The role of the hydrological cycle in forest ecosystems
flow path, nutrient cycling and water-carbon interaction
Yan, Yanzi

2019

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The role of the hydrological cycle in forest ecosystems

Flow path, nutrient cycling and water-carbon interaction

YANZI YAN
DEPARTMENT OF PHYSICAL GEOGRAPHY AND ECOSYSTEM SCIENCE | LUND UNIVERSITY
The role of the hydrological cycle in forest ecosystems

Flow path, nutrient cycling and water-carbon interaction

Yanzi Yan

Department of Physical Geography and Ecosystem Science,
Lund University, Sweden

DOCTORAL DISSERTATION

By due permission of the Faculty of Science, Lund University, Sweden.
To be defended at Auditorium Pangea, Geocentrum II, Sölvegatan 12, Lund.
Friday, 1 November, 2019 at 10:00.

Faculty opponent
Professor John P. Wilson
Spatial Science Institute, University of Southern California
Abstract

Forest ecosystems, covering over a third of land on the Earth, play a significant role in the global hydrological cycle, and influence soil erosion and climate change. However, the distribution, movements, quality of water, and hydrological processes in forested ecosystems are not well understood yet. This thesis aims to improve our understanding of the interaction between forest ecosystems and water cycle from the perspective of flow path, nutrient cycling, and carbon–water interactions.

Flow path is particularly important for the study of water storage and distribution, and solute transport and attenuation. However, in dense forest areas, flow path is usually hard to detect from terrain models due to large noise in elevation data, e.g. large sinks. Spurious sinks hinder water flowing downslope and thus likely result in unrealistic flow path estimation. An algorithm that can tackle spurious sinks without altering elevation was proposed and shown to be able to estimate flow path more accurately than traditional methods for different terrain forms.

Besides the problem of flow path estimation, the evaluation of flow path estimation has usually been done for the whole catchment, ignoring the variability of the disagreement between estimated flow path and observations among different land cover, soil type, and slopes within a catchment. A number of culverts investigated in fields have thus been used and taken as observations of stream locations for the assessment of flow path evaluation. The results showed that the uncertainty of flow path estimation is strongly related to soil hydraulic productivity, vegetation cover, and slope.

Furthermore, nutrient cycling can significantly affect the quality of water. Water is observed getting browner in (sub)arctic regions due to elevated concentration of dissolved organic carbon (DOC). However, it is still not well known how catchment morphometric, e.g. hydrologic connectivity, could affect the distribution and transportation of DOC from terrestrial systems to streams. A systematic analysis of the relationship between catchment morphometric and DOC concentration was thus carried out, and the results showed that smaller catchment size, shorter flow length, and younger catchments tend to have higher DOC concentrations.

Moreover, remote sensing observations have revealed that Amazon rainforests are resilient to droughts and could maintain photosynthesis productivity during dry season. Light, leaf phenology etc. have been reported to drive the seasonality of vegetation productivity in tropical forests. Plant use of groundwater with deep roots could sustain evapotranspiration during the dry season and thus could drive the dry season greening. However, the role of groundwater in the resilience of tropical forests to drought is not well studied yet. A global dynamic vegetation model, i.e. LPJ-GUESS model, was implemented to simulate water and carbon fluxes for tropical forests. Model simulations with groundwater introduced were found to be able to reproduce the seasonality of photosynthesis productivity of tropical forests. In addition, model simulations showed that groundwater substantially sustains tropical forest productivity, especially for wet and seasonally dry areas if future climate is getting drier. However, it seems that groundwater doesn’t make large differences for forest productivity when future climate is getting wetter.

Key words Flow path, nutrient cycling, carbon-water interactions, forest ecosystem
The role of the hydrological cycle in forest ecosystems

flow path, nutrient cycling and water-carbon interaction

Yanzi Yan
Front cover: Colour painting, ‘Vegetation and water in forests’ by Xiaoyi Yan
Back cover: Fenghuang Gu Cheng, photo by Yanzi Yan

Copyright pp 1-67 Yanzi Yan
All papers are reproduced with permission of their respective publishers.

Faculty of Science
Department of Physical Geography and Ecosystem Science

ISBN (print) 978-91-985016-5-0
ISBN (PDF) 978-91-985016-6-7

Printed in Sweden by Media-Tryck, Lund University
Lund 2019
Life is not hard to manage when you've got nothing to lose.

- Ernest Miller Hemingway
List of publications

List of contributions

I. Yanzi Yan designed the study, performed all the computations and data analysis, and wrote the first draft of the manuscript.

II. Yanzi Yan led the study design, performed all the computations and data analysis and wrote the first draft of the manuscript.

III. Yanzi Yan performed the computations for different catchment morphemic factors, discussed and commented on the draft paper.

IV. Yanzi Yan participated in the major part of study design, performed all the simulations and data analysis, and wrote the first draft of the manuscript.

All papers are reproduced with permission of their respective publishers.
Abstract

Forest ecosystems, covering over a third of land on the Earth, play a significant role in the global hydrological cycle, and influence soil erosion and climate change. However, the distribution, movements, quality of water, and hydrological processes in forested ecosystems are not well understood yet. This thesis aims to improve our understanding of the interaction between forest ecosystems and water cycle from the perspective of flow path, nutrient cycling, and carbon – water interactions.

Flow path is particularly important for the study of water storage and distribution, and solute transport and attenuation. However, in dense forest areas, flow path is usually hard to detect from terrain models due to large noise in elevation data, e.g. large sinks. Spurious sinks hinder water flowing downslope and thus likely result in unrealistic flow path estimation. An algorithm that can tackle spurious sinks without altering elevation was proposed and shown to be able to estimate flow path more accurately than traditional methods for different terrain forms.

Besides the problem of flow path estimation, the evaluation of flow path estimation has usually been done for the whole catchment, ignoring the variability of the disagreement between estimated flow path and observations among different land cover, soil type, and slopes within a catchment. A number of culverts investigated in fields have thus been used and taken as observations of stream locations for the assessment of flow path evaluation. The results showed that the uncertainty of flow path estimation is strongly related to soil hydraulic productivity, vegetation cover, and slope.

Furthermore, nutrient cycling can significantly affect the quality of water. Water is observed getting browner in (sub)arctic regions due to elevated concentration of dissolved organic carbon (DOC). However, it is still not well known how catchment morphometric, e.g. hydrologic connectivity, could affect the distribution and transportation of DOC from terrestrial systems to streams. A systematic analysis of the relationship between catchment morphometric and DOC concentration was thus carried out, and the results showed that smaller catchment size, shorter flow length, and younger catchments tend to have higher DOC concentrations.
Moreover, remote sensing observations have revealed that Amazon rainforests are resilient to droughts and could maintain photosynthesis productivity during dry season. Light, leaf phenology etc. have been reported to drive the seasonality of vegetation productivity in tropical forests. Plant use of groundwater with deep roots could sustain evapotranspiration during the dry season and thus could drive the dry season greening. However, the role of groundwater in the resilience of tropical forests to drought is not well studied yet. A global dynamic vegetation model, i.e. LPJ-GUESS model, was implemented to simulate water and carbon fluxes for tropical forests. Model simulations with groundwater introduced were found to be able to reproduce the seasonality of photosynthesis productivity of tropical forests. In addition, model simulations showed that groundwater substantially sustains tropical forest productivity, especially for wet and seasonally dry areas if future climate is getting drier. However, it seems that groundwater doesn’t make large differences for forest productivity when future climate is getting wetter.
Sammanfattning

Skogens ekosystem täcker en tredjedel av jordens yta och spelar en signifikant roll i den globala hydrologiska cykeln, liksom avseende erosion och klimatförändringar. Vattnets fördelning, liksom dess lagring, rörelse, kvalité och andra hydrologiska processer i skogsområden är dock ännu inte helt utredd. Denna avhandling syftar till att förbättra förståelsen för samspelet mellan skogens ekosystem och vattnets cykel med fokus på flödesvägar, transport av näringsämnen samt kol-vatten-växelverkan. Flödesvägar är i synnerhet viktiga för att studera vattenlagring och distribution och transport av lösta ämnen, samt dess dämpande effekt. I tät skogsområden är dock flödesvägar vanligtvis svåra att upptäcka utifrån digitala terrängmodeller på grund av stort bru i höjddatan, t.ex. stora ”falska” sänkor. Falska sänkor hindrar modellering av vattnets avrinning och resulterar därför sannolikt i orealistiska uppskattningar av flödesvägar. En algoritm som kan hantera falska sänkor utan att förändra höjddata föreslogs därför, och visade sig kunna uppskatta flödesvägar mer exakt än konventionella metoder för olika terrängformer.

Utöver problemet med uppskattning av flödesvägar är det ett inte optimalt att utvärderingar av flödesvägsberäkningar vanligtvis görs för hela avrinningsområden, och därmed försvarar variationen i överensstämmelse mellan uppskattad flödesväg och olika markanvändning, jordtyp och lutningar inom ett avrinningsområde. Ett antal kulvertar som undersöktes vid fältstudier har därför använts som observationer av sanna flödesvägar, och därefter använts för bedömning och utvärdering av flödesvägar i olika terräng. Resultaten visade att osäkerheten i uppskattningen av flödesvägar är starkt relaterad till markhydraulisk produktivitet, vegetationstäckning och sluttningar. Dessutom kan näringscyklar påverka vattenkvaliteten avsevärt.

Vatten blir ibland brunare i (sub-)arktiska regioner på grund av förhöjd koncentration av löst organiskt kol (DOC). Det är dock fortfarande inte klargjort hur morfometri, t.ex. uppsamling genom hydrologisk anslutning kan påverka distribution och transport av DOC från marksystem till vattendrag. En systematisk analys av förhållandet mellan morfometri och DOC-koncentration utfördes därför, och resultaten visade att mindre storlek på avrinningsområden, kortare flödeslängd och yngre avrinningsområden tenderar att ha högre DOC-koncentrationer.
摘要

森林生态系统占据地球陆地面积的三分之一，在全球水循环中扮演着十分重要的角色，影响着土壤侵蚀和气候变化。然而，对森林水的质量、分布、运动及其水文过程机制的认知与研究，目前还较为不足。本篇论文的主要目标是从碳-水耦合、土壤养分循环和水流路径这三方面展开研究，以进一步提高对森林生态系统水循环过程的理解。

水流路径对水的存储和分布，溶质的运输和衰减起着至关重要的作用。然而，在茂密森林地区，高程数据出现较大的观测误差，通常表现为地表上许多伪洼地的分布。这些洼地阻碍了水流沿坡向下流动，从而很难提取较为精确的水流路径及其相应水系的分布。本文因此提出了一种在不改变高程的情况下处理洼地的算法，井证明了该算法对不同地形形态的水流流径提取都比传统方法更为准确。

除了上述的水流路径提取问题外，通常水流路径提取的评估都是针对一整个流域而言。这种粗糙的估计方法通常忽略了流域内不同土地覆被、土壤类型和坡度对水流路径提取精度的影响。水流路径提取精度的空间差异，涉及到流域内水资源管理措施的效率，以及水文模型模拟的不确定性分析。在本论文里，利用野外实测的涵洞数据（近似为河流实际位置），对不同植被类型，土壤类型以及坡度内的水流提取精度进行评估。结果表明，水流路径提取的不确定性与土壤水力生产力、植被覆盖度、坡度等因素密切相关。

此外，土壤养分循环是影响水质的重要因素。在(亚)北极地区，由于溶解有机碳(DOC)浓度升高，水体显示褐色。然而，流域的形态特征，例如水文连通性，是如何影响DOC从陆地系统到河网的分布和运输，目前尚不清楚。因此，我们对流域形态特征与DOC浓度之间的关系进行了系统性的分析，其结果表明，较小的流域规模、较短的水流长度以及较年轻的流域往往具有较高的DOC浓度。

遥感观测显示，亚马逊热带雨林对干旱具有一定抵抗力，在旱季可以维持光合作用的生产力。据报道，光、叶物候等对热带森林植被生产力的季节性具有重要的驱动作用，植物利用深根地下水可以维持旱季的蒸散，从而促进旱季绿化。
然而，地下水在热带森林抗旱能力中的作用尚未得到很好的研究。采用 LPJ-GUESS 全球动态植被模型，模拟热带森林的水分和碳通量。引入地下水的模型模拟可以重现热带森林光合作用生产力的季节性。此外，模型模拟显示，地下水在很大程度上维持着热带森林的生产力，特别是在未来气候越来越干燥的潮湿和季节性干旱地区。然而，当未来气候变得更加湿润时，地下水对森林生产力的影响似乎并不大。
Table of Contents

1 Introduction ... 17
 1.1 Hydrological cycle ... 17
 1.2 Hydrologic cycle and forests ... 18
 1.3 Flow path ... 19
 1.3.1 Flow path estimation .. 19
 1.3.2 Variability of disagreement in flow path estimation 21
 1.4 Nutrient cycling .. 22
 1.5 Water-carbon interactions ... 23

2 Aims and objectives ... 25

3 Methods ... 27
 3.1 LCP algorithm combined with TFM algorithm .. 27
 3.2 Data-independent error assessment .. 29
 3.3 Uncertainty of drainage network delineation .. 30
 3.4 Catchment characterization .. 31
 3.5 Feature selection ... 32
 3.5.1 Random forest approach ... 32
 3.5.2 Principle Component Analysis .. 34
 3.6 LPJ-GUESS model ... 34

4 Results and discussions ... 37
 4.1 Paper I .. 37
 4.2 Paper II ... 40
 4.3 Paper III .. 43
 4.5 Paper IV ... 47

5 Conclusions ... 51

6 Outlook ... 53

Acknowledgement ... 55

References .. 59
1 Introduction

1.1 Hydrological cycle

Figure 1.1 shows the hydrological cycle in which water leaves the atmosphere and falls to earth as precipitation where it enters surface waters or infiltrates into the soil surface, or further percolates through the soil layer to underlying ground water and eventually is taken back into the atmosphere by transpiration and evaporation to begin the cycle again. Precipitation before falling to the ground may be intercepted by plant foliage and eventually evaporate back to the atmosphere. In short, there are three main components within the hydrologic cycle, namely precipitation, runoff, and evapotranspiration. Runoff consists of surface runoff and subsurface runoff. As shown in Fig.1.1, surface runoff is the part reaching the drainage basin outlet via overland flow and stream channels, while subsurface runoff is the sum of interflow and groundwater flow (Beven, 2011). Interflow indicates water infiltrating the soil surface and then moves laterally through the upper soil horizons towards the stream channels. Different components of hydrologic processes vary spatially and temporally worldwide due to the combined effects of e.g. climate, land cover, and topography.

Figure 1.1. Hydrologic cycle.
(Source:https://www.alevelgeography.com/drainage-basin-hydrological-system/)
1.2 Hydrologic cycle and forests

About one third of the earth’s land surface is covered by forests. Forest ecosystems significantly affect the global hydrological cycle (Sedell et al., 2000). The presence, quality, distribution of water and hydrological processes shapes not only the physical shape but also the biological parts of the ecosystems and plays a key role in forest-dominated ecosystem functions and processes (NRC, 2008).

Flow path, represented as drainage network vectors, are lines along which fluvial processes act to transport water and mineral material out of a local region under the force of gravity (O'Callaghan & Mark, 1984). Generally speaking, flow path is determined based on topography as water moves downslope towards the catchment outlet. With the rapidly increasing availability of topographic information as digital elevation models (DEMs), there have been many studies on DEM-based flow path estimation algorithms (Freeman, 1991; Gallant & Hutchinson, 2011; Holmgren, 1994; Ibbitt et al., 1999; O'Callaghan & Mark, 1984; Orlandini et al., 2003; Pilesjö & Hasan, 2014; Quinn et al., 1991; Tarboton, 1997; Turcotte et al., 2001; Wilson & Gallant, 2000; Xiong et al., 2014; Zhou et al., 2011). However, the flow path estimation still remains challenging in forested areas since the surface over forested areas is usually noisy, creating numerous small sinks and barriers that further complicate the estimation. In addition, the mapped elevated surface for forested areas is likely to include forest canopy rather than the ground surface required for flow routing, and the gaps in vegetation could create large sinks that pose difficulties for flow routing (Metz et al., 2011a). The problem of sinks on a surface during flow path estimation is explained in detail below.

In addition, the number of flow paths identified can depend on the environmental conditions and the objectives of the investigation. As mentioned above most commonly used algorithms determine the flow path only based on topographic information, ignoring the effect of other environmental conditions, like land cover and soil type on water pathways, which may cause different degrees of disagreement between estimated flow path and field observations. The lack of the information about the variation of the disagreement mentioned can often cause ineffective water resource management and incomplete uncertainty analysis of hydrologic modelling.

Furthermore, as hydrological flows drive the movement and attenuation of nutrients, forest ecosystem nutrient cycling is to a large extent controlled by flow path and associated catchment environment, including forms of precipitation (i.e. rain, snow, and fog), soil and air temperature, and geo-morphometric features of forest-dominated
catchments. Typically, organic carbon is delivered via overland flow and subsurface pathways (Findlay, 1995). Many biogeochemical studies have quantified lateral export of carbon from terrestrial land to inland waters and found that catchment characteristics like aspect, slope, and stream order have impacted the movement, concentration, and fluxes of dissolved organic carbon (DOC). However, there is still a lack of a systematic study of different impacts of catchment characteristics on DOC variability.

Moreover, forests as a crucial part of the Earth’s carbon stock and flow play an integral part in the carbon cycle and thus are a stabilising force for the climate. Climate change can affect terrestrial and marine ecosystem, which in turn has impacts on both the water and carbon cycles and then feeds back to the climate. However, the coupling processes between terrestrial carbon and hydrological process are extremely complex and far from well understood. (Matsui et al., 2004). Droughts can cause tree death and tree takes long time to regrow. The recovery time for forest biomass lost through extreme events are particularly long. While forests were also argued resilient to climate change since trees were observed to survive during drought periods due to their deep roots accessing deep soil water and groundwater (Barbeta & Peñuelas, 2017).

1.3 Flow path

1.3.1 Flow path estimation

As mentioned above, flow path is a vector form of drainage network. Thus, the estimation of flow path is considered as drainage network extraction in this thesis. In general, there are three categories of drainage network extraction algorithms from DEMs: morphology-based methods (Band, 1986; Greysukh, 1967; Heine et al., 2004; Montgomery & Dietrich, 1992; Peucker & Douglas, 1975; Rodríguez-Iturbe & Rinaldo, 2001; Tribe, 1992; Yoeli, 1984); hydrology-based methods (Freeman, 1991; Gallant & Hutchinson, 2011; Holmgren, 1994; Ibbitt et al., 1999; O’Callaghan & Mark, 1984; Orlandini et al., 2003; Pilesjö & Hasan, 2014; Quinn et al., 1991; Tarboton, 1997; Turcotte et al., 2001; Xiong et al., 2014; Zhou et al., 2011), and combinations of morphology-based and hydrology-based methods (Passalacqua et al., 2010; Pirotti & Tarolli, 2010; Sofia et al., 2011; T. Wang, 2014). Among them, hydrology-based algorithms are the most commonly used for drainage network extraction since they are able to simulate continuous stream flow over the terrain. The algorithms determine the proportion of surface water transported/flowing to each neighbouring downslope cell and then calculate accumulated flow of all cells flowing into each downslope cell in the
output raster. Based on the cumulative flow from upstream cells, the minimum value of flow accumulation for channel initiation is manually set to extract the drainage networks.

However, when implementing the hydrology-based algorithms, spurious sinks over surface block the flow in the sinks and thus have great impact on the drainage network extraction (Hutchinson, 1989). To solve the problem of spurious sinks, it requires pre-processing of DEMs in order to remove sinks. The most widespread methods for handling sinks are sink-filling (Jenson & Domingue, 1988; Martz & De Jong, 1988; O'Callaghan & Mark, 1984; L. Wang & Liu, 2006) and/or sink carving/breaching (Lindsay, 2015; Lindsay & Creed, 2005; Martz & Garbrecht, 1999; Rieger, 1998). Although these sink treatments ensure full drainage, they alter the elevation data in the DEMs, resulting in inconsistency between the altered-terrain and the original surface. In addition, instead of spurious sinks, some sinks in the DEMs are representation of natural terrain, e.g. lakes. Most lakes in the world are open lakes whose water eventually empties into the sea. However, some lakes are closed lakes in which water stay inside the sinks and thus they should be excluded when pre-processing the DEMs. Traditional sink treatments (i.e. sink filling and/or sink breaching, Fig.1.2) consider all sinks as spurious and thus remove all actual sinks either open or closed lakes, resulting in unrealistic drainage networks. In addition, traditional sink treatments also cause the problem of unrealistic parallel drainage networks (Hutchinson, 1989; Yamazaki et al., 2012). Therefore, it is questionable if methods based on sink removal can be applied for appropriate flow routing determination and related hydrological and biographical applications.

The Least-Cost Paths (LCP) through un-altered terrain and out of sinks (Fig.1.2) is an alternative approach to the modification of elevation for sink removal as mentioned above. This LCP approach has provided more accurate flow routing through large, widely distributed sinks with less artefacts than traditional sink filling (Kinner et al., 2005). However, the previous LCP implementations (i.e. LCP algorithm based Single Flow Direction (SFD) or based on Multiple Flow Direction (MFD) were only able to simulate one flow pattern, i.e. either single flow pattern or multiple flow pattern. Nevertheless, terrain surfaces in the real world are usually very complicated including both convergent and divergent flow patterns. Therefore, an algorithm that is able to tackle the problem of sinks and to simulate both convergent and divergent flow is required for better drainage network delineation over complicated surface in the real world.
1.3.2 Variability of disagreement in flow path estimation

Since flow path/drainage network is usually estimated based on DEMs, most previous studies argued that the complexity of topography e.g. DEM resolution has a significant effect on the uncertainty of estimated flow path (M. Wu et al., 2017). However, varying vegetation, soil type, etc., affecting the hydrologic environment, could also have impacts on the drainage network delineation. It is known that the infiltration rate of soil, the water content in different soils and drainage channels, etc., strongly influence runoff pattern (Dietrich et al., 1992; O'Callaghan & Mark, 1984; Veihmeyer & Hendrickson, 1931). In addition, the quality of a DEM is subject to variation depending on land cover types and terrain characteristics (Adams & Chandler, 2002; Hodgson et al., 2005). Thus, the uncertainty of delineated drainage network could, to some extent, vary spatially as a function of the heterogeneity of these environmental elements. Lacking such knowledge, we may easily ignore the potential fact that the uncertainty of biogeochemical process modelling may be due to the uncertainty of flow path estimation (Chaves & Nearing, 1991).

Although some studies observed that vegetation, soil type and topography might have effects on the results of delineated drainage network, they did not explain, how and to what extent, features of these environmental factors might affect the uncertainty of drainage network delineation. In addition, even though the variability of the uncertainty

![Figure 1.2. A graphic representation of different sink treatments.](image)
of drainage network delineation was noticed within a catchment, most studies still only evaluate the uncertainty of drainage network delineation at catchment scale. This assessment has substantially limited the ability to communicate detailed information of the quality of delineated drainage network to users (Johnston & Timlin, 2000) and thus could mislead water resource management within a catchment, e.g. ineffective irrigation system design for farming (Bhattacharya & Michael, 2006; Karásek et al., 2015; Molle et al., 2007; Young et al., 2004).

1.4 Nutrient cycling

Freshwaters represent a significant and dynamic component in the global carbon (C) cycle. Inland waters are recognized as significant dynamic zones in the C cycle, particularly in terms of C outgassing and storage (Cole et al., 2007). Inland waters are estimated to emit between 1.2 and 2.1 Pg C CO2 to the atmosphere annually (Aufdenkampe et al., 2011; Raymond et al., 2004; Tranvik et al., 2009). Globally, 2.7 Pg yr-1 of organic C is exported from terrestrial ecosystems to inland waters (Battin et al., 2009). Many northern lakes and streams have experienced an increase in the amount of C they receive, with elevated dissolved organic C (DOC) concentrations being linked to brownification in Sweden (Graneli, 2012; Jonsson et al., 2015). Evans and Thomas (2016) found that there has been a doubling, in some cases a threefold increase, of DOC in rivers in northern Europe and America. However, the terrestrial-riverine interactions that control these DOC concentrations remain understudied (Hotchkiss et al., 2015; Li et al., 2017; Regnier et al., 2013). There have been numerous studies on the vertical fluxes of C, i.e. between water, atmosphere and sediments, while there are few studies about lateral C fluxes from terrestrial to inland waters.

Hydrologic connectivity (Bracken et al., 2013) and related catchment geomorphology have been found to control carbon concentrations in inland waters, i.e. DOC concentrations. Hotchkiss et al. (2015) found that stream size influences the processes and emissions of CO2 from a stream, and that terrestrially derived organic C is a particularly important driver of the metabolic fluxes in small streams. Lauerwald et al. (2015) used stream orders three and higher for their assessment of global CO2 evasion from streams. In the boreal region, Ågren et al., (2007) found that smaller streams have higher DOC concentrations compared to larger ones. Distance, i.e. travel time, also influences the DOC concentration with export being lower for distal subcatchments (ibid.). Carbon and nitrogen cycling processes can vary along a topographical gradient as found in a central Amazon forest (Luizão et al., 2004).
However, so far these studies have been focused on temperate and boreal catchment. Arctic ecosystems have distinct climate, vegetation, soils etc., from boreal, temperate and tropical regions and the mechanisms controlling DOC concentrations in (sub)arctic ecosystems were poorly understood. In addition, arctic ecosystems are found more vulnerable to climate change than other forested regions of the world (Meehl et al., 2007), implying that there might be highly variability of arctic ecosystem’s response to climate at different catchments. Therefore, it is important to perform a systematic analysis of catchment characteristics and to see if the variability of DOC concentrations in (sub)arctic catchment is controlled by catchment geomorphology. Such analysis also allows an assessment of carbon delivery potential and the refinement of current carbon states at catchment level.

1.5 Water-carbon interactions

Amazon rainforest is the Earth’s largest forest ecosystem, and the changes in the biophysical state of the Amazon rainforest significantly influence global dynamics of climate, carbon and water (Huete et al., 2006). However, its vulnerability to drought remains poorly understood, as conflicting results have been reported (Ahlström et al., 2017; Brando et al., 2010; Malhi et al., 2009; Phillips et al., 2009; Saleska et al., 2007). Remote sensing observations revealed a basin-wide increase in photosynthetic activity (Saleska et al., 2016), and eddy flux tower and filed observations also showed an increase in leaf area correlated to solar radiation and sustained evapotranspiration (ET) in the dry season (Huete et al., 2006; Myneni et al., 2007). Such unexpected dry season greening, seems to suggest that light, instead of water, may drive the forest seasonality in tropical wet climate. Liu et al. (2018) have found that Amazon forest greening during the 2015 drought was partly due to the mitigation effect of higher absorbed solar radiation on the photosynthesis. Leaf quality and quantity are also argued to play an important role in regulating carbon fluxes during the dry season. Camera observations and leaf-level measurements revealed that new leaves growing, synchronized with dry-season litter fall, have higher photosynthetic capacity and therefore light use efficiency (Manoli et al., 2018; J. Wu et al., 2016). In addition, the fact that deep tree roots allow continuous access to deep soil water when near surface soil layer dries during seasonally drought is critical for maintaining dry-season gross primary production (GPP) (Baker et al., 2008; Poulter et al., 2009). Furthermore, many studies have revealed that plant use of groundwater with deep roots plays a significant role in evapotranspiration at sites
with a pronounced dry season (Barbeta & Peñuelas, 2017; Christoffersen et al., 2014; Fan & Miguez-Macho, 2010).

Although the mechanisms of upward capillary flux from groundwater and deep root uptake are complementary mechanisms of water supply and can both sustain ET during the dry season, their relative importance is site-dependent. In fact, most studies about controlling mechanisms in the Amazon rainforest greening in the dry season are site-based. Therefore, the regional impact of groundwater in the Amazon remains un-investigated. Furthermore, given the uncertain future climate scenarios, it is of significant importance to investigate the role of groundwater in the growth of Amazon rainforest under climate change.
2 Aims and objectives

Forests cover a third of all land on Earth, provide habitats for biodiversity and livelihoods for humans, and prevent soil erosion and mitigate climate change. The distribution, storage, movement and quality of water and the hydrologic processes within forested areas play a key role in forest-dominated ecosystem functions and processes (NRC, 2008). The objective of this PhD thesis is to enhance our understanding of the role of hydrological processes in forested ecosystems. The aims of this thesis are to:

I. Improve the flow path estimation in forested areas based on digital elevation models.

II. Assess the variability of the uncertainty of flow path estimation in forest-dominated catchments.

III. Study the impacts of hydrologic flow and associated catchment characteristics on nutrient cycling (e.g. DOC fluxes) in (sub)arctic catchments.

IV. Improve model performance in coupling processes of water-carbon cycle in tropical forests.
3 Methods

3.1 LCP algorithm combined with TFM algorithm

The “normal way” for a person to determine a drainage basin is first to define the point where the river leaves the basin. Similarly, the LCP algorithm (A* Search) (Hart et al., 1968; Metz et al., 2011b) starts with defined potential outlet points. On gridded elevation models, potential outlets are grid cells along the map boundaries or cells whose neighbour(s) has/have unknown elevation value(s). The outlet is the cell with the lowest elevation among those potential outlets. Once the outlet is determined, the LCP algorithm will start searching its neighbouring upslope cells along the least slope path. However, if a sink is encountered when searching uphill, the search will follow the steepest downhill slope to the bottom of the sink and then proceed again along the least steep uphill slope. The search proceeds until all grid cells are processed. For each search, the flow direction is estimated for each neighbouring cell of the current cell, towards the current cell if the neighbouring cell has the maximum descent to the current cell. One exception is when there is a sink; then the flow direction at the bottom of the sink is set to the outlet of the sink, i.e. the lowest cell along the boundary of the sink. In other words, water at the outlet of the sink cannot flow into the bottom of the sink.

The Triangular Form based Multiple flow algorithm (TFM) algorithm, one of the traditional hydrology-based algorithms, is capable of simulating the surface flow within a cell, and provides more accurate flow estimations than other commonly used flow routing algorithms due to its sensitivity to terrain forms (Pilesjö & Hasan, 2014). The approach is to sub-partition the grid cell into eight local, triangular facets between the cell centre and the eight surrounding cell centres of the neighbouring cells. Based on the aspect of each facet, water can be routed in three ways: First, to one or two neighbouring cells; secondly, only to one neighbouring facet; thirdly, to two neighbouring facets or to one neighbouring cell and one neighbouring facet. The algorithm is based on multiple flow distribution, allowing the flow out of each cell to more than one neighbouring cell.
Due to the advantage of LCP algorithm and TFM algorithm, a combination of these two algorithms is proposed to solve the problems of traditional LCP implementations and the problems of sinks over DEMs. With the combined algorithm, there are two main steps to determine drainage path: First, start from the outlet and record its upslope grid cell along the least cost path and then repeat the same procedure until the last grid cell is recorded. Reverse the order that grid cells are recorded, we can get a new order in which cells must be processed for flow distribution; secondly, following the new order, distribute the flow from each cell to its downstream cell(s) by implementing the TFM algorithm and at the same time accumulated flow for each grid cell is calculated. When there is an open sink, the flow from the bottom of the sink is distributed to the downstream outlet cell as mentioned above. Thereafter the drainage networks could be extracted with a threshold value of channel initiation based on the accumulated flow data.
3.2 Data-independent error assessment

A data-independent error assessment of grid-based flow routing algorithm by Zhou and Liu (2002) is used to quantitatively evaluate the combined algorithm. In this assessment method, four mathematical surfaces are generated for the simplification of the complexity of the real world surface, namely ellipsoid, inverse ellipsoid, saddle, and plane surfaces. Based on the four mathematical surfaces, several flow routing algorithms are applied to derive Specific Catchment Area (SCA) values. Comparing the derived SCA value with the theoretical true value for each cell, the errors generated by the selected algorithms can be computed and a statistical analysis of the errors can be carried out. The Root Mean Square Error (RMSE), Mean Error (ME), and Standard Deviation (SD) are applied to estimate the overall accuracy of the selected algorithms. The error at each cell is computed as shown in Eq. (3.1):

\[E_i = SCA_i - SCA_{i-1} \]

(3.1)

where \(E_i \) denotes the error (or residual) at the given cell at the ith cell using a selected algorithm, \(SCA_i \) and \(SCA_{i-1} \) denote the estimated and theoretical true values of SCA at the \(ith \) cell, respectively.

The SCA is defined as ‘upslope area per unit width of contour’ (Wilson & Gallant, 2000). The theoretical ‘true’ SCA value for each cell of the four mathematical surfaces has been computed in Zhou and Liu (2002). For grid-based elevation models, SCA is calculated according to Eq. (3.2)

\[SCA_i = \frac{TCA_i}{CL_i} \]

(3.2)

where \(TCA_i \) denotes total upslope area at \(ith \) cell, and \(CL_i \) denotes contour length towards the \(ith \) cell. \(TCA_i \) is computed as flow accumulation at the \(ith \) cell estimated from a selected flow routing algorithm multiplying the area of a grid cell.
Figure 3.2. Hill shade maps of the four new mathematical surfaces, with sun elevation angle of 45º and sun azimuth angle of 45º. 30 random sinks of size 4 (i.e. 4 grid cells at the bottom of each sink) are generated for each of the four new mathematical surfaces.

3.3 Uncertainty of drainage network delineation

As mentioned above, the uncertainty of drainage network delineation is not only related to topography but also linked to land cover, soil type, etc. In order to explore the relation between different environmental factors and the resulting drainage network, it is necessary to know at which scale the environmental factors should be investigated. As water moves down to the river mouth of a basin, upslope hydrological processes may, to some extent, impact the water downslope, but usually do not control the downslope processes since hydrological processes can vary greatly with changing land cover, soil texture, or terrain, as water flows down. Sometimes, the impact of upslope areas on downslope flow is very weak. For instance, there might be large and dense streams on upslope areas but these streams may be gone when reaching downslope areas due to rapid absorption of water by soils. Therefore, local factors are argued to be more important than upslope environmental factors in influencing the actual position of the drainage network.

In addition, to study the uncertainty of delineated drainage network, it is crucial to validate the delineation result against reference network. However, due to time constrains, it is usually impossible to map the whole drainage network in field. Instead, a limited number of field observations of stream network is an alternative as reference network. Thus, the
relation between environmental factors and delineated drainage network could be converted to the relations between local environmental conditions around field observations and the position accuracy of delineated drainage network at field observations. Local environmental conditions around field observations can be represented by the dominant environment conditions surrounding field observation within a window of representative size. Position accuracy of delineated drainage network at field observations is an average value for each group with the same dominant environmental condition, and can be calculated according to Eq. (3.3):

\[T = \frac{N_{fitted}}{N_{total}} \]

(3.3)

Where \(T \) indicates the position accuracy, \(N_{fitted} \) indicates the number of field observations that are captured by the delineated drainage network, and \(N_{total} \) is the total number of field observations. In fact, the way to calculate the accuracy mentioned above is uncertain due to the uncertain threshold of contributing area for drainage network delineation and the definition of captured field observations by delineated network. Because of measurement errors of field observations, we define the field observations that are within an acceptable distance from delineated network as captured observations.

3.4 Catchment characterization

Catchment geomorphology, which evolves slowly over decades to millennia in response to climate, geology, hydrology and vegetation dynamics, imparts strong controls on contemporary hydrologic regimes (Beven et al., 1988; McGlynn & McDonnell, 2003; Woods, 2003). Basin structure through the basin order, order ratios (area ratio, bifurcation ratio, and length ratio) (Smart, 1972; Strahler, 1952), physical characteristics (slopes, soil type) and rainfall characteristics have been incorporated into a hydrologic response model to derive flood frequency curve (Hebson & Wood, 1982; Rodriguez-Iturbe & Valdes, 1979). In addition, the dynamics of runoff has been found highly related to the geomorphological structure of catchments (Beven et al., 1988).

DOC, transported from terrestrial to stream channels, driven by hydrologic flow, and the spatial and temporal variation of its concentration could be linked to stream order (Ågren et al., 2007; Temnerud & Bishop, 2005), travel time and pathways (Lyon et al., 2010), elevation (Fang et al., 2012), aspect and slope (Callaghan et al., 2013; Giesler et al., 2014), topographic wetness index (Musolff et al., 2018), and etc. To facilitate a more complete understanding of the DOC variability and its relationship to catchment geomorphology in (sub)arctic catchments, a systematic geospatial analysis of different catchment
geomorphological characteristics is performed.

3.5 Feature selection

3.5.1 Random forest approach

Random forest approach is used to select useful features from the morphometry factors that drives the distribution of DOC concentration. The random forest is a classification algorithm consisting of many decision trees. Each individual tree in the random forest spits out a class prediction and the class with the most votes becomes the model’s prediction. The random forest uses bagging and feature randomness when building each individual tree to try to create an uncorrelated forest of trees whose prediction by committee is more accurate than that of any individual tree (Breiman, 2001) (Fig.3.4) The traditional decision tree can select from all features and pick the one that produces the most separation between observations in the left node versus those in the right node. In contrast, in the random forest, each individual tree is not only trained on different sets of data due to bagging but also use different features (random subsets of all features) to make decisions. Bagging process allows each individual tree to randomly sample from the original dataset with replacement, leading to significantly different tree structures. The size of training data for each individual tree is the same as the original data. Feature randomness forces even more variation amongst the trees in the model and ultimately results in lower correlation between trees and more diversification.
The process of building a random forest tree. Red texts indicate original dataset and blue texts are training dataset which has the same size as original dataset, but its value for each feature is randomly sampled from original dataset. (Source: https://towardsdatascience.com/random-forest-3a55c3aca46d)
3.5.2 Principle Component Analysis

Principal component analysis is performed to find out the components that contain most information for the morphometry factors. Principal Component Analysis, or PCA, is a dimensionality-reduction method that is often used to transform a large set of variables into a smaller number that still contains most of the information in the large set (Hotelling, 1933). The main workflow of principal component analysis is to compute eigenvectors and eigenvalues of the covariance matrix for all possible pairs of the initial variables (values are standardized), construct principal components by ordering eigenvectors by their eigenvalues in descending order, and reorient the data from original axes to the ones represented by the principal components (Fig.3.5).

![Principal Component Analysis](https://hackernoon.com/principal-component-analysis-unsupervised-learning-model-8f18c7683262)

3.6 LPJ-GUESS model

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS model)(Smith et al., 2001; Smith et al., 2014) is used to simulate vegetation dynamics, e.g. vegetation contracture and composition in terms of plant functional types (PFTs), and ecosystem biogeochemistry. LPJ-GUESS is a dynamic global vegetation model (DGVM) which uniquely combines an individual-based and dynamic vegetation model accounting for plant physiology, and carbon pool dynamics with a land surface and hydrologic module. Like most of land models for hydrometerology, climate and carbon-cycle studies, LPJ-GUESS model assume a globally uniform value for the thickness of permeable layers, i.e. 1.5 m. To introduce groundwater, constant soil depth in the original version of LPJ-GUESS is updated with available global soil data (Pelletier et al., 2016). Water table depth data is obtained from Fan et al.(2013). The model is forced with changing CO2,
nitrogen, climate and land use (Fig3.6). The model accounts for the emissions from land use change and carbon uptake due to regrowth after agricultural abandonment.

LPJ-GUESS model assumes a globally uniform value for the thickness of soil layers, i.e. 1500 mm. In total there are two soil layers: the upper layer is of 500 mm and the lower layer is of 1000 mm. However, soil depth in the Amazon varies spatially and could be as deep as 20 m. Thus, we adjust the depth of the lower layer based on the soil data reported in (Pelletier et al., 2016) for each grid cell. If soil depth is less than 500 mm, soil depth is set to 500 mm and the lower layer is removed. This is to ensure the validity of soil evapotranspiration which occurs in the top 200 mm of the upper soil layer. Deep soil layers allow more water storage, and thus may improve the water stress conditions for plants. In addition, plant use of groundwater is assumed when water supply could not meet the transpiration demand.
References

