Vilken grad av prisdifferentiering?
En översikt av analyser av optimala taxor i kollektivtrafiken
Pyddoke, Roger; Wretstrand, Anders

2016

Document Version:
Förlagets slutgiltiga version

Link to publication

Citation for published version (APA):

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Vilken grad av prisdifferentiering?

En översikt av analyser av optimala taxor i kollektivtrafiken

ROGER PYDDOKE
ANDERS WRETSTRAND
De slutsatser och rekommendationer som uttrycks är författarens/författarnas egna och speglar inte nödvändigtvis K2:s uppfattning.
Innehållsförteckning

Förord ... 5
Sammanfattning ... 7

1. Inledning ... 9
 1.1. Optimal prissättning? ... 10
 1.2. Samhällseffekter .. 11
 1.3. Fördelningseffekter .. 12
 1.4. Reflektioner – utveckling och framtida studier ... 12

2. Kreativ prissättning – optimalt i praktiken? .. 14
 2.1. Teori om strategier för prisdifferentiering ... 14
 2.2. Relationen mellan pris och marginalkostnad ... 15

3. Litteraturöversikt – ytterligare forskningsresultat ... 18
 3.1. Sverige och Norge .. 18
 3.2. Subventionsnivåerna i Washington DC, Los Angeles och London 21
 3.3. Kollektivtrafik och vägavgifter i Bryssel och London ... 21
 3.4. Kollektivtrafik och vägavgifter i Paris ... 22

4. Slutsatser ... 25

5. Referenser ... 27
Förord

Lund, 5 april 2016

John Hultén,
Föreståndare K2
Sammanfattning

I varierande grad upplever de regionala kollektivtrafikmyndigheterna (RKM) idag snabbt ökande kostnader och därmed svårigheter att få intäkterna att räcka till. För att nå balans mellan kostnader och intäkter kan flera åtgärder vara aktuella. En kan vara att se över sitt taxesystem. Taxorna har flera funktioner. De bidrar till kollektivtrafikens finansiering. De påverkar också användningen. En mer differentierad taxesättning skulle kunna bidra till att styrta resandet från de kostsamma högtrafikperioderna till lågtrafikperioder när det kostar mindre att tillhandahålla trafiken.

Framför allt stora städer överväger idag olika möjligheter för att komma tillrätta med trängsel i vägnätet, samtidigt som man också har ökande problem med trängsel i kollektivtrafiken. För trängsel i vägnätet har traditionellt ökad kapacitet varit den "självklara" lösningen. I en situation med snabbt ökande kostnader för utbyggnad (t.ex. till följd av kraven att lägga vägar i tunnlar) är det idag inte lika självklart. Istället tänker man sig oftast att öka parkeringsavgifter och trängselskatter, men också ökat kollektivtrafikutbud och sänkt kollektivtrafiktaxor, kan bidra till att minska trängseln på vägarna.

En viktig generell insikt är att lokala förhållanden påverkar. Befintlig transportinfrastruktur, efterfrågemönster, inkomstfördelning m.m. spelar stor roll för efterfrågans känslighet för förändringar av exempelvis pris och turtäthet mellan olika individer och mellan olika platser. Konsekvensen av denna insikt är att det är klokt att göra ett noggrant modelleringarbete om man i förväg vill kunna bedöma hur väl avvägda reformer bör utformas och vad konsekvenserna av sådana kan tänkas bli.

Resultaten pekar på att det är välfärdsoptimistiska att införa eller öka trängselskatter i städer med påtaglig trängsel i biltrafiken. För Sverige har trängselskatter införts i Stockholm och visats förbättra välfärden. En kommande uppsats beräknas även trängselskattarna i Göteborg ge välfärdseffektiv. Tyvärr saknas motsvarande beräkningar av välfärdeffekter för ytterligare större städer i Sverige. Utan

1 Svensk Kollektivtrafik, pressmeddelande 2015-06-30
analys är det är inte uppenbart att de har en välfärdsförbättrande effekter. Däremot kan parkeringsavgifter tänkas ha gynnsamma effekter på trängsel och välfård.

Modellresultaten säger inte något tydligt om nivåerna på subventionerings av kollektivtrafiken i allmänhet. Tillgängliga beräkningar kan dock tolkas som att de relativt höga subventionssnivåerna viser i Sverige kan vara försvarbara med en välfärdsmaximerande ansats.

Resultaten indikerar också att det inte alltid är samhällsekonomiskt försvarbart att öka kapaciteten i högtrafik, framför allt inte om kostnaderna för att driva in skattemedel är höga. Resultaten från studien av Stockholm indikerar dock att en kraftig kapacitetsökning av busstrafiken från Nacka kan vara motiverad.

En målkonflikt kan uppstå mellan ambitionen att göra kollektivtrafiken mer tillgänglig för låginkomsttagare, vilket kan innebära en önskan om lägre priser och ambitionen att minska trängseln i högtrafik, vilket innebär högre priser i högtrafik.

Vad är implikationerna för svenska städer? I huvudsak handlar det om att

- noggranna analyser av kollektivtrafikpriser kan komma att visa att kollektivtrafiktaxor bör differentieras efter belastning, men att priserna kan komma att behöva både sänkas och höjas
- utbudet kan behöva både ökas och minskas för att nå optima nivåer

Korrekta slutsatser och rekommendationer kräver lokala analyser. En och samma strategi passar inte överallt. Sammantaget konstateras därför att taxesättningen i kollektivtrafiken berör flera mål och målkonflikter. Senare tids forskning som refereras i denna rapport har försökt belysa avvägningarna mellan dessa mål i studier som simulerar effekterna av tids- och trängseldifferentierade taxor. De redovisade resultaten indikerar att en hög grad av skattefinansiering kan vara motiverad.
1. Inledning

... in no other major area are pricing practices so irrational, so out of date, and so conducive to waste as in urban transportation. Two aspects are particularly deficient: the absence of adequate peak-off differentials and the gross underpricing of some modes relative others.

William Vickrey [1]

Vinner of Prize in Economic Sciences in Memory of Alfred Nobel 1996

Priset för en biljett i kollektivtrafiken täcker vanligtvis inte produktionskostnaden för resan. Biljettpriset varierar ofta inte, även om resan sker när efterfrågan är mycket stor eller mycket liten. Det finns å ena sidan ett värde i att taxorna är lätta att förstå och kommunicera. Å andra sidan skulle en mer differentierad prissättning kunna bidra till att minska kostnaderna, öka intäkterna och kanske till och med öka resandet.

- Vi utgår från att dagens resmönster är snedfördelat med många resor i högtrafik vilket innebär att de regionala kollektivtrafikmyndigheterna (RKM) drivas till att tillhandahålla kapacitet för en brädel av dagen.
- Trängslen på gator och vägar är främst ett problem i Stockholm.
- De stora kostnaderna för utökad kapacitet i högtrafik leder till avvägningar mellan trängselkonsekvenser och kapacitetskostnader; då blir frågan om rätt prissättning viktig. Det finns idag få uppgifter om trängsel i kollektivtrafikfordon.

I glest befolkade områden är problemen med ekonomisk hållbarhet för kollektivtrafiken av motsatt karaktär. Där är frågan om tillgänglighet för mycket få personer kan motivera kostnaden. Denna rapport tar inte upp frågan om kollektivtrafik i landsbygd.

Man kan man knyta olika mål och anlägga olika perspektiv på kollektivtrafik. Vilka mål som bör gälla är ytterst en politisk fråga. Givet någon uppsättning mål kan man sedan optimera utbud och pris för att nå denna uppsättning av mål. Detta är visserligen ett ”fyrkantigt” och ”ingenjörsmässigt” sätt att se på saken. En matematisk optimering kan dock ge en stark normativ grund att stå på, givet att politiken bestämt och preciserat målen.

Verklig politik karaktäriseras dock ofta av målkonflikter och förslag till åtgärder som också kommer i konflikt med uttalade mål. Redan konsekvent effektivitetspolitik är svårt nog. En viss subventionering av kollektivtrafiken kan således motiveras helt utan fördelningsmotiv. Väntetidsvinster av ökad turtäthet kan till exempel ge tillräckligt stora välfärdsvinster. På motsvarande sätt kan ökad prisdifferentering troligtvis motiveras av effektivitetsvinster.

Avvägningen mellan intäkts- och skattefinansiering ställer dock till det. Vi saknar nämligen i stor utsträckning lika precisa kunskaper om kostnaderna för att öka olika skatter som vi har om kostnaderna för att öka intäkter genom ökade biljettpriser, även oavsett fördelningsmål. Att även beakta fördelningsmålen simultant försvårar analysen ytterligare. Om man vill se en optimering av kollektivtrafiken även med avseende på rättvis fördelning behövs tydliga fördelningsmål och goda kunskaper om olika gruppers kollektivtrafikvännd och känslosjä för förändringar i priser och utbud. Rapportens urval av forskningsresultat visar hur några sådana överväganden delvis kan integreras i analysen.
Slutsatsen av detta resonemang är att vi kan analysera olika prissättningsmetoder ur ett företags- ekonomiskt intäktsperspektiv, men om vi gör det ger vi inte politiken mycket ledning om huruvida detta är bra effektivitets- eller fördelningspolitik.

1.1. Optimal prissättning?

I den litteratur som sammanfattas här betyder samhällsekonomiskt optimal (eller välfärdsoptimal) att priset sätts till den nivå som maximerar skillnaden mellan konsumentnuttan och kostnader. Konsumenternas nytta mäts oftast som summan av skillnaderna mellan konsumenternas totala betalningsvilja för varan som varje konsument köper och dennes utgifter för varan. I mer vardagliga termer kan man säga att den prissättande verksamheten ska beakta även konsekvenser som operatören inte fullt ut kan ta betalt för.

En ofta förekommande variant på detta problem är att man tillåter verksamhetens "företags- ekonomiska resultat" (dvs. intäkter minus kostnader) att bli negativt, det vill säga, verksamheten får göra en begränsad förlust som täcks med skatteintäkter. I denna tillämpning beräknas det pris som maximerar summan av konsumenternas konsumentnuttan givet en maximal förlust (=subventionen från skattebetalarna). I det fallet leder restriktionen till att priset inte kan sänkas till den nivå som skulle ge högst välfärdnetto.

Det finns fyra viktiga skäl till att ett samhällsekonomiskt optimalt pris kan vara lägre än ett företags- ekonomiskt optimalt pris:

- **Sthdriftsfördelar:** dessa innebär att större produktion kan minska de genomsnittliga kostnaderna, men de varierar [2].
- **Externaliteter** i konsumtionen: fler passagerare kan möjliggöra tätare trafik och detta kan i sin tur minska väntetiden. Denna nytta kan dock en operatör inte helt tillgodogöra sig genom ett högre pris [3-5].
- **Trängsel i vägutrymmet:** innan trängselavgifter började framstå som ett attraktivt alternativ argumenterade transportekonomer för subventioner till kollektivtrafikresor som en näst bästa lösning för att minska trängsel.
- **Rättviseaspekter:** främst gäller det tillgängligheten för individer med låga inkomster eller funktionshinder.
Två omständigheter kan dock motverka skälen för lägre priser:

- **Trängsel i kollektivtrafiken**: behovet att begränsa trängsel i kollektivtrafikfordon och andra utrymmen (plattformar, biljetthallar etc.)
- **Skatteeffekter**: kostnaden för offentliga medel i termer av de uppowfringar som uppstår vid skattebetalning.

Ett samhällsekonomiskt optimalt pris balanserar flera olika mål. Det primära målet är att möta resenärernas efterfrågan på resor. Ett resande är i detta sammanhang dock bara samhällsekonomt motiverat om resenärernas eller medborgarnas värdering av att resan kommer till stånd överstiger kostnaderna för resan så innebär det ofta det mest kostnadeffektiva sättet att finansiera trafiken. I den mån som en samhällsnytta kan åstadkommas genom att priset sätts till lägre nivåer än vad som krävs för att täcka kostnaderna kan detta kräva skattefinansiering. En slutsats blir då:

- För att nå en övergripande effektivitet behöver kollektivtrafiktaxorna sättas i relation till andra priser och skatter som påverkar transporter som exempelvis parkeringsavgifter och trängselskatter.

1.2. Samhälleseffekter

Det finns flera studier av välfärdeffekter av ändrat kollektivtrafikutbud i Sverige [6-8]. I regel har man dock inte försökt att uttryckligen kvantifiera nytta av minskade väntetider m.m., till följd av ökad turutäthet. När man däremot beräknar optimala busselsaxor i beaktande av kapacitetskostnaderna, visar det sig att pris differtering efter skillnader i efterfrågan vid olika tidpunkter och olika delar i nätet kan motiveras [9].

1.2.1. Beteendeförändringar

Potentialen för att flytta resor från exempelvis bil till kollektivtrafik, beror mycket på lokala förhållanden som avgör den *relativa attraktiviteten* av respektive transportmedel. Exempelvis antas att 60 till 85 procent av de ökade personkilometrarna i kollektivtrafik till följd av lägre biljettpriser i amerikanska städer kommer från tidigare bilresor. Motsvarande siffra för London är 40 till 50 procent [10, s. 715].

En annan mycket viktig elasticitet för beräkning av optimal differentiering mellan tidsperioder är *efterfrågeelasticiteten* mellan tidsperioder. Detta värde är dock svårt att beräkna korrekt. Även med en förenklad metod kan det vara svårt att hitta data för att beräkna elasticiteten för svenska förhållanden eftersom variationen i pris över tid och över dygnet hår är liten.

1.2.2. Trängsel

En studie av optimala subventioner för kollektivtrafik i Washington DC, Los Angeles och London, där trängsel, flera externaliteter samt stordriftsfördelar beaktats, visar att subventioner över 50 procent av driftskostnaderna kan vara samhällsekonomiskt motiverade. Den främsta orsaken är trängslen i vägnätet i kombination av väntetidseffekten och stordriftsfördelar [10].

1.3. Fördelningseffekter

Omfattande forskning pekar på hur brister i utbudet av kollektivtrafik påverkar funktionshindrade och andra utsatta, potentiella användare av kollektivtrafiken. Ofta handlar det om bristande utbud på landsbygd och i gesbygd. I områden som kännetecknas av bilberoende och urban sprawl, till exempel i USA och Australien, kan även ett relativt stort antal människor som bor i tätorter ha dålig kollektivtrafikförorsörjning. Riktade subventioner kan ha effekter på resandet bland äldre och funktionshindrade. Storleksordningen varierar dock kraftigt beroende på alternativ, till exempel färdtjänsten och dess regelverk, biltillgång etc. [15,16].

1.4. Reflektioner – utveckling och framtida studier

1.4.1. Trängsel i svenska storstadsregioner

Med utgångspunkt i de ovanstående iakttagelserna från Sverige, kan man reflektera kring utvecklingen i våra större städer. I Stockholm skulle optimala kollektivtrafikpriser påverkas av möjligheten att öka efterfrågan med lägre priser. Det beror således på var det finns ledig kapacitet och en potentiell efterfrågan. Stordriftsfördelarna i produktion och trängsel på gatorna (med tanke på de nuvarande trängselavgifterna) är sannolikt inte tillräckligt stora för att påverka prissättningen mycket. Däremot skulle förmodligen trängsel i kollektivtrafikfordon och efterfrågan i högtrafik sannolikt påverka optimala priser positivt.

Å andra sidan har norska uppskattningar indikerat att priselasticiteten för resor i högtrafik är låg, vilket kan tyda på att det kan vara svårt/dyr att få resenärer i högtrafik att byta tidpunkt. För att få bättre kunskaper om svenska elasticiteter i högtrafik vore därför experiment värdefulla.

I de nio största städerna i Sverige näst efter Stockholm skulle optimala kollektivtrafikpriser kunna påverkas av möjligheten att öka efterfrågan med lägre biljettpriser. Dock är varken stordriftsfördelar i produktionen eller trängsel på gatorna tillräckligt stora för att påverka prissättningen. Belastningar i högtrafik har troligen en betydande inverkan på priser, men å andra sidan indikerar de ovan nämnda uppskattningarna av priselasticiteten för resor i högtrafik att denna är låg. Det kan tyda på att det även i de mindre städerna kan vara svårt/dyr att få resenärer i högtrafik att byta tidpunkt. När det gäller trängsel i kollektivtrafikfordon i dessa städer är det oklart om dess betydelse och eventuella effekt för optimala priser.

1.4.2. Analys av fördelningseffekter

En slutsats för fortsatta studier är att den svenska nationella efterfrågemodellen (Sampers) medger särskiljande av beteenderespons från olika inkomstgrupper. Modellen ger också en möjlighet att beräkna effekterna på konsumentöverskott av förändringar i utbud och beteendeförändringar.

Den nationella efterfrågemodellen har däremot inte tillräckligt god representation av funktionshindrade individers resval eller flera särskilda former av transporter för att kunna användas för detta.
syfte. Det finns därför ett behov av att utveckla modeller för funktionshindrades och i viss mån äldres resmöjligheter.

En mer ambitiös analys skulle innebära att identifiera utsatta resenärer som kan komma att påverkas av pris- och utbudsförändringar. Om analysen av trängselavgifter och kollektivtrafikresor i modeller (av den typ som Kilani, Proost och van der Los utvecklat) genererar betydande välfärdsvinster, kan en mer upplöst analys av typen Sampers användas för att belysa fördelningskonsekvenserna av sådana reformer. Om beslutsfattare väljer att kompensera förlorare av sådana reformer, genom att exempelvis erbjuda subventionerade transporter, kan detta analyseras med Sampers. Om å andra sidan ersättning utgår i form av klumpsummor, skatteavdrag eller inom andra välfärds- politiska områden, då är Sampers inte längre ett relevant verktyg.
2. Kreativ prissättning – optimalt i praktiken?

Som vi tidigare har nämnt, handlar samhällsekonomiskt optimala priser och samhällsekonomisk effektivitet om att prissättningen utformas för att balansera nyttan av ytterligare resor mot kostnaderna (eller upphoffringarna) som uppkommer genom prisfinansiering respektive skattefinansiering.

Ivara man släpper loss kreativiteten och skapa ett bättre taxesystem, bör man använda information om priskänslighet. Tricket blir att lösa följande problem:

_Hur kan taxornas utformas så att man åstadkommer ett önskvärt resande utan att skapa kostnader som överstiger nyttan av resorna?

2.1. Teori om strategier för prisdifferentiering

Principer för prisdifferentiering för en monopolist (vilket RKM i princip kan betecknas som), och hur denne kan maximera intäkterna, har redan under tidigt 1900-tal beskrivits av Pigou [21]. Tre grader av differentiering diskuteras:

- **Första graden**: producenten känner varje konsumentens betalningsvilja och kan kräva motsvarande pris (”personaliserad” prissättning)
- **Andra graden**: producenten differentierar med avseende på mängd (mängdrabatt) eller kvalitet (1-2 klass, budget, express) men konsumenter som köper samma mängd/kvalitet betalar samma pris. Producenten behöver inte veta något om konsumenten, utan kunden väljer själv det som passar bäst (självselektion).
- **Tredje graden**: producenten skiljer mellan konsumentgrupper med olika betalningsvilja (student- och familjerabatter). På detta sätt gynnas nischmarknader, som inte hade uppstått annars.

Tre iakttagelser kan göras:

- Att vissa får rabatter medan andra betalar fullt pris kan uppfattas som orättvist
- Priserna står inte alltid i relation till faktiska kostnader, vilket strider mot principen och marginalprissättning
- Risk för oöverskådlig prissättning – olika pris på ”samma resa”

Trots uppenbara problem skulle prisdifferentiering – rätt använd – kunna skapa goodwill på marknaden, genom att priset skräddarsys för varje kunds behov och därmed också skapar ökad valfrihet.

2.1.1. Första gradens prisdifferentiering

Denna prisdifferentiering kan vi nog bortse ifrån då sådan information knappast kan skapas hos vare sig kollektivtrafikmyndigheter eller operatörer.

2.1.2. Andra gradens prisdifferentiering

Detta existerar i stor omfattning redan idag, när det till exempel gäller mängdrabatt på reslängd. Oftast är kortare resor dyrare per kilometer. Det betyder inte att marginalkostnaderna för längre resor är äldre. Ofta kan det vara tvärtom. De kan vara dyrare att dimensionera kapacitet för långa resor (som passerar avsnitt där kapaciteten är fullt utnyttjad). Resor som är billiga att utföra ”överprissätts”, och
man tappar då resenärer med låg men tillräcklig betalningsvilja för dessa billiga resor. Effekten blir att alternativet att resa med bil upplevs som konkurrenskraftigt på korta resor.

Andra gradens differentiering efter utbudets kvalitet är mindre vanlig. Trots detta visar många undersökningar att det finns hög betalningsvilja för diverse standard- och komfortfaktorer (väderskydd, sittplats, nya fordon etc.).

2.1.3. Tredje gradens prisdifferentiering

Viktigt är här att det inte råder någon tvekan om kriterier för att tillhöra den grupp som får rabatt (ålder, legitimering, annan tillhörighet etc.). Teorin säger också att för att den tredje gradens prisdifferentiering skall ge ökade intäkter, måste den aktuella kundgruppens priselasticitet vara större än 1 för att rabatter skall löna sig. Det innebär att efterfrågan att resa måste påverkas i minst lika stor utsträckning som prisförändringen. Grupper med låg priselasticitet bör inte ges rabatter (arbetsresor, studenter), för då minskar de totala intäkterna.

2.1.4. Exempel på kreativ prissättning

Exempel har redan nämnts i texten. Nedan listas ett antal principer:

- **Tidsdifferentiering:**
 - högtaxa, lågtaxa, helgtaxa, nattaxa etc.

- **Segmentering:**
 - rabattering: familjerabatt, fritidskort, kundkort med rabatt (med tidsmässiga variationer)
 - klassning: kvalitetstillägg, restidsvariation, färdmedel (tåg dyrare än t-bana, t-bana dyrare än stombuss, stombuss dyrare än lokallinje osv.)

- **Loyalitet:**
 - värde kort, billiga returresor

- **Exklusivitet:**
 - medlemsavgift, guldkund, limited edition-biljetter

- **Kampanj:**
 - klippkort med bäst-före-datum, utvalda resrelationer billiga (samarbete med handel och köpcentra), stämpla dina resor – få var tionde gratis

2.2. Relationen mellan pris och marginalkostnad

Fearnley poängterar marginalkostnadsprissättning som en informationsbärare [19]:

En viktig poäng med "marginalkostnadsprissättning" är att resenären skall uppleva att varje resa som man företar sig kostar. Ibland kan kostnaden vara lite lägre (lägtrafik) och ibland lite högre (rusning). Likaväl kommer kostnaden aldrig att vara lika med noll.
Problemet med marginalkostnadsprissättning kan uppdelas i två delar, vilket nämnts i tidigare avsnitt. Det ena handlar om skillnaderna mellan högtrafik och lågtrafik, och det andra handlar om så kallade stordriftsfördelar.

Att ta ombord en extra resenär i lågtrafik kostar litet om det finns utrymme i fordonet. I högtrafik däremot uppstår det trängsel. Trafikföretaget kan därför tvingas att förstärka trafiken. Oavsett vilket av dessa som blir resultatet, trängsel i fordonen eller kostsamt kapacitetsutbyggnad, så finns anledning att låta dessa kostnader avspeglas i priserna. Anledningen är att det kan ge resenärer som inte "behöver" göra sina resor i högtrafik anledning att välja andra tidpunkter.

En konsekvens av detta synsätt är att modellen med periodkort med fria resor (månadskort, 20/30-dagarskort osv.) inte framstår som ändamålsenlig. På grund av att resenärens upplevda marginalkostnad är 0 kr, leder detta till ett "överutnyttjande". Dessa kort kan ersättas med en kombination av en fast taxa och en taxa för varje ytterligare resa. En konsekvens av detta synsätt är att modellen med periodkort med fria resor (månadskort, 20/30-dagarskort osv.) inte framstår som ändamålsenlig. På grund av att resenärens upplevda marginalkostnad är 0 kr, leder detta till ett "överutnyttjande". Dessa kort kan ersättas med en kombination av en fast taxa och en taxa för varje ytterligare resa. En konsekvens av detta synsätt är att modellen med periodkort med fria resor (månadskort, 20/30-dagarskort osv.) inte framstår som ändamålsenlig. På grund av att resenärens upplevda marginalkostnad är 0 kr, leder detta till ett "överutnyttjande". Dessa kort kan ersättas med en kombination av en fast taxa och en taxa för varje ytterligare resa.

2.2.1. Tidsberoende prissättning
Om man då genomför tidsdifferentierade taxor kan det handla om:

- rabatt i lågtrafik
- påslag i högtrafik

Rabatter i lågtrafik ger på kort sikt inga intäktsökningar, snarare tvärtom. Om man dock samtidigt ökar taxorna i högtrafik, kan genomsnittsintäkten bli oförändrad. På sikt kan också ökningen av taxorna i högtrafik också leda till tidsmässig utjämning i efterfrågan. Resenärerna i högtrafik får betala mera men de får en bättre produkt, medan de som kan acceptera ett ändrat beteende får resa till lägre kostnad. I valven utsträckning detta kommer att ske beror naturligtvis på i vilken grad resenärerna upplever att de har möjlighet att byta tidpunkt för resan. De som inte kommer att kunna ändra sig, måste betala och detta ger (teoretiskt) ökade intäkter. Några principiella varianter:

- Generell prisökning + ökad rabatt i lågtrafik
- Bastaxa samt tillägg (kontant och kort)

Rabatter genererar också ökad efterfrågan, bland annat från resenärer med lägre inkomster.

2.2.2. Full täckning - marginalkostnader och genomsnittskostnader
Om man vill ha full kostnadstäckning via biljettpriset, samtidigt som man vill ha enhetstaxa, kommer biljettpriset att motsvara genomsnittskostnaden för en resenär. Problemet är att detta sannolikt oftast är mer än marginalkostnaden för ”en extra resenär”. Eftersom en hel del resenärer är beredda att betala mer än marginalkostnaden (marginalkostnaden skulle alltså bli täckt), men inte hela genomsnittskostnaden, uppstår här en så kallad välfärdsförlust.

En tänkbar lösning för att hantera detta är, som nämnts ovan, att ta ut en fast avgift ("medlemsavgift" eller abonnemangavgift) i kombination med taxor för enskilda. Ju fler resor man gör, desto lägre blir kostnaden per resa, vilket skapar en ”loyalitetsseffekt”. Systemet med fasta och rörliga avgifter förekommer i andra sektorer, som t ex elmarknaden och VA-sektorn.
2.2.3. Prisdifferentiering

Är det rimligt och rättvist att alla skall betala lika mycket? Fearnley argumenterar med ett exempel att det kanske inte är så.

Om trafikföretaget vid ett visst tillfälle har 0 kr i marginalkostnad för att ta ombord en ny resenär, och det finns två kunder som är beredda att betala 5 respektive 20 kr kontanttaxa. Nivåer över 5 kr utesluter den ene, varför enhetstaxan sätts till 20 kr. Om man kunde skippa enhetstaxan, och i stället ta 5 respektive 20 kr betalt, ökar total intäkt till 25 kr. Samtidigt får resenären med den tunnare plånboken också möjlighet att resa, varvid den samlade "nyttan" ökar - bättre utbud och bättre ekonomi. Om de fasta kostnaderna ligger på 25 kr, finns det ingen enhetstaxa som skulle kunna täcka dessa.

Fearnleys exempel visar att enhetstaxa driver företagen att fokusera på den del av marknaden som har högst betalningsvilja.

Prisdifferentiering är inte bara en metod för vinstmaximering utan även för effektivt resursutnyttjande, då man kopplar samman företagsekonomi med samhällsekonomi. I motsats till tidsberoende prissättning (biljettpris beror på produktionskostnad) är prisdifferentiering baserad på betalningsviljan och efterfrågan hos kunden.
3. Litteraturöversikt – ytterligare forskningsresultat

I detta avsnitt återkommer en del referenser till forskning som förekommit i kapitel 1, men det blir något mer teoretiskt laddat. Först i raden är nobelpristagaren William Vickrey. Han publicerade tidiga artiklar om marginalkostnadsprissättning, till exempel 1955 och 1963, som pekar på att det kan vara önskvärt med högre priser i högtrafik både i kollektivtrafik och på väg. Vägavgifter i städerna har länge ansetts vara demokratiskt osmakliga och pedagogiskt utmanande, och högtrafikprissättning i kollektivtrafik verkar fortfarande vara det.

Det centrala resultatet i denna litteratur är att ett välfärdsoptimalt pris bör utformas för att väga vinsterna i form av kortare väntetider och restider genom ett större utbud mot kostnaderna för denna utbudssökning. Dessa vinster i tid kan inte helt approprieras av en kommersiell aktör och därmed kan en subvention av kollektivtrafiken motiveras.

3.1. Sverige och Norge

3.1.1. Bussar och bilar från Nacka till Stockholm

När modellen kalibreras för faktiskt resande beräknas de marginella kostnader för trängsel som uppstår på vägen och i bussarna i bascenario. Dessa beräkningar indikerar att en ytterligare bil i
högtrafik skapar trängselkostnader motsvarande cirka 50 kronor i genomsnitt. I lågtrafik är motsvarande kostnad cirka 40 kronor. En ytterligare busspassagerare beräknas ge upphov till trängselkostnader motsvarande cirka 73 kronor i genomsnitt. Dessa kostnader ligger genomgående över de nuvarande avgifterna vilket innebär att nuvarande avgifter inte leder till optimalitet.

medan kollektivtrafiktaxan i lågtrafik minskar från 20 till cirka 8 kronor.

Modellen ger flera grundläggande insikter. En första, är att beslutet om trängselskatter och kollektivtrafiktaxor samhällsekonomiskt hänger nära samman. Det är till exempel inte optimalt att öka trängselskatten om inte något samtidigt görs med busstrafiken. Detta för att belastningen, och därmed trängslen, i busstrafiken redan är hög idag. Värdet av en ensidig ökning av trängselskatten minskar därför snabbt när bilanvändare byter till kollektivtrafik med ökad trängsel i bussarna som följd. Om kollektivtrafiktaxan i högtrafik höjs samtidigt kan dock trängselskatten i högtrafik höjas. Omvänt kan dock en höjning av högtrafiktaxan i högtrafik, utan förändrad trängselskatt, öka välfärden genom att effekten på trängsel i vägnätet är relativt sett mindre.

En andra insikt är att det, trots höga kostnader för kapacitet i kollektivtrafik i högtrafik, kan vara motiverat med ökad turtäthet i högtrafik (i motsats till resultaten i de ovan refererade studierna av andra storstäder).

3.1.2. Förslag till radikal prisreform för Kalmar länstrafik

På uppdrag av Kalmar länstrafik har Urbanet [26] gjort en analys av hur Kalmar Länstrafik skulle kunna öka både resande och intäkter. Bakgrunden är att Kalmar Länstrafik till 62 procent finansieras med skatter, och att myndigheten önskar öka biljettintäkternas andel från 38 procent till 50 procent. Förslaget innebär tre delar:

- En generell höjning av prisnivån med 10 procent
- Införande av en hög- (+30 %) och en lågtrafiktaxa (-20 %)
- Ett nytt prissystem som innebär att man antingen betalar för en enkelresa eller genom ett tvådelat system med ett rabattkort som konsumenten köper och som berättigar till 50 procents rabatt för varje enkelresa. Detta innebär att dagens kort och reskassa tas bort.

Detta förslag föregås av en analys av resandet i Kalmar stad och län. Inledningsvis beskrivs utvecklingen av prispolitik i Sverige, det ökande gapet mellan priserna på kort och enkelbiljetter och en upplevelse av minskad prisvärdhet bland resenärerna. Kollektivtrafikresandet utgjorde 5 procent av allt resande i Kalmar län 2014 och endast 2-3 procent av de vuxnas resor. Av dessa resor görs 86 procent av frekventa kollektivtrafikresenärer (som gör minst en kollektivtrafikresa i veckan) och 45 procent av alla resor görs med kort. En stor del (18 procent) av alla resor görs mellan kl. 7 och 8 på morgonen. Det innebär att stora kostnader skulle kunna sparas om resandet skulle kunna omfördelas något mellan maxtimmen och andra tider på dygnet. Författarna framhåller också att mer flexibla arbetstider och en större andel arbete hemma kan göra det möjligt med en sådan omfördelning. Vidare
noteras att det finns många resenärer som idag reser sällan med kollektivtrafiken och som skulle kunna öka sitt resande.

Urbanet gör också analyser av kollektivtrafikefterfrågans priselasticiteter. Analysen av utmynnar i slutsatsen att den genomsnittliga priselasticiteten i Kalmar län kan vara -0,2, vilket är något lägre än generella skattningar som ofta ligger nära -0,4. Vidare görs antagandet att elasticiteten är lägre i högtrafik -0,14 och högre i lågtrafik -0,29 [26, s. 43].

Slutsatserna är att

- Den generella prishöjningen beräknas (bedöms) ge en intäktsökning med 11 miljoner kronor.
- Den ovan nämnda prisdifferentiering förbättrar resultatet med ytterligare 20 miljoner kronor. Då kommer 7 mkr från ökade biljettintäkter och 13 mkr från minskade kostnader.
- På litet längre sikt ökar intäkterna med ytterligare cirka 10 miljoner kronor.

Vår bedömning är att dessa resultat är intressanta, främst för att de indikerar en betydande potential för prisdifferentiering mellan hög- och lågtrafik. Det är dock även intressant att testa om det faktiska utfallet av ett sådant prissystem kommer att bli som de uppskattade priselasticiteterna indikerar.

Vidare skulle det också vara intressant att fördjupa analysen av välfärdsonsekvenserna av de föreslagna prisförändringarna.

3.1.3. Preliminära slutsatser

Studien av kollektivtrafikprissättning i Nacka visar på några viktiga insikter.

i) En differentiering av kollektivtrafiktaxan mellan hög- och lågtrafik när trängsel förekommer kan ge välfärdsförbättringar. Dessa välfärdseffekter uppstår främst genom att minskad trängsel i bussar uppnås. En reservation till denna slutsats är att effekter på arbetsresenärer med låga inkomster inte studerats.

ii) I städer med betydande trängsel kan trängselskatter (eller andra styrmedel för att minska biltrafik) få betydande negativa välfärdseffekter om effekterna på kollektivtrafiken inte beaktas.

iii) Trots höga kapacitetskostnader kan det vara motiverat med kapacitetsökningar i högtrafik. Detta främst till följd av höga kostnader för trängsel i kollektivtrafiken.

iv) Studien indikerar att en kraftig kapacitetsminskning i kollektivtrafiken i lågtrafik kan vara motiverad.

Studien av prissättning i Kalmar Länstrafik indikerar ett antal omständigheter som kan gälla på flera ställen i landet. Den indikerar att generella prisökningar har små effekter på totalt resande. Den indikerar också att en differentiering av taxorna i hög och lågtrafik kan väntas ge effekter både i form av ökade biljettintäkter per påstigande och, genom möjligheten att minska utbudet, minska de höga kostnader som är förknippade med kapaciteten. Slutligen gör den troligt att ett prissystem där resekort berättigar till rabatter på enkelbiljetter, men inte helt fria resor, skulle kunna locka flera resenärer som bara åker någon gång att bli kortinnehavare och därmed kanske resa oftare. En generell sänkning av taxorna för kortare distanser kan också tänkas locka fler att göra korta resor.
3.2. Subventionsnivåerna i Washington DC, Los Angeles och London

3.3. Kollektivtrafik och vägavgifter i Bryssel och London

3.3.1. Metod

I en studie med en stiliserad numerisk modell för urbana transporter kalibrerad för Bryssel och London beräknas optimal struktur för prissättning av kollektivtrafik och trängsel och dess effekter på efterfrågan och välfärd. Beräkningsexperimentet genomförs som ett borttagande av befintliga "underförstådda" subventioner till kollektivtrafiken och parkering, beräknade som internaliserande transportskatter och priser och optimerar frekvenserna i kollektivtrafiken. Denna modell är utformad för att fånga några av de ovanstående skälerna för att avvika från marknadspriser utom fördelnings- och trängsel i kollektivtrafikfordon. I de flesta fall beräknas optimala priserna i kollektivtrafiken vara högre än dagens nivåer [27].

Modellen representerar resande i hög- och lågtrafik för upp till fyra transportslag: bil, buss, spårvagn, tunnelbana och pendeltåg. Bilåkandet är antingen ensamt eller samåkning, i en liten eller en stor bil och differentieras efter typ av drivmedel. Modellen är statisk, eftersom den representerar transport en representativ dag där varken infrastruktur eller kollektivtrafikens utbud kan anpassas. Den generaliserade kostnaderna för resor utgörs av tre element:

i) kostnader för fordonskilometer;

ii) tidskostnader för tid i fordon, gångtid och väntan;

iii) skatter.

Skatterna optimeras för att generera skatteintäkter och för att korrigera för externa kostnader för vägträngsel, luftföroreningar, buller och olyckor. Vissa bilister betalar parkeringsavgifter, andra inte.

3.3.2. Resultat

Utgångsläget i de respektive städerna visar följande mönster av avvikelse mellan marginella samhällsekonomiska kostnader och marknadspriser. Den viktigaste avvikelsen finns för högtrafik för bil där bilisternas kostnader inte speglar samhällsekonomiska marginkostnaderna främst på grund av bristen på trängselavgifter. Trängselkostnader på väg i högtrafik beräknas vara högre i Bryssel än i London, medan det omvänt gäller i lågtrafik. Vidare beräknas gratis parkering vara tillgänglig för 70 procent av bilisterna i högtrafik i båda städerna.
De optimala priserna (härledda i modellen) ökar välfärden med cirka 2 procent. Den främsta källan till denna välfärdsökning är att ökade hastigheter uppstår som en följd av minskat bilresande på grund av det ökade priset på trängsel. I Bryssel leder slopandet av gratis parkering till ytterligare fördelar i storleksordningen 30 procent av de välfärdsvinster som uppstår till följd av övrig optimal prissättning. Styrsning mot minskningar av andra externa effekter (t.ex. minskade utsläpp av luftföroreningar) har i sammanhanget mindre vikt.

I Bryssel beräknas bussar täcka sina kostnader i högtrafik, men kräver stora subventioner i lågtrafik. I London subventioneras bussar i både i hög- och i lågtrafik, medan tunnelbanan inte subventioneras. En annan intressant iakttagelse är att den höga alternativkostnaden för skattefinansieringen minskar möjligheten att öka välfärden genom att subventionera ökningar i kollektivtrafiken.

3.3.3. Preliminära slutsatser för Sverige

3.4. Kollektivtrafik och vägavgifter i Paris

3.4.1. Metod

En stiliserad modell av trafiken i Paris har konstruerats av Kilani et al. [17] för att "ge en smak av eventuella konsekvenser" för att gå ifrån den nuvarande politiken i Paris med låga priser i kollektivtrafiken och inga vägavgifter. I modellen, som kännetecknas av ett system med både införande av vägavgifter och med högre kollektivtrafikresor i högtrafik, görs följande analyser.

Fyra typer av hushåll är representerade (låginkomsttagare/höginkomsttagare, ej arbetande/arbetande). Införandet av högre biljettpriser i högtrafik för kollektivtrafiken minskar de stora kostnaderna för att möjliggöra utbudet i högtrafik. Nyttjandekostnaden analyseras utifrån fem komponenter:

i) monetära kostnaden;
ii) engångskostnad;
iii) kostnaden för åtkomsttid;
iv) väntetidskostnad;
v) trängselkostnad.

Reformen av prissättning av transporter analyseras med skatteteoretiska metoder, avseende effekter på effektivitet och fördelning för hushållen. Analysen utgår ifrån en offentlig budgetekvation och endast
intäktsneutrala reformer beaktas. Modellen tillåter en utvärdering av konsekvenserna för varje hushåll (inom modellen).

De priser som skall diskuteras här är zontaxor i högtrafik för bilar och högre taxor för kollektivtrafikresor i högtrafik. I ett scenario antas en anpassningsmekanism för att öka utbudet med 2 platser per 3 nya resenärer när kollektivtrafikefterfrågan ökar.

Tre huvudscenarier modelleras. Det första är att enbart införa vägavgifter, det andra att enbart öka taxorna i högtrafik i kollektivtrafiken och det tredje är att kombinera de två första. Alla scenarier utvärderas efter samhällets nettoeffekter, den omfördelning mellan personer som sker samt en "klumpsummeomfördelning".

3.4.2. Resultat

För kollektivtrafiken modelleras enökning av priset i kollektivtrafiken på 1 € i högtrafik. Denna politik justeras genom en anpassning av utbudet som innebär att utbudet ökar med 2 platser per 3 nya resenärer. Välfärdsberäkningarna visar att inkomstsvaga bussanvändare förlorar och att rika användare vinner på denna policy. Denna policy är samhällsekonomiskt lönsam, men inkomstsvaga hushåll förlorar, oberoende av om vägpriserna införs eller inte.

I huvudscenariot införs en kombination av zontaxor på 1 € och enökning av kollektivtrafiktaxor med 10 procent i högtrafik. Den mest lovande kombinationen är en zontaxa för väg i den inre ringen på 3 €, en ökning med kollektivtrafiktaxan med 10 procent under högtrafik och en investoringsökning med 10 procent.

Rättvisa analyseras genom att jämföra utfallet vid lika vikter för alla individer och fördubblad vikt för inkomstsvaga grupper. Även i detta fall beräknas en kombination av höjda vägavgifter i högtrafik och ökade högtrafikpriser vara det bästa alternativet. Generellt sett klarar inte en ökning av kollektivtrafikutbudet ett lönsamhetstest i denna kalibrering för Paris.

3.4.3. Preliminära slutsatser för Sverige

4. Slutsatser

Med utgångspunkt i det inledande citatet från Vickrey kan vi konstatera att vissa städer, till exempel Stockholm, har vidtagit betydande åtgärder för att hantera vägsträngsel. Vi kan också konstatera att prissättningen av kollektivtrafiken i många svenska städer subventioneras och att subventionsnivåerna mycket väl kan ligga nära de välfärdsoptimala. En kvarstående fråga gäller om välfärdsresultaten skulle kunna förbättras ytterligare genom ytterligare prisdifferentiering av kollektivtrafikresor.

Det finns säkerligen ytterligare problem relaterade till prissättning för kollektivtrafiken än de som fångats i ekonomiska välfärdsanalyser som redogjorts för i den här rapporten. En sådan fråga är om kollektivtrafikens prissättning är tillräckligt ”begripligt”. Ett enkelt prissystem kan i sig vara en faktor som underlättar dess användning. Detta faktum, tillsammans med politiska idéer om rättvisa har lett till en frikoppling av biljettpriser från avstånd, detta trots indikationer på att distansbaserade priser skulle leda till förbättrad välfärd.

I vissa fall kan det finnas en potential för att öka välfärden genom att öka kollektivtrafiktaxorna i högtrafik. Även differentiering med hänsyn till transportslag (buss, spårvagn, tunnelbana och pendeltag), läge och avstånd kan sannolikt också vara motiverade. Hög marginalkostnader för offentliga medel kan också minska sannolikheten för att ökningar i utbudet av kollektivtrafik skulle vara samhällsekonomiskt motiverade.

För att användningen av ökade kollektivtrafiktaxor när det är trängsel i kollektivtrafikfordonen ska nå acceptans (i betydelsen ökad välfärd för alla medborgare), så kan ett omfördelningssystem för låginkomsttagare vara avgörande. I beskrivna modeller (t.ex. Proost et al.) uppnås denna acceptans genom omfördelning av ökade taxeintäkter.

En omfördelning av intäkterna utgör troligtvis inte en "realistisk" användning av offentliga medel som genereras av differentierade priser. I Sverige är troligtvis en mer sannolik användning av sådana medel ökade utgifter för ökad kollektivtrafik, transportinfrastruktur, eller kanske ökade subventioner genom sänkta taxor.

I tillämpade modeller avsedda att vägleda beslutsfattandet om prissättning och utbud av kollektivtrafik kan flera av de ovan nämnade aspekterna vara viktiga i en svensk kontext:

- en modell av efterfrågan som innehåller korselasticiteter mellan transportsätt och tidpunkter
- fördelningen av efterfrågan under dagen (trängsel)
- förekomsten av vägsträngsel
- marginalkostnader för att tillhandahålla kollektivtrafik vid olika tidpunkter och i olika förbindelser
- marginalkostnaden för offentliga medel
- information om efterfrågan från medborgare med inga eller låga inkomster
- inkomstfördelningen, värdet av restidskomponenter och resmönster för medborgare i den studerade staden

Alla studier kräver antaganden om (eller skattningar av)

- resefterfrågans direkta elasticiteter
- korselasticiteter mellan efterfrågan på resor i olika tidsperioder
- korselasticiteter mellan olika transportslag.

I allmänhet är de lokala elasticiteterna för efterfrågan med avseende på priset inte känt. Analytiker är därför tvungna att använda elasticitetsantaganden beräknade från enkäter och liknande modeller. Jämförande studier av tidsvärden i norska och svenska städer tyder på att det genomsnittliga restidsvärdet varierar betydligt mellan städer av olika karakter och storlek. Detta tyder också på att efterfrågeelasticiteten också kan variera kraftigt.
Ett biljettsystem som inte tar hänsyn till marginalkostnaderna, riskerar att locka resenärer att välja ”för dyra” avgångar, till exempel i rusningstid. En jämnare efterfrågan genom tidsdifferentiering bidrar till att reducera kostnaderna.

För trafikföretaget kan det också ur ett driftskostnadsperspektiv vara fördelaktigt att inte sälja biljetter ombord. Observera att detta inte bara minskar kostnaderna utan även intäkterna, eftersom man då riskerar att tappa sällan-resenärer.

5. Referenser

[22]. SL, 2006, *Fyra prissstrategier*
K2:s rapportutgivning

- **Kollektivtrafikens samhällseffekter (K2 Research 2016:9)**
 Författare: Erik Johansson, Lena Hiselius, Anders Wretstrand

- **Förändrade förutsättningar för framtidens kollektivtrafik (K2 Working Papers 2016:8)**
 Författare: John Hultén (red.), Alexander Paulsson, Bengt Holmberg, Christina Scholten, Erik Ronnle Fredrik Pettersson, Gert Paulsson, Helena Svensson, Jean Ryan, Vanessa Stjernborg, Zahra Hamidi

- **Plats, pengar och prioritet (K2 Working Papers 2016:7)**
 Författare: Joanna Dickinson, Anders Wretstrand

- **Styrmedel i trafikavtal och måluppfyllelse av TFP (K2 Working Papers 2016:6)**
 Författare: Hans Danielson, Anders Wretstrand

- **Superincentive contracts (K2 Working Papers 2016:5)**
 Författare: Hans Danielson, Henrik Andersson, Anders Wretstrand

- **Dömd till samverkan! (K2 Outreach 2016:4)**
 Författare: Robert Hrelja, Fredrik Pettersson, Stig Westerdahl

- **Kontraktsformer och deras inverkan på svensk kollektivtrafik (K2 Outreach 2016:3)**
 Författare: Helene Lidestam, Anna Johansson, Roger Pyddoke

- **Data och statistik i kollektivtrafiken (K2 Working Papers 2016:2)**
 Författare: Mats Améen, Pontus Gunnäs, Stina Hörtin

- **Att integrera jämställdhet i länstransportplanering (K2 Research 2016:1)**
 Författare: Lena Levin, Charlotte Faith-Ell, Christina Scholten, Åsa Aretun, Jon Halling, Karin Thoresson

- **Alternativ finansiering av kollektivtrafik (K2 Outreach 2015:6)**
 Författare: Erik Ronnle

- **Dynamic bus lanes in Sweden – a pre study (K2 Research 2015:5)**
 Författare: Johan Olstam, Carl-Henrik Hall, Göran Smith, Azra Habibovic, Anna Anund

- **Att beräkna styrmedelseffekter (K2 Working Papers 2015:4)**
 Författare: Banafsheh Hajinasab, Paul Davidsson, Jan. A. Persson

- **Att styra mot ökad kollektivtrafikandel i en storstadsregion (K2 Working Papers 2015:3)**
 Författare: Joanna Dickinson

- **Att styra mot ökad kollektivtrafikandel (K2 Research 2015:2)**
 Författare: Joanna Dickinson, Anders Wretstrand
- Pågatåg nordost och Krösatåg (K2 Research 2015:1)
 Författare: Désirée Nilsson

K2 drivs av Lunds universitet, Malmö högskola och VTI i samarbete med Stockholms läns landsting, Västra Götalandsregionen och Region Skåne samt med stöd av Vinnova, Formas och Trafikverket.

www.k2centrum.se