translated into clinical routine. We now have two different CT study protocols for EVAR follow-up; one for patients with normal renal function and another for patients with impaired renal function.

Although the results presented in papers II and III were somewhat disappointing, they elucidated the possibility to individually adjust the CT angiography protocol when repeated CT studies are performed in younger patients, and reduction of the radiation dose is highly desirable. Future research with more effective reconstruction algorithms will hopefully demonstrate that VNC images can be an acceptable replacement for TNC images, helping us to significantly further reduce the radiation dose in CT angiography.

Metal artefact reducing algorithms are available in almost all modern CT systems, allowing transformation of non-diagnostic CT studies into diagnostic studies in crucial cases. These algorithms have already been introduced into clinical practise in orthopaedic CT studies, and are currently under evaluation for use in vascular CT studies after EVAR.
DECT provides another method to differentiate endoleaks from aneurysm sac calcification using the hard plaque imaging algorithm. This can provide a possibility for replacement of TNC scans, and thus for significant reduction of radiation dose in vascular follow-up CT studies. This method seems to be interesting for future studies.

The new metal artefact reducing algorithms were demonstrated to provide an important clinical impact in paper IV, inspiring us to plan a new study in patients operated with more complex EVAR techniques and therefore harbouring a larger number of metallic stent structures. To study image quality comparing iMAR and virtual monoenergetic images with different dual-energy weighting would give us more valuable information for our future clinical radiology practice.

Photon counting detectors will probably also help us to overcome the challenges with metal artefacts when they become more available in clinical use (62). These novel detectors can contribute more effectively to material differentiation, and only one CT acquisition might be needed to visualize calcifications or iodine contrast in the aneurysm sac. This would result in a significant reduction in radiation dose during repetitive CT follow-up after EVAR.

Converting the imaging follow-up after EVAR from CT to contrast-enhanced ultrasound is one of the most efficient ways to reduce radiation dose and the amount of CT studies needed (44, 96). After more complex endovascular aortic repair the stent configuration details may not be revealed accurately enough with this technique, however, and it should therefore be completed with plain radiographs. Only patients with changes in aneurysm diameter or endoleak detected by the ultrasound studies might be subjected to a subsequent CT study. This type of ultrasound based follow-up protocols are already used in clinical practise (97, 98).
Conclusions

New CT techniques and image reconstruction methods can improve patient safety and reduce radiation dose with maintained or even improved image quality.

Paper I
In follow-up CTA after EVAR in patients with impaired renal function, the use of an 80-kVp technique combined with a halved dose of CM tailored to body weight decreases the risk of CIN while preserving diagnostic quality. Presently used CT equipment limits the use of this method in patients with high body weight or obesity, however, and the upper limit seems to be about 90 kg or a BMI of 35 kg/m² according to our experience.

Paper II
CT angiography images reconstructed with VNC technique based on arterial phase scan have significantly higher mean attenuation and higher noise levels compared to TNC CT images. Therefore, VNC images derived from arterial phase scan cannot be considered as suitable replacement for TNC images.

Paper III
VNC images based on venous phase scans appear to be a more accurate representation of true non-contrast scans than VNC images based on arterial phase scans, with similar attenuation and noise levels in the aorta compared with TNC scans.

Paper IV
The metal artefact reduction algorithm iMAR can reduce severe metal artefacts in CT angiography after EVAR and following Onyx® embolization, and thereby significantly improve both image quality and diagnostic accuracy.
Populärvetenskaplig sammanfattning

Endovaskulär behandling av kroppsprulsåderbråck

Nackdelen med den endovaskulära behandlingen är att patienter ganska ofta får komplikationer, antingen direkt efter operationen eller med tiden. Därför behövs regelbunden kontrol av att kärlproteserna är hela och sitter rätt. Man behöver också se att blodet flyter som det ska genom proteserna.

Uppföljning efter endovaskulär behandling

Vid skiktröntgen används även joniserande strålning. Upprepade undersökningar kan därför öka risken att få strålningsrelaterad cancer.

Både kärlproteserna och en ”tätningsmassa” som ibland behöver användas innehåller metall. Detta ger allvarliga störningar i skiktröntgenbilder och därmed blir diagnoserna mycket mer osäkra.

Denna avhandling innehåller fyra delstudier. Den undersöker olika tekniska möjligheter att förbättra uppföljningen med skiktröntgen efter behandling av endovaskulärt kropps pulsatörbräck.

Studie I

Studien jämförde två alternativ med varandra:

- Skiktröntgen med normal kontrastdos och 120 kVp rörspänning hos njurfriska patienter.
- Skiktröntgen med halverad kontrastdos och 80 kVp rörspänning (där kontrastmedlet är mer effektivt) hos njursjuka patienter.

Studien visade att dessa två alternativ var jämförliga, men 80 kVp-tekniken gav inte tillfredsställande kvalitet hos kraftigt överviktiga patienter.

Studie II

Patienter som har endovaskulär kärlprotes behöver uppföljning med skiktröntgen. Den rekommenderade metoden är att utföra undersökningen både utan kontrastförstärkning och med kontrastförstärkning i två omgångar.

Syftet med den här studien var att undersöka om stråldosen kan minskas om man ersätter omkörningen utan kontrast med konstgjorda icke-kontrastförstärkta bilder. En modern skiktröntgenmaskin med två röntgenrör kan återskapa icke- kontrastbilder ur de kontrastförstärkta bilderna.

Studien visade att de återskapade bilderna var av sämre kvalitet än de äkta icke-kontrastförstärkta bilderna.

Studie III

Man kan återskapa icke-kontrastförstärkta bilder på två sätt. Antingen använder man den första körningen, når kontrastmedlet är i artärerna, eller den andra körningen, när kontrastmedlet hunnit till venerna.
Syftet med den här studien var att undersöka om någon av dessa återskapade bilder kan ersätta undersökningen utan kontrast. Resultatet visade att bilderna från den andra omkörningen var jämförbara och därför skulle kunna användas som ersättning. Därmed kan man minska röntgenstråloden i den enskilda undersökningen.

Studie IV

Syftet var att utvärdera om en ny rekonstruktionsteknik vid skiktröntgen kan minska förekomsten av allvarliga bildstörningar hos patienter som har behandlats med ”tätningsmassa”. Studien visade att störningarna minskade och att undersökningen gav en säkrare diagnos.

Suonensisäinen aortanpullistuman hoito

Suonensisäisen aortanpullistuman hoidon jälkeinen seuranta
Suonensisäisen hoidon jälkeen on suositeltavaa seurata potilasta säännöllisin radiologisin tutkimuksin. Näistä luotettavista tutkimusmetodista on tietokonematografia suonensisäisen varjoaineen kanssa. Tällä kuvantamistekniikalla pystytään todentamaan sekä verisuoniproteeesin kaikki osat, ajankohtainen sijainti että havainnoida verenvirtaus proteesin sisällä. Varjoaine on munuaisten toiminnalle vahingoilla ja saattaa entisestään heikentää jo olemassa olevaa vajaatoimintaa. Lisäksi tietokonematografiassa käytetään ionisoivaa röntgensäteilyä, joka voi usein toistuessaan teoreettisesti lisätä säteilyperäisten syöpien ilmentymistä. Tiettyjä
proteesikomplikaatiota voi hoitaa käytännöllä raskasmetallipitoista nk. verisuoniliimaa, kauppanimeltään Onyx®. Tämä, kuten muutkin metallit, aiheuttavat merkittäviä häiriöitä tietokonetomografiakuvissa ja heikentää huomattavissa määrin kuvien tulkinnallista tarkkuutta.

Tämä väätöskirja sisältää neljä osatyöä. Näissä arvioidaan uusia teknisiä mahdollisuuksia tehdä suonensisäisellä verisuoniproteesilla hoidettujen potilaiden jälkiseurantatutkimuksista turvallisempia ja mahdollisuuksia parantaa kuvanlaatua.

Osatyö I
Tarkoituksena oli vertailla laadullisesti kahta tietokonetomografiasta tutkimusmetodia. Uudempaa metodia käytettiin potilailla, joilla oli todettu munuaisten toiminnan heikentyminen ja standardimetodia munuaisterveillä potilailla. Munuaisten vajaatoiminnasta kärsivien potilaiden kuvaamisessa käytettiin 80 kVp jännitettä röntgenlaitteessa ja puolitettiin suonensisäinen varjoainemäärä. Munuaisterveiden potilaiden kuvaamisessa käytettiin 120 kVp jännitettä normaalin varjoainemäärän kanssa. Tutkimuksen tuloksena todettiin, että metodit ovat vertailukokeisia, mutta sillä rajoituksella, että 80 kVp teknikka ei takaa riittävästi kuvanlaatua huomattavan ylipainoisilla potilailla.

Osatyö II
Suonensisäisen varisuoniproteesin asentamisen jälkeisessä seurannassa käytetään kolmivaiheista tietokonetomografiatutkimusta. Ensimmäinen vaihe ajetaan ilman varjoainetta (TNC), toinen vaihe ajetaan välittömästi suonensisäisen varjoaineen annosteluun jälkeen (nk valtimovaiheen kuvaus) ja kolmas vaihe muuttaman kymmenen sekunnin kuluttua varjoaineen annostelemisesta (nk laskimovaiheen kuvaus). Tällä tavalla pystytään todentamaan kaikki mahdolliset proteesikomplikaatiot. Tämän osatyön tarkoituksena oli arvioida, voiko ensimmäisen kuvausvaiheen (TNC) ilman varjoainetta korvata keinotekoisella ei-varjoainekuvauksella (VNC) eli kuvilla, jotka rekonstruoitaan ensimmäisen varjoainevaiheen kuivist. Täten teoriassa kyettäisiin pienentämään merkittävästi säteilyn määrää yksittäisessä seurantatutkimuksessa. Tutkimuksen tuloksena oli kuitenkin, etteivät näitä keinotekoiset, laskennalliset ei-varjoainekuvat (VNC), olleet laadullisesti riittävän hyviä, eikä näitä voida suositella rutininomaisessa seurantatutkimuksessa.

Osatyö III
Tässä työssä jatkettiin keinotekoisesti tuotettujen ei-varjoainekuvien (VNC) laadun tutkimista tuottamalla VNC kuvia ensimmäisestä valtimovaiheen kuvasarjasta sekä toisesta laskimovaiheen kuvasarjasta. Näitä molempia kuvasarjoja verrattiin ilman varjoainetta kuvattuun kuvasarjaan (TNC). Tutkimuksen tulos oli, että laskimovaiheen kuvaluksesta tehdyissä VNC kuvissa olivat kuvanlaatu riittävän lähellä
oikeasti ilman varjoainetta kuvattuun kuvasarjaan. Näin voitaisiin jättää yksi kuvausvaihe pois ja vähentää röntgensäteilyn määrää seurantakuvaoksissa.

Osatyö IV

Tämän työn tarkoituksena oli soveltaa uutta metallista aiheutuvien kuvahäiriöiden vähentämiseksi kehitettyä matemaattista häriövähennyssuodatinta (iMAR) tietokonetomografiassa potilailla, joita oli hoidettu Onyx® verisuoniliimalla. Tutkimuksessa vertailtiin kuvausta ilman häriövähennyssuodatinta sekä vastaavia kuvia, joissa oli käytetty iMAR:ia. Tutkimus näyttää, että iMAR vähentää merkittävästi metallista aiheutuvia kuvantamishäiriöitä ja voi pelastaa koko tutkimuksen diagnostisen varmuuden.
Acknowledgments

I want to express my sincere gratitude to all colleagues, friends, and family members who have contributed to, and supported me in my work with this thesis in so many ways:

I have had the best group of scientific supervisors I could ever wish for;

Johan Wasselius, associate professor, my main supervisor, for your total commitment and support pushing me to go on through the darkest time of scientific despair. You have a great mind of visions and a great sense of humour.

Marcus Söderberg, associate professor, my co-supervisor and brightest technical support. Thank you for your patience in explaining all the CT related details which are so basic to you but more complex to me. Thank you for all comments and quick replies in spite of being the father of a small baby and having such a busy daily life.

Anders Gottsäter, professor, my co-supervisor helping me to focus the essential matters in my scientific articles and put a skeleton to this book.

Ulf Nyman, associate professor, starting my scientific career and preparing me for the half-time review.

Peter Höglund, associate professor, my co-writer and statistical supervisor. Thank you for so many hours of delightful discussions on complex statistical questions!

Katarina Björses, my co-writer and true Finnish colleague! I want to thank for all support you gave me when landing in the southern part of Sweden called Skåne, and when my Swedish language was still so shaky.

Moncef Zarrouk, associate professor, helping me with SPSS and digging deeper into the mystery of vascular anomalies. You are a multiprofessional team in one person!

Nuno Dias and **Björn Sonesson** associate professors. You have introduced me to the most complex endovascular treatments one can imagine.

To my colleagues at **Kärlcentrum**, the previous ones and the present ones. It is just so delightful to work with you all!

To the professional **staff** at the **endovascular unit**. Thank you for all support and understanding during my process.
Kjerstin Ädel-Malmborg, You are the master of organization! Thank you for taking care of so many practical details to make my thesis defence possible!

Elisabeth Andersson, Shirin Atroushi, Ying Ydrefelt, radiological technicians for your valuable help saving the CT data for my studies.

Hanni Laura Aaltonen, for sharing your time and room for numerous discussions, relieving both clinical and scientific frustration. You managed to take a step ahead of me!

Raija and Aimo Lindfors, my dear mother and father. Thank you for believing in me. You have given me the best basis for my life, a safe and inspiring childhood.

Erik Rahlén, my love. You came into my life during the most intense time. Thank you for sharing life with me.

Olivia and Max Lehti, my precious children. I am so proud of you two! You have grown up into great young adults during my scientific process. I wish I could show that it is worth finding your dreams and strive for them. I love you both!
References

82. Kachelriess M. Iterative Metal Artifact Reduction (iMAR): Technical Principles and Clinical Results in Radiation Therapy. 2014.

Diagnostic quality in computed tomography angiography after EVAR

Leena Lehti is a medical doctor specialized in clinical radiology. She studied medicine at Tampere University (1991-1997) and became a specialist in radiology at Helsinki University in 2007. Since 2009, she works as an interventional radiologist at Malmö Vascular Center, a clinic with a multi-professional team.