
Organizing Time Exchanges: Lessons from Matching Markets

Andersson, Tommy; Csehz , Ágnes  ; Ehlers, Lars; Erlanson, Albin

Published in:
American Economic Journal: Microeconomics

2020

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Andersson, T., Csehz , Á., Ehlers, L., & Erlanson, A. (Accepted/In press). Organizing Time Exchanges: Lessons
from Matching Markets. American Economic Journal: Microeconomics.

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/portal/en/publications/organizing-time-exchanges-lessons-from-matching-markets(0b4acf2e-5004-452a-b8fa-63bf62088e2a).html
https://portal.research.lu.se/portal/en/persons/tommy-andersson(5ea16e8c-c79e-4f87-9865-06617376521f).html
https://portal.research.lu.se/portal/en/publications/organizing-time-exchanges-lessons-from-matching-markets(0b4acf2e-5004-452a-b8fa-63bf62088e2a).html
https://portal.research.lu.se/portal/en/publications/organizing-time-exchanges-lessons-from-matching-markets(0b4acf2e-5004-452a-b8fa-63bf62088e2a).html
https://portal.research.lu.se/portal/en/journals/american-economic-journal-microeconomics(13b4ee5d-93be-407b-bb1a-daab4759d0af)/publications.html










Organizing Time Banks:
Lessons from Matching Markets�

Tommy Anderssony, Ágnes Csehz, Lars Ehlers§, and Albin Erlanson{

First version: October, 2014. This version: August 14, 2018.

Abstract

A time bank is a group of individuals and/or organizations in a local community that set up a
common platform to trade services among themselves. There are several well-known problems
associated with this type of banking, e.g., high overhead costs for record keeping and dif�culties
to identify feasible trades. This paper demonstrates that these problems can be solved by orga-
nizing time banks as a centralized matching market and, more speci�cally, by organizing trades
based on a non-manipulable mechanism that selects an individually rational and time-balanced
allocation which maximizes exchanges among the members of the time bank (and those alloca-
tions are ef�cient). Such a mechanism does not exist on the general preference domain but on
a smaller yet natural domain where agents classify services as unacceptable and acceptable (and
for those services agents have speci�c upper quotas representing their maximum needs). On the
general preference domain, it is demonstrated that the proposed mechanism at least can prevent
some groups of agents from manipulating the mechanism without dispensing individual rational-
ity, ef�ciency, or time-balance.

Keywords: market design; time banking; priority mechanism; non-manipulability.
JEL Classi�cation: D82; D47.

1 Introduction

Time banks have now been established in at least 34 countries. In the United Kingdom, for example,
there are more than 300 time banks, and in the United States time banks are operating in at least 40
states.1 A time bank is a group of individuals and/or organizations in a local community that set up
a common platform to trade services among themselves. Services supplied by members of a time
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bank typically include legal assistance, gardening services, medical services, child care and language
lessons. Members of a time bank earn time credit for each time unit they supply to members of the
bank and the earned credit can be spent to receive services from other members of the bank.2 For
example, a gardener who supplies two hours of time may, for example, get a haircut and one hour of
child care in return for his gardening services. Even if time banks traditionally have had a very simple
organization, most of the nowadays existing time banks take advantage of computer databases for
record keeping, and a physical coordinator keeps track of transactions and match requests for services
with those who can provide them.

A critical factor for a time bank to function smoothly is the coordination device matching requests
for services with those who can provide them. Our basic observation is that this type of service
exchange shares many features with some classical markets previously considered in the matching
literature, including, e.g., housing markets (Scarf and Shapley, 1974; Abdulkadiro�glu and Sönmez,
1999; Aziz, 2016b), organ markets (Roth et al., 2004; Biró et al., 2009; Ergin et al., 2017), marriage
markets (Gale and Shapley, 1962), and markets for school seats (Abdulkadiro�glu and Sönmez, 2003;
Kesten and Ünver, 2015). In particular, if a time bank is organized as a matching market, the time
bank will have a structure of what in the matching literature is known as a many-to-many matching
market. This follows since any member of a time bank can trade services with any other member of
the very same time bank and there are no obstacles that prevent a member of a time bank to supply
and receive multiple services from members of the very same time bank. Such matching markets have
previously been considered by, e.g., Echenique and Oviedo (2006), Konishi and Ünver (2006), and
Hat�eld and Kominers (2016).

The above mentioned matching markets are centralized as the agents in the system (e.g., tenants,
patients, or students) report their preferences over the items to be allocated (e.g., houses, organs, or
school seats) to a clearing house and a mechanical procedure determines the �nal allocation based on
the reported preferences and a set of predetermined axioms. Even if time banks often take advantage
of computer databases, there is no mechanical procedure that determines the trade of services among
the members in the bank based on reported preferences, and it is exactly in this respect that time banks
can learn from classical matching markets.

By organizing a time bank as a matching market, it will be possible to solve a number of problems
which have been associated with time banks across the world. For example, time banks typically
encounter long run organizational sustainability since they experience high overhead costs, e.g., as
staff is needed to keep the organization running and, in particular, to help out in the coordination
process (Seyfang, 2004). Moreover, it may be challenging for a physical coordinator to identify and
coordinate longer trading cycles, and members of time banks often experience that time credits are
comparatively easy to earn but harder to spend.3

A computer-based clearing house (e.g., an internet-based interface for reporting needs and re-
quests together with an algorithm for matching needs and requests), on the other hand, can help in
reducing costs related to coordination and it can identify and coordinate longer cycles in order to
maximize trade in the time bank. In addition, problems related to participation and maximality can be
solved by designing the matching algorithm in such a way that it always recommends maximal trades

2Some time banks are not based on a “one-for-one” time system, meaning that members of the time bank need not get
one unit of time back for each unit of time they supply (Croall, 1997).

3This is the reverse situation compared to conventional credits which generally are hard to earn, but easy to spend.
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where an agent can never lose by joining a time bank (individual rationality and maximality) and by
requiring that all members of the bank should receive exactly as much time back as they supply to the
bank (time-balance). Furthermore, those allocations turn out to be ef�cient.

Given the interest in allocations that are individually rational, maximal, and time-balanced, a �rst
observation is that such allocations always exist on the general preference domain.4 However, even
if an allocation satisfying these speci�c properties can be identi�ed, two new problems arise. First,
it is often natural to require that the algorithm should be designed in such fashion that it is in the
best interest for all agents to report their preferences truthfully (non-manipulability). This property is
incompatible with individual rationality, ef�ciency and time-balance on a general preference domain
(Sönmez, 1999, Corollary 1).5 Second, because members of a time bank can exchange multiple time
units, it is not clear that it is easy for members to generally rank any two “consumption bundles”. For
example, is two hours of hairdressing, two hours of gardening and one hour of babysitting strictly
better, equally good, or less preferred to one hour of hairdressing, one hour of gardening and three
hours of housekeeping? Hence, it may be an obstacle for members to report their preferences if
multiple time units are on stake and if multiple agents are allowed to be involved in a cyclical trade.

As we demonstrate, the above two problems can be solved simultaneously by considering a re-
stricted preference domain. This restricted domain is an extension of the dichotomous domain pop-
ularized by Bogomolnaia and Moulin (2004).6 In the considered domain, individual preferences are
completely described by (i) partitioning the members of the bank (or, equivalently, the services that
the members provide) into two disjoint subsets containing acceptable and unacceptable members, and
by (ii) specifying a member speci�c upper time bound for each acceptable member. The former con-
dition re�ects that an agent is not necessarily interested in all services provided in the bank (an agent's
“horizontal” preference) whereas the latter condition captures the idea that an agent may, for example,
be interested in at most one haircut but can accept up to 10 hours of babysitting (an agent's “verti-
cal” preference). One advantage of adopting this preference domain is that it facilitates for agents to
report their preferences as not all possible bundles have to be ranked strictly.7 Agents then strictly
prefer receiving more time units from acceptable services to receiving fewer time units from accept-
able services (without exceeding upper bounds and receiving unacceptable services). In this sense, an
agent may have many different indifference classes and preferences are not dichotomous but rather
polychotomous.

We de�ne and apply a priority mechanism to solve the problem of exchanging time units between
members in a time bank. It is demonstrated that the priority mechanism can be formulated as a min-
cost �ow problem (Proposition 1). Consequently, it is not only possible to identify time-balanced
trades, it is also computationally feasible. The de�nition of the priority mechanism is also �exible

4This follows since the allocation in which all agents receive their initial endowments is individually rational and satisfy
time-balance. The conclusion then follows directly from the observation that the number of individually rational allocations
that satisfy time-balance is �nite and, consequently, that there exists an allocation among those which maximizes trade in
the time bank.

5This impossibility should come as no surprise given the results in, e.g., Hurwicz (1972), Green and Laffont (1979),
Roth (1982), Alcalde and Barberà (1994), Barberà and Jackson (1995), or Schummer (1999).

6In fact, Bogomolnaia and Moulin (2004) and a series of subsequent papers, argue that it is natural to consider a dichoto-
mous domain in problems involving “time sharing”.

7The strict preference domain is often considered in the matching literature. However, the dichotomous domain is much
smaller in size than the strict preference domain, but is is not a subset of the strict domain since indifference relations are
allowed in the former but not in the latter domain.
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as it can be adopted on the restricted preference domain or the general domain. Our main result
shows that the priority mechanism is non-manipulable on the restricted preference domain and it
always makes a selection from the set of individually rational, maximal, and time-balanced allocations
(Theorem 1). To prove this result, a number of novel graph theoretical techniques are needed. In
particular, Appendix B demonstrates an equivalence result between the min-cost �ow problem and a
circulation-based maximization problem.8

Due to the above mentioned impossibility, a priority mechanism where non-manipulability is
abandoned is considered on the general domain. In this case, the priority mechanism is demonstrated
to be at least be partly non-manipulable in the sense that any agent that regards the selection of the
priority mechanism as most preferred from the set of individually rational, ef�cient and time-balanced
allocations will be unable to manipulate the outcome of the mechanism in his advantage (Theorem 2).

A variety of real-life problems have previously been considered in the matching literature in-
cluding the above mentioned house allocation problem, kidney exchange problem and school choice
problem. There are, however, several differences between these problems and the time banking prob-
lem. For example, in the time banking problem, an agent may receive and supply multiple time units.
In the school choice problem and the kidney exchange problem, on the other hand, students are allo-
cated at most one school seat and a patient is involved in at most one kidney exchange, respectively.
Furthermore, in many matching problems including, e.g., the school choice problem and the house
allocation problem, preferences are typically strict and indifference relations are consequently not al-
lowed (the kidney exchange problem is often de�ned on a dichotomous domain). Generalizations to
allow for a weak preference structure have recently been proposed by Alcalde-Unzu and Molis (2011)
and Jaramillo and Manjunath (2012). However, both these papers only allow agents to trade at most
one object. The papers closest to the model investigated here are Athanassoglou and Sethuraman
(2011), Aziz (2016a), Biró et al. (2017) and Manjunath and Westkamp (2017), which we describe
next.

Athanassoglou and Sethuraman (2011) and Aziz (2016a) consider a housing market where ini-
tial endowments as well as allocations are described by a vector of fractions of the houses in the
economy. The fractional setting makes it possible to analyze, e.g., ef�ciency based on (�rst-order)
stochastic dominance, and it is demonstrated that the ef�ciency and fairness notions of interest con-
�ict with non-manipulability. Even if a similar impossibility is present in the model considered in this
paper, the fractional setting is analyzed using different axioms and mechanisms. In addition, Athanas-
soglou and Sethuraman (2011) and Aziz (2016a) are unable to �nd any positive results related to
non-manipulability in their, respectively, considered reduced preference domains.

Biró et al. (2017) consider, as this paper, a model where agents are endowed with multiple units of
an indivisible and agent-speci�c good, and search for balanced allocations. In their reduced preference
domain, agents have responsive preferences over consumption bundles. On this reduced domain, they
demonstrate that, for general capacity con�gurations, no mechanism satis�es individual rationality,
ef�ciency, and non-manipulability. Given this negative �nding, they characterize the capacity con-
�gurations for which individual rationality, ef�ciency and non-manipulability are compatible. They
also demonstrate that for these capacity con�gurations, their de�ned Circulation Top Trading Cycle

8The min-cost �ow problem is considered in the main part of the paper since it is more intuitive and, moreover, can be
introduced using minimal notation.
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Mechanism is the unique mechanism that satis�es all three properties of interest. Hence, the main dif-
ference between this paper and Biró et al. (2017) is that they consider a different preference domain
and, consequently, need a different mechanism to escape the impossibility result.

Finally, Manjunath and Westkamp (2017) have independently considered a model closely related
to the one considered here.9 In their model, an agent can supply distinct services but at most one time
unit of each service (recall that agents in our model supply one service but, possibly, several time
units of it). They also require time-balance and consider a preference domain classifying services as
unacceptable and acceptable (but they do not allow reporting upper bounds on services). Given this,
Manjunath and Westkamp (2017) de�ne a serial dictatorship mechanism over the set of individually
rational allocations which then, by construction, gives an ef�cient allocation. Even if their main
�nding demonstrates that their considered allocation mechanism is individually rational, ef�cient and
non-manipulable, it is not maximal as the mechanism considered in this paper. Moreover, we consider
polychotomous preferences.

The remaining part of the paper is outlined as follows. Section 2 introduces the theoretical frame-
work and some basic de�nitions. The priority mechanism is presented in Section 3. The main results
are presented in Section 4. Section 5 discusses our results and concludes. All proofs are relegated to
the Appendix.

2 The Model and Basic De�nitions

This section introduces the time banking problem together with some de�nitions and axioms.

2.1 Agents, Bundles, and Allocations

Let N = f 1; : : : ; ng denote the �nite set of agents. Each agenti 2 N is endowed witht i 2 N
units of time that can be used to exchange services with the agents inN . Let t = ( t1; : : : ; tn ) denote
the vector of time endowments. Because the exact nature of the services is of secondary interest, the
problem will be described in terms of the time that an agent receives from and provides to other agents
in N . Let x ij denote the time that agenti 2 N receives from agentj 2 N , or, equivalently, the time
that agentj provides to agenti . Here,x ii represents the time that agenti 2 N receives from or,
equivalently, spends with himself. It is assumed thatx ij belongs to the setN0 of non-negative integers
(including 0) representing standardized time units (e.g., 0 minutes for zero units, 30 minutes for one
unit, 60 minutes for two units, etc.)

The time that agenti 2 N receives from the agents inN can be described by the bundle (or
vector)x i = ( x i 1; : : : ; x in ). The bundle where agenti 2 N spends all time with himself is denoted
by ! i (where! ii = t i and! ij = 0 for j 6= i ). An allocationx = ( x1; : : : ; xn ) is a collection ofn

9As of June 20, 2018, we have only seen a conference presentation of Manjunath and Westkamp (2017). No working
paper is available on the webpages of the authors.
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bundles (one for each agent inN ) such that

nX

j =1

x ij = t i for all i 2 N; (1)

nX

j =1

x ji = t i for all i 2 N: (2)

This means any agenti receives the same amount of time from other agents that the agent supplies to
other agents (recall that an agent can receive time from and spend time with himself). In this sense,
any allocation satis�es the time-balance conditions (1) and (2). In the remaining part of the paper, it
is understood that any allocation is time-balanced.

2.2 Preferences and Preference Domains

A preference relation for agenti 2 N is a complete and transitive binary relationRi over feasible
bundles such thatx i Ri x0

i whenever agenti �nds bundle x i at least as good as bundlex0
i . Let Pi

and I i denote the strict and the indifference part ofRi , respectively. LetR i denote the set of all
preference relations of agenti 2 N . A (preference) pro�leR is a list of individual preferences
R = ( R1; : : : ; Rn ). The general domain of pro�les is denoted byR = R 1 � � � � � R n . A pro�le
R 2 R may also be written as(Ri ; R� i ) when the preference relationRi of agenti 2 N is of
particular importance.

A restricted preference domain~R = ~R 1 � � � � � ~R n � R will be considered for our main
results. As explained in the Introduction, this restricted domain is based on the idea that any preference
relationRi 2 ~R i (1) partitions the set of agentsN nf ig into two disjoint sets containing acceptable and
unacceptable agents, denoted byA i (Ri ) � N n f ig andUi (Ri ) = N n (A i (Ri ) [ f i g), respectively,
and (2) associates with each acceptable agentj 2 A i (Ri ) an upper bound�t ij 2 N0 on how much
time agenti at most would like to receive from agentj . Here one may may interpret (1) as agent
i 's “horizontal preference” over acceptable and unacceptable services and (2) as agenti 's “vertical
preference” of how much agenti needs at most of each service. Then, for agenti 2 N , the preference
relationRi belongs to~R i wheneverj; k 2 Ui (Ri ) and any allocationsx andy:

(i) ! i Pi x i if x ij > 0,

(ii) x i I i yi if x ij > 0 andyik > 0,

(iii) yi Pi x i if yij = 0 = x ij for all j 2 Ui (Ri ) and
P

j 2 A i (R i ) minf yij ; �t ij g >
P

j 2 A i (R i ) minf x ij ; �t ij g,

(iv) yi I i x i if yij = 0 = x ij for all j 2 Ui (Ri ) and
P

j 2 A i (R i ) minf yij ; �t ij g =
P

j 2 A i (R i ) minf x ij ; �t ij g.

The �rst condition states that an agent strictly prefers not to be involved in any trade rather than re-
ceiving time from an unacceptable agent. The second condition means that an agent is indifferent
between any two bundles containing an unacceptable agent. The last two conditions re�ect a mono-
tonicity property and state that an agent weakly prefers bundles with weakly more acceptable agents
whenever bundles do not contain any unacceptable agents and as long as the time bounds�t ij are not
exceeded.
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Remark 1. For the restricted domain~R, a reportRi for agenti 2 N is given by a set of acceptable
agentsA i (Ri ) together with an upper time bound�t ij for eachj 2 A i (Ri ). We later show that an
equivalent formulation of the reported preference for agenti 2 N is a vector�t i = ( �t i 1; : : : ; �t in ) 2 Nn

0

where�t ii = t i . Then�t ij = 0 stands forj 2 Ui (Ri ), i.e., agenti is willing to accept at most zero time
units from agentj . Whether the �rst or the second formulation is used is just a matter of choice.

Remark 2. For any agenti 2 N and Ri 2 ~R i , the preferenceRi is polychotomous in the fol-
lowing way: for anyk = 0 ; 1; : : : ; minf t i ;

P
j 2 A i (R i )

�t ij g = m, all allocationsx andy such that
x ij = 0 = yij for all j 2 Ui (Ri ) and

P
j 2 A i (R i ) minf yij ; �t ij g = k =

P
j 2 A i (R i ) minf x ij ; �t ij g are

ranked indifferent byRi . Let I (k) denote this indifference class. Then underRi all allocations in
I (m) are strictly preferred to all allocations inI (m � 1), and in general, fork = 1 ; : : : ; m, underRi

all allocations inI (k) are strictly preferred to all allocations inI (k � 1). Thus,Ri containsm + 2 in-
difference classes (whereI (0) = f ! i g and! i is strictly preferred to all allocations which are positive
for some unacceptable service). In this sense, preferences belonging to~R i are polychotomous.

2.3 Axioms and Mechanisms

GivenR 2 ~R, allocationx is feasible if for any agenti 2 N and allj 2 A i (Ri ) we havex ij � �t ij .
Let F (R) denote the set of all feasible allocations at pro�leR 2 ~R. Allocation x 2 F (R) is
individually rational if, for all i 2 N , x i Ri ! i . Allocation x 2 F (R) Pareto dominatesallocation
x0 2 F (R) if x i Ri x0

i for all i 2 N and x j Pj x0
j for somej 2 N . An allocation isef�cient if

it is not Pareto dominated by any individually rational allocation. An allocationx is maximalat
R if

P
i 2 N

P
j 2 A i (R i ) minf x ij ; �t ij g �

P
i 2 N

P
j 2 A i (R i ) minf x0

ij ; �t ij g for all individually rational

allocationsx0. All individually rational and maximal allocations at pro�leR 2 ~R are gathered in the
setX (R) � F (R). Note thatX (R) 6= ; for all R 2 ~R and that anyx 2 X (R) is ef�cient.10

A mechanism' with domain ~R chooses for any pro�leR 2 ~R a feasible allocation' (R) 2
F (R). Mechanism' is manipulable at pro�leR 2 ~R by an agenti 2 N if there existsR0

i such that
R0 = ( R0

i ; R� i ) 2 ~R, and forx = ' (R) andx0 = ' (R0) we havex0
i Pi x i . If mechanism' is not

manipulable by any agenti 2 N at any pro�leR 2 ~R, then' is non-manipulable (on the domain~R).

3 Priority Mechanisms

Often in real life the chosen allocation is based on a priority mechanism: any such mechanism uses a
priority-ordering, which may be deduced from a lottery or from a schematic update based on previous
allocation rounds. Let� : N 7! N be an exogenously given priority-ordering where the highest
ranked agent isi 2 N with � (i ) = 1 , the second highest ranked agent isi 0 2 N with � (i 0) = 2 , and
so on.

GivenR 2 ~R, i 2 N andZ � � X (R), allocationx 2 Z � belongs to the setX i; Z �
(R) if x i Ri x0

i

for all x0 2 Z � , i.e., if allocationx is weakly preferred to any allocation in the setZ � under preference
Ri . In the special case where the setZ � is based on the choice made by some agenti 0 6= i for some

10If x is not ef�cient, then there exists an individually rational allocationx0 such thatx0
i R i x i for all i 2 N andx0

j Pj x j

for somej 2 N . But then
P

i 2 N

P
j 2 A i ( R i ) minf x ij ; �t ij g <

P
i 2 N

P
j 2 A i ( R i ) minf x0

ij ; �t ij g meaning thatx is not
maximal, a contradiction.

7



pro�le R 2 ~R, i.e., whereZ � = X i 0;Z ��
(R) for someZ �� � X (R), the setX i; Z �

(R) is denoted by
X i;i 0

(R).

De�nition 1. An allocationx 2 X (R) is agent-i -optimal at pro�leR 2 ~R if x 2 X i; X (R) (R).

Note the difference between the setsX i; X (R) (R) andX i; Z �
(R). The former set contains all agenti's

most preferred allocations in the setX (R) whereas the latter set contains all agenti's most preferred
allocations in a subsetZ � of X (R).

De�nition 2. Let � be a priority ordering andN = f i 1; : : : ; i ng be such that� (i k ) = k for all
k = 1 ; : : : ; n. Thenx 2 X (R) is a� -priority allocation at pro�leR 2 ~R if:

(i) x belongs toX i 1 ;X (R) (R),

(ii) x belongs toX i k ;i k � 1 (R) for all k = 2 ; : : : ; n.

One way to think about the set of priority allocations is the following. First, the highest ranked agent
identi�es all his most preferred allocations in the setX (R). Then the agent with the second highest
priority identi�es all his most preferred allocations in the set identi�ed by the highest ranked agent,
then the agent with the third highest priority identi�es all his most preferred allocations in the set
identi�ed by the second highest ranked agent, and so on. Formally, this means that ifx is a� -priority
allocation, then:

x 2 X i n ;i n � 1 (R) � X i n � 1 ;i n � 2 (R) � : : : � X i 2 ;i 1 (R) � X i 1 ;X (R) (R) � X (R): (3)

Note that a priority allocation is agent-i -optimal for the agenti 2 N with � (i ) = 1 . Moreover, all
agents inN are, by construction, indifferent between all allocations in the setX i n ;i n � 1 (R).

De�nition 3. A mechanism' is a priority mechanism if there exists a priority ordering� such that
for all pro�les R 2 ~R the mechanism' selects a� -priority allocation from the setX (R).

Since a priority mechanism always makes a selection from the setX (R), it chooses an individually
rational, maximal, and time-balanced allocation (which is ef�cient).

4 Results

As we show in Section 5, it is impossible to construct an individually rational, ef�cient, and non-
manipulable mechanism on the general domainR. Our �rst main result demonstrates that this impos-
sibility can be avoided on the restricted domain~R if trades are based on a priority mechanism.

Theorem 1. Any priority mechanism with domain~R is non-manipulable.

Below we demonstrate that a priority mechanism can be formulated as a min-cost �ow problem
(Proposition 1). To formulate this problem, a bipartite graph needs to be de�ned and speci�c val-
ues must be attached to the vertices and the edges in the graph.

De�nition 4. For any pro�leR 2 ~R, the bipartite graphg = ( N; M; E; u ) is de�ned by two disjoint
sets of vertices,N andM , a set of edges,E , and a pro�le of upper boundsu = ( u(i; l )) (i;l )2 E on the
�ow between any two edges, de�ned by:

8



3 421

5 6 7 8

Figure 1: Edge capacity 1 is color-coded by gray, while capacity 2 is denoted by black edges. The
edges connecting two copies of the same agent are marked by dashed lines.

(i) N = f 1; : : : ; ng,

(ii) M = f n + 1 ; n + 2 ; : : : ; n + ng,

(iii) E = f (i; n + j ) 2 N � M : j 2 A i (Ri ) or j = ig, and

(iv) for all i 2 N and each edge(i; n + j ) 2 E wherej 2 A i (Ri ) the upper capacityu(i; n + j ) is
equal to�t ij andu(i; n + i ) = t i .

Example 1. Let N = f 1; 2; 3; 4g, t1 = t2 = 1 and t3 = t4 = 2 . Let R 2 ~R be such that
A1(R1) = A2(R2) = f 3; 4g (with �t13 = �t14 = �t23 = �t24 = 1 ) andA3(R3) = A4(R4) = f 1; 2g
(with �t31 = �t32 = �t41 = �t42 = 2 ). The constructed graphg is depicted in Figure 1.

The interpretation of the graphg is that the agents inM should be regarded as copies of the agents
in N and in particular, agentn + i 2 M is the copy of agenti 2 N . Furthermore, agentsi 2 N
andn + j 2 M are connected by an edge if agentj is acceptable for agenti or if j = i . Because
an allocation will be de�ned by the �ows between the agents inN andM , the above construction
guarantees thatn+ j 2 M can only provide time for an agenti 2 N if agenti �nds agentj acceptable
or if agentj is his own copy. Finally the upper bound on �ow fromn + j to i wherej 2 A i (Ri ) is
equal to the upper bound of how much time agenti wants from agentj . A �ow x speci�es for each
(i; l ) 2 E a non-negative integerx il 2 N0.11 Any �ow x is equivalent to an allocation in the usual
sense:x ii = x i (n+ i ) , x ij = x i (n+ j ) for all j 2 A i (Ri ), andx ij = 0 for all j 2 Ui (Ri ).

Recall that the time-balance conditions (1) and (2) must hold for any allocation. In the language of
min-cost �ow problems, this means that the required �ow (between the vertices in the bipartite graph
g) is dictated by conditions (1) and (2) which must be reformulated for the bipartite setting as follows:

X

j 2 A i (R i )[f i g

x i (n+ j ) = t i for all i 2 N; (1')

X

i 2 A j (R j )[f i g

x j (n+ i ) = t i for all i 2 N: (2')

11In general, �ows may assign real numbers to edges, but for our purpose we restrict �ows to assign integers.
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A natural interpretation of the bipartite graph is therefore that agents inM supply time to the demand-
ing agents inN . To obtain a maximal outcome, it is important to prevent �ows between agents inN
and their own copies inM whenever there are other feasible �ows or, equivalently, to prevent agents
to supply time to their own copies whenever it is feasible to supply time to other distinct agents (by the
time-balance conditions, any agent supplying time to other agents also receives in return more time
from acceptable agents). This can be achieved by introducing an arti�cial cost whenever agents sup-
ply time to themselves. Let, for this purpose,cil denote the cost associated whenl 2 M is supplying
time to agenti , and let, in particular, for each(i; l ) 2 E :

cil =

(
� 1 if l = n + i
0 otherwise.

(4)

For a given pro�leR 2 ~R, a given graphg = ( N; M; E; u ) and given costsc = ( cil )(i;l )2 E , the
(arti�cial) cost is minimized at any allocationx 2 F (R) that solves the following maximization
problem:12

max
X

(i;l )2 E

cil x il s.t. conditions (1'), (2'),x il 2 N0 andx il � u(i; l ) for all (i; l ) 2 E . (5)

An allocationx 2 F (R) is a maximizerif it is a solution of the maximization problem (5). Let
V(R; c) � F (R) denote the set of all maximizers at pro�leR 2 ~R for given costsc = ( cil )(i;l )2 E .
For notational convenience, the value of an allocationx at costc is given byV(x; c) =

P
(i;l )2 E cil x il .

Lemma 1. If allocationx belongs toV(R; c) at pro�le R 2 ~R, thenx 2 X (R).

The set of maximizersV(R; c) is non-empty for any pro�leR 2 ~R sinceV(R; c) � X (R) andX (R)
is non-empty and �nite for allR 2 ~R. However, as stated above, agents need not be indifferent
between all allocations in the setV(R; c) sinceV(R; c) � X (R). Hence, in order to de�ne a priority
mechanism based on a solution to maximization problem (5), a re�ned selection from the setV(R; c)
is necessary which will be based on the priority-ordering� .

To modify the costsc in order to take the priority-ordering� into account, let"0 2 (0; 1) and
" i � 1 = (1 + t i )" i for eachi 2 f 1; : : : ; ng. By construction of" i , it follows that:13

1 > " 0 � " i >
nX

k= i +1

tk" k > 0 for all i 2 f 0; : : : n � 1g: (6)

To guarantee a larger �ow to agents with higher priorities, the value associated with a �ow will be
monotonically increasing with higher priorities. More speci�cally, let for each(i; l ) 2 E :

~cil =

(
� 1 if l = n + i
" � ( i ) otherwise.

12Note that costs of edges are non-positive and the max-cost �ow problem is equivalent to the usual min-cost �ow
problem.

13To see this, note that" n � 1 = (1 + tn )" n > t n " n since" n > 0 and, consequently," n � 2 = (1 + tn � 1)" n � 1 =
" n � 1 + tn � 1" n � 1 > t n " n + tn � 1" n � 1 . Condition (6) then follows by repeating these arguments.
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The above construction means that the agent with the highest priority (i.e., the agent with� (i ) = 1 )
will receive the highest edge weight (for edges(i; l ) 2 Enf (i; n + i )g), the agent with the second
highest priority (i.e., the agent with� (i ) = 2 ) will receive the second highest edge weight, and so on.

Our second main result demonstrates that a mechanism that selects an allocation from the set
of maximizers for each pro�le in~R and any given priority-ordering is a priority mechanism. From
Theorem 1, it is already known that such a mechanism is non-manipulable on the domain~R.

Proposition 1. For a given priority-ordering� , a mechanism' selecting for each pro�leR 2 ~R an
allocation fromV(R; ~c) is a priority mechanism based on� .

5 Discussion

5.1 Singleton Cores

Theorem 1 establishes that in our time-banking problem there exist mechanisms which are individ-
ually rational, ef�cient, and non-manipulable on the domain~R. This is surprising as previously a
number of impossibility results for the combination of these axioms have been established by apply-
ing a singleton cores result by Sönmez (1999). Below we connect his result to time banking.

Let ~R 1 denote the set of all pro�lesR 2 ~R such that for alli 2 N and allj 2 A i (Ri ) we have
�t ij = 1 andt i = 1 (i.e., any agent demands at most one time unit of any acceptable service and any
agent provides at most one unit of time). This corresponds to the classical dichotomous domain by
Bogomolnaia and Moulin (2004). Then it is easy to check that the domain~R 1 satis�es Assumption
A and B of Sönmez (1999).14 Hence, his main result applies, which shows the following: if there
exists an individually rational, ef�cient, and non-manipulable mechanism, then for any pro�le where
the core is non-empty we have (i) the core is single-valued and (ii) the mechanism chooses a core
allocation. However, here for anyR 2 ~R 1, if the core ofR is non-empty, then the set of individually
rational and ef�cient allocations is a singleton (and the core is a singleton).15 But then any priority
mechanism chooses this allocation for the pro�leR.

Once non-unitary endowments are allowed (as it is the case for time banks), the domain~R does
not satisfy Assumption B by Sönmez (1999). We show this in the example below.

Example 2. We use the instance introduced in Example 1. If3 comes before4 in the priority or-
der � , then (3; 3; 12; 0) is the unique� -priority allocation (where this stands for 1 receiving one
time unit from 3, 2 one unit from 3 and 3 receiving one unit from each 1 and 2). If4 comes
before 3 in the priority order� , then (4; 4; 0; 12) is the unique� -priority allocation. Note that
(3; 3; 12; 0)P3(3; 4; 1; 2)P3! 3 but there exists noR0

3 such that(3; 3; 12; 0)P0
3! 3P0

3(3; 4; 1; 2) (as(3; 3; 12; 0)P0
3! 3

14In our framework (without externalities) Assumption A says that for any allocationx we havex i I i ! i if and only if
x i = ! i and Assumption B says that whenever for two allocationsx andy with x i Pi yi andx i R i ! i , there exists a preference
relationR0

i such thatx i R0
i ! i R0

i yi .
15Note that for anyR 2 ~R 1 , if the set of individually rational and ef�cient allocations is not a singleton, then any two

individually rational and ef�cient allocations dominate (via some coalition) each other and the core must be empty: more
formally, for R 2 ~R and any two distinct individually rational and ef�cient allocationsx andy, we have forS = f i 2
N : x ii = 0 g we have for alli 2 S, x i R i yi , and for somej 2 S, x j Pj yj , i.e., x dominatesy with the coalitionS (and
the same argument applies fory in the role ofx andx in the role ofy). Thus, the core (which consists of all undominated
allocations) is empty.
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implies 1 2 A3(R0
3) and�t0

31 � 1, and thus(3; 4; 1; 2)P0
3! 3), i.e., Assumption B is violated for the

domain ~R.

The above example also shows that in general we do not have dichotomous preferences in the
domain ~R. We may have many distinct indifference classes for preferences in the domain~R and yet
by Theorem 1, there exists an individually rational, ef�cient, and non-manipulable mechanism.

5.2 General Domain

On the general domain, there does not exist any mechanism satisfying individual rationality, ef�ciency,
and non-manipulability. This is a simple consequence of (Sönmez, 1999, Corollary 1): The general
domain contains as subdomain marriage markets whereN is partitioned by menM and womenW
where for any “marriage market”R we havet i = 1 and Ri is strict for all i 2 N , and both (i)
A i (Ri ) = W for all i 2 M and �t ij = 1 for all j 2 W and (ii) A i (Ri ) = M for all i 2 W
and�t ij = 1 for all j 2 W . For such marriage markets, the core is non-empty and not a singleton,
i.e., by (Sönmez, 1999, Corollary 1) there does not exist any individually rational, ef�cient, and non-
manipulable mechanism.

Our �nal result demonstrates that this impossibility can, at least partly, be escaped. For this, with
slight abuse of notation, let for anyR 2 R the setX (R) stand for the set of all individually rational
and ef�cient allocations underR. Then one can adapt the de�nition of a priority mechanism as in
Section 3. We show that a priority mechanism is partly non-manipulable on the general domainR in
the sense that any agenti 2 N who �nds the selection of the priority mechanism to be agent-i -optimal
at a given pro�le inR will be unable to manipulate the mechanism at that speci�c pro�le.

Theorem 2. For any pro�leR 2 R and any given priority-ordering� , a priority mechanism is non-
manipulable by any agenti 2 N that �nds the selection of the mechanism agent-i -optimal at pro�le
R. In particular, the agenti 2 N with � (i ) = 1 cannot manipulate a priority mechanism at any pro�le
R 2 R .

5.3 Concluding Remarks

This paper has modelled a time bank as a matching market. On a restricted but yet natural preference
domain, it has been demonstrated that a priority mechanism can be formulated as a min-cost �ow
problem and, furthermore, that such mechanism is non-manipulable and always makes a selection
from the set of individually rational, ef�cient, and time-balanced allocations. No mechanism with
these properties exists on the general preference domain (Sönmez, 1999, Corollary 1).

Given that non-manipulability must be relaxed to obtain individual rationality, ef�ciency and time-
balance on the general preference domain, this paper has demonstrated that non-manipulability need
not be completely abandoned as manipulation possibilities can be prevented for some agents even
on the general domain. Results with a similar �avor has previously been obtained in the literature.
For example, on the marriage market (Gale and Shapley, 1962), it is well-known that there exists
no mechanism that prevents both men and women from manipulating but no man (or woman) can
successfully manipulate a mechanism that always selects the men-optimal (women-optimal) stable
matching (Dubins and Freedman, 1981; Roth, 1982). Another example is the assignment market
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(Shapley and Shubik, 1972) where it is well-known that either the buyers or the sellers can manipulate
any individually rational and stable mechanism on the general domain but where it is possible to
construct mechanisms that prevent at least one of these groups from manipulating (Demange and
Gale, 1985). A �nal example is from Andersson et al. (2014) where it is shown that it is impossible
for an agent to successfully manipulate an envy-free and budget-balanced mechanism if it selects
the agent's most preferred envy-free and budget-balanced outcome for each preference pro�le on a
general preference domain (this rule is also minimally manipulable in the sense of Andersson et al.,
2014).

Even if the considered priority mechanism has been demonstrated to satisfy all properties of inter-
est on a restricted preference domain (and even partly on the general domain), the mechanism can be
criticized from a fairness perspective as it discriminates low priority agents. For this reason, it is im-
portant to characterize the entire class of mechanisms that satis�es the axioms of interest to see if such
discrimination can be avoided or not (or alternatively, one might randomize over priority orderings).
Moreover, even if the considered domain restriction is natural for the time banking problem, it may
also be of importance to �nd a maximal domain result where the above mentioned impossibility can
be escaped as this will give important information about how much more detailed preferences may be
reported to a time bank. Both open problems are left for future research.

Appendix A: Proofs

Appendix A contains the proofs of all results except Theorem 1, which is in Appendix B.

Proof of Lemma 1. Suppose that allocationx belongs toV(R; c). The fact thatx is feasible and
individually rational follows directly from the construction of the graphg = ( N; M; E; u ) and by
de�nition of the maximization problem (5), i.e.,n + j 2 M is only connected to an agenti 2 N if
agentj 2 A i (Ri ) [ f i g, all �ows are between connected agents and the �ow never exceeds the upper
bounds�t ij on any edge(i; n + j ) 2 E .

To show that allocationx is maximal, it will be demonstrated thatx minimizes the total �ow
between agentsi 2 N and their respective clonesi + n 2 M . Becausex 2 V(R; c) is a maximizer,
it follows that:

X

(i;l )2 E

cil x il �
X

(i;l )2 E

cil x0
il for any feasible allocationx0 in program (5). (7)

Given the construction of the costs in condition (4), it now follows from condition (7) that:

nX

i =1

ci (n+ i )x i (n+ i ) �
nX

i =1

ci (n+ i )x
0
i (n+ i ) :

Becauseci ( i + n) = � 1 for all i 2 N , by condition (4), the above inequality can be rewritten as:

nX

i =1

x0
i (n+ i ) �

nX

i =1

x i (n+ i ) :

But this condition means that allocationx minimizes the total �ow between agentsi 2 N and their
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respective clonesi + n 2 M among all feasible allocations, which is the desired conclusion. �

Proof of Proposition 1. It is �rst demonstrated thatV(R; ~c) � V (R; c) for each pro�le R 2 ~R.
Suppose now thatx 2 V (R; c) but x0 =2 V(R; c) for somex0 that is feasible in the optimization
program de�ned in (5). To reach the conclusion, it is suf�cient to showx0 =2 V(R; ~c).

Note thatx 2 V (R; c) andx0 =2 V(R; c) imply V (x; c) > V (x0; c). This conclusion together with
cil 2 f� 1; 0g andx il 2 N0 for all (i; l ) 2 E and"0 < 1 givesV (x; c) > V (x0; c) + "0. Because
~cil � cil for all (i; l ) 2 E by construction, it holds thatV (x; ~c) � V (x; c). This together with
the above inequalities implyV (x; ~c) > V (x0; c) + "0. To complete this part of the proof, we show
that V (x0; c) + "0 � V (x0; ~c), since this condition together with the above conclusions then show
V(x; ~c) > V (x0; ~c), i.e., thatx0 =2 V(R; ~c).

To demonstrateV (x0; c) + "0 � V (x0; ~c), we partitionE into two disjoint sets,E 1 andE 2, where
the former set contains all edges(i; l ) in E wherel 6= i + n and the latter contains all edges(i; l ) in
E wherel = i + n. Consequently,cil = 0 < ~cil = " i for all (i; l ) 2 E 1 andcil = ~cil = � 1 for all
(i; l ) 2 E 2. Hence, the inequalityV (x0; c) + "0 � V (x0; ~c) can be rewritten as:

V (x0; c) + "0 =
X

(i;l )2 E

cil x0
il + "0;

=
X

(i;l )2 E 1

cil x0
il +

X

(i;l )2 E 2

cil x0
il + "0;

=
X

(i;l )2 E 2

~cil x0
il + "0;

�
X

(i;l )2 E

~cil x0
il

=
X

(i;l )2 E 1

~cil x0
il +

X

(i;l )2 E 2

~cil x0
il ;

=
X

(i;l )2 E 1

" i x0
il +

X

(i;l )2 E 2

~cil x0
il ;

= V (x0; ~c):

or, equivalently, as:

"0 �
X

(i;l )2 E 1

" i x0
il : (8)

Conditions (6) and (1') together with the fact that" i x il � 0 for all (i; l ) 2 N � M now give:

"0 >
X

i 2 N

" i t i �
X

(i;l )2 E 1

" i x0
il :

But then condition (8) must hold. Hence,V(R; ~c) � V (R; c). This conclusion and Lemma 1 imply
that for a given priority ordering� , any mechanism' choosing for each pro�leR 2 ~R an allocation
from V(R; ~c), selects a� -priority allocation fromX (R).

To conclude the proof, it needs only to be demonstrated that' is a priority mechanism. But this
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follows directly from the construction of the weights" i . To see this, recall from condition (6) that
" i >

P n
k= i +1 tk" k for all i 2 f 1; : : : ; n � 1g. Hence, assigningoneadditional time unit to agenti

in maximization problem (5) is strictly preferred to assigningt j time units to each agentj 2 N with
� (i ) < � (j ). Thus,V(R; ~c) is a selection fromV(R; c) � X (R) that �rst maximizes the number
of time units that agenti 1 2 N with � (i 1) = 1 exchanges with acceptable agents (i.e., a selection
from the setZ i 1 ;V(R;c) (R)), and then maximizes the number of time units that agenti 2 2 N with
� (i 1) = 2 exchanges with acceptable agents (i.e., a selection from the setZ i 2 ;i 1 (R)), and so on. This
is the de�nition of a priority mechanism. �

Proof of Theorem 2. To obtain a contradiction, suppose that the priority mechanism' is agent-i -
optimal at pro�le R 2 R but that agenti 2 N can manipulate the mechanism at pro�leR. This
means that there are two pro�lesR 2 R andR0 = ( R0

i ; R� i ) 2 R such thatx = ' (R), x0 = ' (R0)
andx0

i Pi x i . It will be demonstrated thatx0 2 X (R) because if this is the case, then the mechanism'
cannot be agent-i -optimal sincex = ' (R) andx0

i Pi x i . Hence, to obtain the desired contradiction, it
needs to be established thatx0 is individually rationalandef�cient at pro�le R, i.e., thatx0 2 X (R).

It is �rst proved thatx0 is individually rational at pro�leR, i.e., thatx0
j Rj ! j for all j 2 N . The

relationx0
j Rj ! j for j 6= i follows directly asRj = R0

j andx0 = ' (R0) 2 X (R0). Relationx0
i Ri ! i

follows by the assumptionx0
i Pi x i and the fact thatx i Ri ! i (asx = ' (R) 2 X (R)). Hence,x0

j Rj ! j

for all j 2 N .
It is next proved thatx0 is ef�cient at pro�le R, i.e., that there is no allocationx00that Pareto

dominatesx0at pro�le R. To obtain a contradiction, suppose that there is an allocationx00that Pareto
dominatesx0at pro�le R (without loss of generality, it can be assumed thatx00is ef�cient). This means
thatx00

j Rj x0
j for all j 2 N andx00

j Pj x0
j for somej 2 N and, in particular, thatx00

i Ri x0
i Pi x i . As x0 is

individually rational at pro�leR, by the above conclusion, it follows thatx00is individually rational
at pro�le R. But then becausex00is individually rational and ef�cient at pro�leR, it follows that
x002 X (R). Then the mechanism' cannot be agent-i -optimal sincex00

i Pi x i . Hence,x0 is ef�cient at
pro�le R.

Hence,x0 2 X (R) and it then follows that a priority mechanism is non-manipulable by any agent
i 2 N that �nds the selection of the mechanism agent-i -optimal at pro�leR 2 R .

The fact that agenti 2 N with � (i ) = 1 cannot manipulate a priority mechanism at any pro�le
R 2 R follows directly from the above conclusion and the fact that a priority mechanism, by de�ni-
tion, always selects an agent-i -optimal allocation for each pro�leR 2 R for the agenti 2 N with
� (i ) = 1 . �

Appendix B: Proof of Theorem 1

This Appendix �rst introduces a graph theoretical tool, referred to as the circulation-based model (Ap-
pendix B.1). It will then be demonstrated that the circulation-based model, without loss of generality,
can replace the min-cost �ow problem when analysing the priority mechanism (Appendix B.2). These
insights enable us to prove Theorem 1 (Appendix B.3).
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Appendix B.1: The Circulation-Based Model

Let Z denote the set containing all integers. For any pro�leR 2 ~R, construct a weighted directed
graphDR = ( V; A) with capacitiesc : A 7! N0 and weightsw : A 7! Z on its arcs. For ease of
notation, we writeD instead ofDR whenever the pro�leR is unambiguous. Each agenti 2 N is
represented by two vertices, denoted byi in andi out . These2n vertices build the vertex setV of the
graphD. We draw a directed arc between each pair of type(i in ; i out ), pointing toi out and refer to this
arc as theinner arcof agenti 2 N . The inner arc has capacityc(i in ; i out ) = t i . If agenti �nds agent
j acceptable, then(j out ; i in ) belongs to the (directed) arc setA of the graphD. Any such arc is called
regularand has capacityc(j out ; i in ) = �t ij , i.e., the upper time bound on how much time agenti wants
from agentj . Note also that the vertices of typei in have incoming regular arcs and a single outgoing
inner arc, while vertices of typei out have outgoing regular arcs and a single incoming inner arc. We
de�ne in Appendix B.2 the weightsw : A 7! Z using a priority order. An instance of the model is
illustrated in Figure 2 (the �gure contains some concepts which are explained later in the Appendix).

j in j out i in i out k in kout l in lout

3
38

3
36

3
34

3
32

2
0

2
0

1
0

3
0

1
0

1
0

3
0

Figure 2:Agents are denoted byi; j; k andl. Inner arcs are marked by horizontal lines, while regular arcs are
bent. Arc weights and capacities are written above and below each arc, respectively. The arc weights of agents
i; j; k andl on the inner arcs are given by36, 38, 34 and32, respectively. All arc weights on regular arcs are
set to zero. Each agent has an endowment of 3. The max weight circulation saturates all regular edges except
(lout ; j in ) which is left empty, and(lout ; i out ) which carries one unit of �ow. Hence, agenti sends to 2 time
units to agentk and 1 time unit to agentl , agentj sends 2 time units to agenti and 1 time unit to agentk, agent
k sends 3 time units to agentj , and agentl sends 1 time unit to agenti .

De�nition 5. A circulation is a functionC : A 7! N0 where:

(i) C(u; v) � c(u; v) for every(u; v) 2 A,

(ii)
P

(u;v )2 A(D ) C(u; v) =
P

(v;w)2 A C(v; w) for every vertexv 2 V .

Condition (i) is a capacity constraint which ensures that agents do not exchange services beyond their
time endowmentt i = c(i in ; i out ), and that the upper time bound�t ij on how much time agenti wants
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from agentj is not exceeded. Condition (ii) is the classical �ow conservation rule, stating that the
total �ow of the incoming arcs of a vertex equals the total �ow of the outgoing arcs, i.e., that an agent
provides and receives the same amount of time. The latter condition can also be formulated as:

C(i in ; i out ) =
X

(j out ;i in )2 A(D )

C(j out ; i in ) =
X

(i out ;k in )2 A(D )

C(i out ; k in ) for every agenti 2 N .

We callC(i in ; i out ) the�ow value at agenti . Circulations in a graphD are in one-to-one correspon-
dence with allocations in the time banking problem, e.g., for an allocationx the corresponding �ow
value of the inner arc at agenti is C(i in ; i out ) = t i � x ii and the �ow value of any regular arc at agent
i is C(j out ; i in ) = x ij for all j 2 N . Theallocation valuefor agenti is de�ned ast i � x ii . Another
way of expressing this is that the allocation valuet i � x ii of agenti in the time banking problem
equals the �ow valueC(i in ; i out ) at agenti in the circulation model.

Appendix B.2: Replacement Result

This section demonstrates that by placing appropriate weights on the arcs in the graphD, the max-
imum weight circulations correspond to the outcome of the min-cost �ow problem used in Sec-
tion 4 to identify the outcome of the priority mechanism (Proposition 2). This result implies that
the circulation-based model can be adopted in the proof of Theorem 1.

Let � be a priority ordering. Lettmax be the largest time endowment of any agent inN , and de�ne
the weightw(u; v) on each arc(u; v) in the directed graphD = ( V; A) by:

w(u; v) =

(
t2(n+1 � � (i ))
max if (u; v) = ( i in ; i out ),

0 otherwise.
(9)

In Figure 2 this means that agentsj andl have the highest and the lowest priorities, respectively (note
also thattmax = 3 since all agents, by assumption, have capacity3). Let w(C) denote theweighted
sum of �ow valuesof the agents inN at circulationC, i.e.,w(C) =

P
i 2 N C(i in ; i out ) � w(i in ; i out ).

Proposition 2. For any given pro�leR 2 ~R, let C be a maximum weight circulation where the
weights are de�ned by condition (9). LetC0 be the circulation corresponding to an allocationx0

selected forR by a priority mechanism' based on� . ThenC0(i in ; i out ) = C(i in ; i out ) for each
i 2 N .

Proof. As in the statement of the proposition, letC be a maximum weight circulation and letC0 be
the circulation corresponding to an allocationx0selected by a priority mechanism. Suppose, to obtain
a contradiction, thatC0(j in ; j out ) 6= C(j in ; j out ) for somej 2 N . Let agenti be the agent with the
highest priority in� where this holds. Suppose also, without loss of generality, that� (k) = k for all
k 2 N . To reach the desired contradiction, we consider two cases.

Case(i): C0(i in ; i out ) < C (i in ; i out ). In this case, the maximum weight circulationC assigns
a higher allocation value to agenti than the priority mechanism. We show by induction that this
contradicts the rules of the priority mechanism. Suppose �rst that agenti is the highest ranked agent
according to the priority order� and recall that the priority mechanism, by construction, restricts
the set of maximal allocations to those that maximize the allocation value ofi (see condition (3) in
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Section 3). Thus there is no allocation that assigns agenti a higher allocation value than the allocations
in this chosen set, and, consequently, no circulation that assigns agenti a higher value. Hence, agent
i cannot be the agent with the highest priority. Suppose now that agenti is the second highest ranked
agent according to the priority order� . Again, by condition (3) this agent restricts the set of allocations
further. And so, the maximum weight circulationC is still in the chosen set when agenti restricts the
set of allocations further, and it can, consequently, not have a higher allocation value for agenti than
C0. This argument can be repeated inductively to reach the conclusion that it cannot be the case that
C0(i in ; i out ) < C (i in ; i out ).

Case(ii): C0(i in ; i out ) > C (i in ; i out ). Note �rst that bothC andC0 are feasible circulations at
pro�le R. Because agenti is the agent with the highest priority in� whereC0(i in ; i out ) 6= C(i in ; i out ),
by assumption, it follows thatC0(k in ; kout ) = C(k in ; kout ) for all agentsk = 1 ; : : : ; i � 1. It will
be demonstrated that agentsi + 1 ; : : : ; n cannot make up for the lossC suffered on arc(i in ; i out ) and
thusC cannot be of maximum weight sinceC0 is a feasible circulations at pro�leR. Recall �rst that
the setN0 contains only positive integers, so the difference betweenC0(i in ; i out ) andC(i in ; i out ) is at
least 1. By construction of the weights on the inner arcs, de�ned by condition (9), it then follows that:

[C0(i in ; i out ) � C(i in ; i out )] � t2(n� i +1)
max � t2(n� i +1)

max : (10)

Note next that, in the the extreme case, all agents with lower priorities than agenti have �ow value
zero inC0 and a �ow value oftmax in C. This means that the weighted sum of the �ow values at
agentsi + 1 ; : : : ; n at circulationC is at most:

tmax �
nX

j = i +1

t2(n� j +1)
max : (11)

Now, the value of the sum (11) is strictly lower than the right hand side of inequality (10). Conse-
quently, even in the the extreme case when all agents with lower priorities than agenti have �ow value
zero inC0and a �ow value oftmax in C, it holds thatw(C0) > w (C). However, this contradicts that
C is a maximum weight circulation sinceC0 is a feasible circulation at graphDR .

Appendix B.3: The Proof

Let ' be the priority mechanism based on� where� (i ) = i for all i 2 N . To obtain a contradiction,
suppose that' can be manipulated by some agenti 2 N at a pro�le R 2 ~R. This means that there
are two pro�lesR 2 ~R andR0 = ( R0

i ; R� i ) 2 ~R such that forx = ' (R) andx0 = ' (R0) we have
x0

i Pi x i . Note thatR0
i 6= Ri . Let C1 andC2 be the maximum weight circulations for the graphsDR

andDR0 induced by the pro�lesR andR0 = ( R0
i ; R� i ), respectively.

The next lemma shows that we may suppose that the set of acceptable agents reported by agent
i at preference relationR0

i is a proper subset of the set of acceptable agents reported by agenti at
preference relationRi .

Lemma 2. Without loss of generality, we may supposeA i (R0
i ) � A i (Ri ).

Proof. We �rst show Ui (Ri ) � Ui (R0
i ). To see this, supposej 2 Ui (Ri ) but j =2 Ui (R0

i ), i.e., that
agentj is unacceptable underRi but acceptable underR0

i . Sincex0
i Pi x i , it must then hold thatx0

ij = 0
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by de�nition of the preferences in~R i . Hence, any regular arc of type(j out ; i in ) wherej =2 Ui (R0
i )

in the graphDR0 but j 2 Ui (Ri ) in the graphDR will not be active in the solutionC1 at pro�le R0.
Hence,Ui (Ri ) � Ui (R0

i ) [ f j 2 A i (R0
i ) : x0

i (n+ j ) = 0g. But then we may chooseR00
i such that

A(R00
i ) = A i (R0

i )nf j 2 A i (R0
i ) : x0

i (n+ j ) = 0g and�t00
ik = �t0

ik for all k 2 A(R00
i ), andC1 remains

a solution forR00= ( R00
i ; R� i ) 2 ~R. But for x00= ' (R00) this impliesx00

i I i x0
i andx00

i Pi x i . Hence,
A i (R00

i ) � A i (Ri ) andx00
i Pi x i .

Recall now that, for any pro�le inR 2 ~R, each agentk 2 N reports a set of acceptable agentsAk (Rk )
together with an upper bound on how much time�tkj agentk 2 N at most would like to receive from
each acceptable agentj 2 Ak (Rk ). By Remark 1, the reportRk is equivalent to the vector�tk where
�tkk = tk and�tkj = 0 for all j 2 Uk (Rk ). This together with the conclusion in Lemma 2 imply that
there exists an agentj that is acceptable for agenti underRi but where agenti reports a strictly lower
upper time bound�t0

ij at pro�le R0than under pro�leR (i.e., �t0
ij < �t ij ).16 Hence, to complete the proof

of Theorem 1, we only need to establish that agenti can never gain by such misrepresentation. In
the terminology of the circulation-based model, this can equivalently be expressed as the �ow value
C(i in ; i out ) at agenti in a maximum weight circulation cannot be increased by reducing the capacity
on a regular arc(j out ; i in ). Given this insight, a large part of the remaining proof will focus on a
regular arc(j out ; i in ).

Recall now thatC1 denotes the maximum weight circulations for the true preferencesR induced
by the graphDR , and thatC2 denotes the maximum weight solution for the misrepresented pref-
erencesR0 induced by the graphDR0. Furthermore, by the assumption that agenti can manipu-
late the priority mechanism, it follows thatC2 has a larger �ow value at agenti thanC1 does, i.e.,
C2(i in ; i out ) > C 1(i in ; i out ). By construction of the weights in condition (9), the circulation value
of C2 cannot be the same as the circulation value ofC1 if the �ow value differs for at least one
agent. Thus, the circulation value ofC2 must be strictly smaller than the circulation value ofC1, i.e.,
w(C2) < w (C1). Note also that the circulationC2 is a feasible circulation inDR since the �ows re-
main below the capacity on each edge and it preserves �ow conservation. However, the circulationC2

is not optimal in the graphDR since the circulation value ofC2 is strictly smaller than the circulation
value ofC1 and the circulationC1 is optimal inDR .

Consider next the function de�ned by the circulationC1 � C2 whereC1(u; v) � C2(u; v) 2 Z
for each arc(u; v) in the graphDR . This function assigns a negative value to the arc(u; v) if the
�ow through the arc is larger at circulationC2 than at circulationC1. For convenience, one can think
of these “negative” arcs as arcs turned backwards, with the usual positive �ow value on them. Since
bothC1 andC2 are circulations in the graphDR , their difference also obeys �ow conservation and as
such, it can be decomposed into cycles.

Note �rst that a cycle decomposition ofC1 � C2 need not be unique for the pro�lesR and
R0. To obtain one such decomposition, we use a simple inductive algorithm that produces a cycle

16Note that none of the above arguments exclude the possibility for agenti to manipulate by reporting a higher upper
time bound�t ij for some agentj 2 N that is acceptable under her true preferencesR i . However, this case can easily be
excluded. To see this, suppose that agenti increases the capacity on a regular arc(j out ; i in ) in the graphD R 0, but only
search for circulations that leave the arc at its original capacity at most. This is equivalent to setting the capacity of the arc
back to its original value, and then searching for a maximum weight circulation. Thus, agenti can only increase her �ow
by exceeding the original capacity�t ij at (j out ; i in ). But this makes agenti worse off by de�nition of ~R i and agenti can,
consequently, not gain by such misrepresentation.
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decomposition ofC1 � C2 in a �nite number of iterations. This algorithm uses the �ow value of
C1 � C2 on each arc(u; v) in the graphDR but will not use any information about the arc weights (arc
weights are considered below). First, identify a cycle, sayC, based on the circulationC1 � C2 and take
its forward or backward arc with a lowest absolute �ow value on it. Suppose that the lowest absolute
�ow value at some agent in the cycleC is q, thenq feasible cycles of typeCcan be identi�ed. These
cycles represent the �rstq cycles in the decomposition ofC1 � C2. Then, reduce the �ow value on
each arc included in the cycleCby q. This will give an “updated” circulation-based on the “original”
circulationC1 � C2. Now, the arc with the lowest �ow value in the updated circulation is guaranteed
to null its �ow value. Hence, the updated circulation has one less arc and, consequently, one less
cycle than the original circulation. Note, however, that the remaining cycles in the updated circulation
still obeys �ow conservation. We proceed in this manner until the whole circulationC1 � C2 is
decomposed into cycles. Note also that sinceN0 is restricted to a set of positive bounded integers,
this procedure ends in a �nite number of iterations. Moreover, the absolute �ow value on an arc
monotonically (but not strictly monotonically) decreases in each inductive step.

Note that the cycles in the decomposition are not necessarily arc-disjoint from each other (i.e.,
several distinct cycles in the decomposition can pass through the same arc), but due to the inductive
argument above, each arc in the cycle decomposition is either a forward arc or a backward arc, de-
pending on the sign ofC1(u; v) � C2(u; v). More precisely, forward arcs are positive, while backward
arcs are negative. Thus, it cannot be the case that one cycle in the decomposition uses an arc with
positive value, while another cycle uses the same arc with negative value.

Consider now a cycle decomposition of the circulationC1 � C2 and add the arc weights to the
arcs in all cycles included in the decomposition. Based on the sign of the total weight of a cycle in
the decomposition, we distinguish positive, zero and negative weight cycles. A positive weight cycle
is called anaugmenting cycle. Note that all augmenting cycles pass through(j out ; i in ), because any
augmenting cycle which does not pass through(j out ; i in ) would increase the circulation value ofC2

in DR0, which is impossible sinceC2 is optimal in the graphDR0.

Lemma 3. Suppose thatC1 � C2 is decomposed into cycles using the inductive decomposition algo-
rithm from the above. Then:

(i) there exists an augmenting cycle,

(ii) a cycle of weight zero consists exclusively of arcs of weight zero,

(iii) there are no negative weight cycles.

Proof. The proof of Part (i) follows directly sincew(C1) > w (C2) andw(C1) equalsw(C2) plus
the weight of each cycle in the cycle decomposition ofC1 � C2. Part (ii) follows by construction
of the weights, i.e., a cycle of weight zero consists exclusively of arcs of weight zero (obviously, no
combination of the weights on inner arcs with coef�cients in the open interval between 0 andtmax

can add up to zero).
Part (iii) is proved by contradiction. Suppose that there is a cycleCof negative total weight in the

cycle decomposition ofC1 � C2. Let the reverse ofC be denoted by
 
C. The reverse

 
C has positive

total weight and preserves the sign ofC2 � C1 on each of its arcs by construction of the inductive

decomposition algorithm. Moreover, we will show that,
 
C can be added toC1 without violating �ow
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conservation or any capacity constraint inDR . Thus,C1 +
 
C is a circulation of larger weight than

C1. Let now(u; v) be an arbitrary arc in the reverse cycle
 
C. It will be demonstrated that:

0 � C1(u; v) +
 
C(u; v) � c(u; v): (12)

Condition (12) implies thatC1 cannot be a maximum weight circulation in the graphDR which

contradicts our assumption. We need to consider two cases. Suppose �rst that
 
C(u; v) � 0. Then:

C1(u; v) +
 
C(u; v) � C1(u; v) + [ C2(u; v) � C1(u; v)] = C2(u; v) � c(u; v):

Note also that becauseC1(u; v) and
 
C(u; v) are non-negative at the arc(u; v), it follows directly

that C1(u; v) +
 
C(u; v) � 0. Hence, condition (12) holds when

 
C(u; v) � 0. Suppose next that

 
C(u; v) < 0. In this case:

C1(u; v) +
 
C(u; v) < C 1(u; v) � c(u; v):

Furthermore:

C1(u; v) +
 
C(u; v) � C1(u; v) + [ C2(u; v) � C1(u; v)] = C2(u; v) � 0:

Hence, condition (12) also holds when
 
C(u; v) < 0.

Lemma 3 thus demonstrated that all cycles in the cycle decomposition ofC1 � C2, which pass through
an inner arc, are augmenting cycles. However, we do not know whether these cycles use the arc
(j out ; i in ) as a forward arc or as a backward arc. The following lemma sheds light on this.

Lemma 4. Suppose thatC1 � C2 is decomposed into cycles using the inductive decomposition algo-
rithm from the above, and let(j out ; i in ) be an arbitrary arc in some cycle in the cycle decomposition
of C1 � C2. Then(j out ; i in ) is a forward arc.

Proof. Note �rst thatC2(j out ; i in ) is bounded from above by the decreased capacity of(j out ; i in ) in
DR0. If C1(j out ; i in ) � C2(j out ; i in ), thenC1 is feasible in the graphDR0 and has a larger weight than
C2, which contradicts the optimality ofC2 in the graphDR0. Thus,C1(j out ; i in ) � C2(j out ; i in ) > 0,
which implies that(j out ; i in ) is a forward arc in all cycles in the decomposition ofC1 � C2.

Finally, consider the �ow valueC1(i in ; i out ) � C2(i in ; i out ). To prove Theorem 1, we only need to
establish thatC1(i in ; i out ) � C2(i in ; i out ) � 0 because this contradicts the assumption thatx0

i Pi x i .
For this condition to be false, the arc(i in ; i out ) must be a backward arc in at least one cycle in the
cycle decomposition ofC1 � C2. However, as concluded in the above, being a backward arc in one
cycle also implies being a backward arc in all cycles. From Lemma 3 we know that all cycles that
passes through(i in ; i out ) are augmenting cycles. Lemma 4 then states that the augmenting cycles use
(j out ; i in ) as a forward arc, and they must, consequently, leavei in either as a forward arc, along the
only outgoing arc(i in ; i out ), or as a backward arc, along any of the regular arcs running toi in . Neither
of these two cases allows(i in ; i out ) to be a backward arc. This concludes the proof and shows that
agenti cannot manipulate the priority mechanism' at any pro�leR 2 ~R.
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