Emerging biomarkers in cardiometabolic disease

Molvin, John

2020

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Molvin, J. (2020). Emerging biomarkers in cardiometabolic disease. Lund University, Faculty of Medicine.

Total number of authors: 1

Creative Commons License: CC BY-NC

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
John Molvin graduated from medical school at Lund University in 2010. When he’s not preparing for the 2032 PGA Champions Tour or spending time with Anna and their three children, he works as a senior resident at the Department of Cardiology at Skånes University Hospital, Malmö.
Emerging biomarkers in cardiometabolic disease

John Molvin

DOCTORAL DISSERTATION
by due permission of the Faculty of Medicine, Lund University, Sweden.
To be defended at OCE-salen, Jan Waldenströms gata 35,

Faculty opponent
Professor John Pernow
Karolinska Institutet
Title and subtitle Emerging biomarkers in cardiometabolic disease

Abstract

The epidemiological association between diabetes and heart failure is well-established and the two entities are emerging as global threats, both individually and synergistically, to an aging population. The exploration of multiple proteins can shed light on pathophysiological pathways in both diabetes and cardiovascular disease. This can possibly provide novel diagnostic, prognostic and hopefully therapeutic implications.

The overall aim of this dissertation was to explore novel biomarkers in cardiometabolic disease especially in heart failure.

This thesis was based on epidemiological data from the Malmö Preventive Project Re-Examination (MPP-RES) study and the Heart and brain failure investigation trial (HARVEST-Malmö). In **Paper 1** we used a multiplex proteomic panel consisting of 92 proteins with known or alleged associations with cardiovascular disease, metabolism and inflammation to explore novel biomarkers for incident diabetes in the population-based cohort MPP-RES (n=1026). We were able to identify seven proteins associated with incident diabetes, of which four not previously described. Two of these (Galectin-4 and Paraoxonase-3) were associated with diabetes independently of fasting plasma glucose implying a glucose-independent association with diabetes.

In **Paper 2**, we built upon the results from **Paper 1**, since one of our ultimate aims with this thesis was to explore common pathophysiological pathways between diabetes and cardiovascular disease. Using the seven proteins identified in **Paper 1** we investigated whether these were associated with pertinent cardiovascular outcomes such as all-cause and cardiovascular mortality, incident coronary events and incident heart failure. We found that two proteins (Galectin-4 and Cathepsin D) were associated with all investigated outcomes in multivariable Cox regression analyses and represented novel findings. Galectin-4 may possibly exert its effect on cardiometabolic disease through the incretin system and Cathepsin-D has previously been described to reduce the antioxidative effects of high-density lipoprotein.

In **Paper 3**, we switched from the population-based MPP-RES cohort to the HARVEST-Malmö study which consists of heart failure patients admitted to the cardiology and internal medicine wards at Skånes University Hospital in Malmö, Sweden. We assessed the predictive ability in terms of mortality and re-hospitalization, of five different proteins (midregional pro-adrenomedullin, copeptin, NT-proBNP, CT-pro-endothelin-1 and cystatin C). The investigated proteins represent different pathophysiological mechanisms involved in heart failure such as the neuroendocrine response, cardiovascular stress and renal function. Higher plasma levels of all proteins but CT-pro-endothelin-1 were associated with increased risk of post-discharge mortality but only NT-proBNP, which in many ways is the gold standard for biomarkers in heart failure, was associated with increased risk of re-hospitalization.

Finally, in **Paper 4**, which was a collaboration with an Italian heart failure study (GREAT Rome Network) we investigated the effects of two emerging biomarkers in heart failure; bioactive adrenomedullin (bio-ADM) which is considered a marker for congestion, and proenkephalin A (penKid), which is a marker for renal dysfunction. While NT-proBNP has many uses, it has not been shown to adequately assess residual congestion in heart failure patients. We were able to show that increased levels of bio-ADM were associated with increased congestion measured through a clinical congestion score where peripheral edema was the strongest and driving association. Furthermore, we showed that bio-ADM was predictive of 1-year mortality, increased risk of re-hospitalization and length of hospital stay. PenKid levels responded approximately 48 hours prior to creatinine in the setting of acute kidney injury and we showed that penKid was associated with worsening renal function as well as with in-hospital and 1-year mortality.

Key words: biomarkers, cardiometabolic disease, diabetes, heart failure, proteomics

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature

Date 2020-10-15
Emerging biomarkers in cardiometabolic disease

John Molvin
List of papers

This thesis is based on the following four original papers.

Scientific contributions that are not included in this thesis are as follows:

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEi</td>
<td>Angiotensin converting enzyme inhibitor</td>
</tr>
<tr>
<td>ACM</td>
<td>All-cause mortality</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute coronary syndrome</td>
</tr>
<tr>
<td>ADM</td>
<td>Adrenomedullin</td>
</tr>
<tr>
<td>AHT</td>
<td>Anti-hypertensive treatment</td>
</tr>
<tr>
<td>ARB</td>
<td>Angiotensin receptor blocker</td>
</tr>
<tr>
<td>Bio-ADM</td>
<td>Biologically active adrenomedullin</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>CatD</td>
<td>Cathepsin D</td>
</tr>
<tr>
<td>CD163</td>
<td>Scavenger receptor cysteine rich type 1 protein M130</td>
</tr>
<tr>
<td>CE</td>
<td>Coronary events</td>
</tr>
<tr>
<td>CMD</td>
<td>Cardiometabolic disease</td>
</tr>
<tr>
<td>CT-pro-ET-1</td>
<td>C-terminal pro-endothelin 1</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>CVM</td>
<td>Cardiovascular mortality</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest X-ray</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>DM</td>
<td>Type 2 Diabetes Mellitus</td>
</tr>
<tr>
<td>DPP4</td>
<td>Dipeptidyl peptidase-4</td>
</tr>
<tr>
<td>ET-1</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>FABP4</td>
<td>Fatty acid binding protein-4</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acids</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Term</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>FPG</td>
<td>Fasting plasma glucose</td>
</tr>
<tr>
<td>FUT</td>
<td>Follow-up time</td>
</tr>
<tr>
<td>GIP</td>
<td>Gastric inhibitory polypeptide</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide 1</td>
</tr>
<tr>
<td>GREAT</td>
<td>Global research on acute conditions team</td>
</tr>
<tr>
<td>HARVEST</td>
<td>Heart and brain failure investigation trial</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Glycosylated haemoglobin A1c</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HF</td>
<td>Heart failure</td>
</tr>
<tr>
<td>IFG</td>
<td>Impaired fasting glucose</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired glucose tolerance</td>
</tr>
<tr>
<td>IGFBP-2</td>
<td>Insulin-like growth factor binding protein-2</td>
</tr>
<tr>
<td>IR</td>
<td>Insulin resistance</td>
</tr>
<tr>
<td>MPP</td>
<td>Malmö Preventive Project</td>
</tr>
<tr>
<td>MPP-RES</td>
<td>MPP-Re-examination study</td>
</tr>
<tr>
<td>MR-proADM</td>
<td>Midregional pro-adrenomedullin</td>
</tr>
<tr>
<td>NP</td>
<td>Natriuretic peptides</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>N-terminal pro-B type natriuretic peptide</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral glucose tolerance test</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen activator inhibitor-1</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEA</td>
<td>Proximity extension assay</td>
</tr>
<tr>
<td>PG</td>
<td>Plasma Glucose</td>
</tr>
<tr>
<td>PON3</td>
<td>Paraoxonase 3</td>
</tr>
<tr>
<td>SGLT2</td>
<td>Sodium glucose co-transporter 2</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthoracic echocardiography</td>
</tr>
<tr>
<td>WRF</td>
<td>Worsening renal function</td>
</tr>
</tbody>
</table>
Introduction

Historical context of cardiometabolic disease

More than 3000 years ago, the ancient Egyptians noted that black ants were attracted to the urine of patients with excessive thirst and diuresis. They also noted that these patients didn’t fare too well (1). They called the condition madhumeha or “honey urine”. The English doctor Thomas Willis (1621-1675) was later credited for coining the term diabetes mellitus from the Greek word diabetes meaning “to pass through” and adding the Latin word mellitus meaning “honey” after sampling or rather oversampling the urine of diabetic patients, and famously stating that it was “wonderfully sweet as if it were imbued with honey or sugar” (1).

In 1881, Ernst von Leyden, a German pathologist and director of the famous Charité hospital in Berlin, remarked that “heart failure is a frequent and noteworthy complication of diabetes mellitus” (2) and this observation was reiterated and extended by the Danish internist Knud Lundbaek in 1954 when he described the advanced atherosclerosis and subsequent end-organ damage in diabetic subjects as a vascular disease or diabetic angiopathy (3).

The plot thickened however, when Rubler in a seminal study from 1972 comprising of only four patients demonstrated diabetes-related nephropathy and cardiomyopathy in the absence of any valvular, congenital or hypertensive heart disease, alcoholism or most importantly coronary artery disease (CAD), introducing the term diabetic cardiomyopathy (4).

The Framingham Heart study started in 1948 as a response to the staggering mortality of cardiovascular disease (CVD) accounting for one in two deaths in the US (5). The results, showing a threefold cardiovascular mortality rate in subjects with diabetes (6) and a fivefold risk of incident heart failure (HF) in diabetic women(7) independently of known risk factors, prompted Jarrett in 1984 to ask the question if diabetes was the chicken or the egg (or neither) in CVD (8), suggesting instead that diabetes and CVD share common precursors.

This idea together with the similar Syndrome X introduced by Reaven (9) was united by Stern in 1995 who introduced the common soil hypothesis (10) which proposes insulin resistance (IR) as the driving force behind hypertension, obesity, dyslipidemia and ultimately CVD.
Cardiometabolic disease

The constellation of disturbed glucose metabolism, hypertension, dyslipidemia and abdominal obesity resulting in CVD constitutes cardiometabolic disease (CMD) although there are some variations in the exact definition (11). In this thesis I refer to CMD in the more general sense i.e. the connection between dysglycemia (with an emphasis on diabetes mellitus), CVD and mortality.

The WHO defines CVD as the collective term for a group of disorders affecting the heart and blood vessels including hypertension, CAD, stroke, peripheral vascular disease, HF, rheumatic heart disease, congenital heart disease and various cardiomyopathies (12). However, in this thesis, CVD references CAD manifesting in coronary events (CE), heart failure (HF) and cardiovascular mortality (CVM).

Diabetes Mellitus

Diabetes Mellitus (DM) is a metabolic disease defined as a condition of chronic hyperglycemia. There are two main types of DM; type 1 DM which is characterized by the autoimmune destruction of insulin-producing beta-cells in the pancreas and type 2 DM which is typically the effect of insulin resistance and a relative deficiency of insulin. This form of DM constitutes more than 90 percent of diabetes cases worldwide (13).

This thesis will focus solely on type 2 DM and will be further referenced only as DM.

Diagnosis

DM is most often diagnosed based on plasma glucose (PG) criteria; either a fasting PG (FPG) value of \(\geq 7.0 \) mmol/l on at least two different occasions, a PG \(> 11.1 \) mmol/l two hours after an oral glucose tolerance test (OGTT) or a random PG of \(>11.1\text{mmol/l(14)}.\)

Glycosylated haemoglobin A1c (HbA1c) which is the foremost method of glycemic management in diabetic subjects (15) can also be used to diagnose DM (14). DM is preceded by a period of abnormal glucose homeostasis classified as either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) that commonly represent degrees of IR.

European and American guidelines recommend screening for DM in subjects over 45 years of age or younger if risk factors such as obesity, family history of DM or hypertension are present(14, 15).
Epidemiology

The global prevalence of DM has risen from approximately 100 million in 1980 to more than 400 million in 2014 (16). By the latest estimates (2019) half a billion people between the ages of 20 and 79 years are currently living with DM, representing 9.3 percent of the population in this age group(17). The projections for the next decades are even more dismal with the global prevalence predicted to rise to 578 million (10.2%) by 2030 and to 700 million (10.9%) by 2045. The largest increases are predicted to occur in countries moving from low-income to middle-income status with China and India as the main epicentres (17, 18). The prevalence is slightly lower in women but like in men, is also projected to increase over the next few decades (17, 19).

In 2019 an estimated 4.2 million deaths, one in nine deaths, in the age group 20-79 years were attributable to DM and almost half occurred in people below the age of 60 years (20) which underlines the necessity of early identification, prevention and intervention of high-risk individuals.

An aging, increasingly obese population leading a sedentary lifestyle and consuming an energy-dense diet is the main explanation for the diabetes epidemic although genetic predisposition is also an important factor (14, 21). However, aggressive lifestyle interventions have been shown to reduce the incidence of DM in high-risk individuals (22).

Diabetic complications

Complications arising from DM can chiefly be divided into microvascular and macrovascular complications. The microvascular complications (i.e. retinopathy, nephropathy and neuropathy) are closely related to the level and the duration of hyperglycemia (23) and there is a clear benefit of intensive glucose management (24, 25). However, the relationship between intensive glucose management and reduced macrovascular complications (i.e. CVD) is not equally clear although new treatment options in the form of glucagon-like peptide 1 agonists (GLP-1) and sodium glucose co-transporter 2 inhibitors (SGLT-2) offer promise (26-30).

For the purposes of this thesis I will focus solely on the cardiac macrovascular complications of DM which are mainly coronary events and heart failure.

Cardiovascular disease

CVD remains the number one global killer with almost 18 million people dying from CVD in 2016 representing 31% of all global deaths. Of these deaths, 85% are due to myocardial infarction and stroke (31).

When looking at CVD in diabetic subjects the numbers get even bleaker. In subjects with DM, CVD occurs more frequently and earlier in life and a diagnosis
of DM is the risk equivalent of aging 15 years (32). DM confers up to a quadrupled risk of cardiovascular mortality and morbidity (13, 33). Furthermore, diabetic arteries are prone to a more general and accelerated atherosclerotic process, which results in a narrower lumen, a higher plaque burden, and more vulnerable plaques that are more likely to rupture and lead to coronary events (34). In addition to this, hypertension is almost three times more common in diabetic subjects further contributing to the increased risk of CVD in DM (35).

For HF the numbers are even more discouraging. In men, DM doubles the risk of developing HF and in women the risk has been suggested to be fivefold (7, 36, 37). Furthermore, the prognosis in subjects with concomitant DM and HF is significantly worse than in subjects with HF alone (38).

In general, the risk for coronary artery disease is lower in women compared to men but this difference disappears in the presence of DM (39).

The increased incidence of HF in patients with DM is present even after adjusting for risk factors such as age, CAD and hypertension and is, as mentioned previously, sometimes referred to as diabetic cardiomyopathy (4).

Subjects with chronic HF often show IR, even in the absence of DM, as a sign of abnormal energy metabolism. This HF-induced IR, not only increases risk of DM, but has also been shown to be an independent predictor of mortality and it has been suggested that targeting IR can be beneficial for patients with HF (40). This creates a bidirectional relationship between DM and HF with each disease increasing the risk of the other (41).

This relationship could partly be explained by the metabolic alterations seen in both DM and HF. In IR and DM there is an increased release of free fatty acids (FFA) due to increased lipolysis which leads to a decrease of myocardial glucose uptake (42). This change in substrate availability leads to excessive cardiac FFA-oxidation exceeding the cardiac capacity leading to triglyceride (TG) accumulation within the cardiomyocytes, production of toxic lipid intermediates and ultimately higher oxygen consumption and reduced cardiac efficiency(43).

In chronic HF, in the absence of IR or DM, there is an initial shift to preferred glucose metabolism over FFA which initially improves myocardial contractile efficiency (44). However, as HF progresses there is another shift to predominantly FFA metabolism which resembles that seen in subjects with IR or DM as described above with the same dire outcomes (45).

Furthermore, the diabetic cardiomyocytes have a disturbed intracellular calcium metabolism leading to increased cytosolic calcium concentrations resulting in impaired relaxation (46). This ultimately leads to diastolic dysfunction which is considered the earliest manifestation of diabetes-induced left ventricular dysfunction (47).
As described above, from an epidemiological perspective the cardiovascular complications of DM are well-established but the underlying pathophysiological mechanisms are complex and still not fully understood (48).

This global cardiometabolic tsunami of increasing IR and DM and resulting premature death and disability calls for better preventive and therapeutic measures, especially identifying high-risk individuals given an estimated 50% of diabetic individuals are undiagnosed (17).

Definition of a biomarker

The World Health Organization states that “A biomarker is any substance, structure or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease” (49).

This broad definition highlights the fact that the term and use of biomarkers can span from something as simple as measuring the heart rate or body temperature to complex laboratory tests or modern imaging methods.

Biomarkers can furthermore be classified into diagnostic, prognostic or predictive. For instance, in cardiology we use troponin for the diagnosis of myocardial infarction (50) and natriuretic peptides for staging and ruling out congestive heart failure (51). A prognostic biomarker will provide information about the likely outcome of a disease in an individual regardless of treatment, whereas a predictive biomarker can help identify individuals who are most likely to respond to a specific treatment (52). The use of predictive biomarkers is an appealing approach to individualized or precision medicine which by many is considered the future of biomarker research (53) and was highlighted by President Obama in his State of the Union address in 2015.

> Tonight, I’m launching a new Precision Medicine Initiative to bring us closer to curing diseases like cancer and diabetes — and to give all of us access to the personalized information we need to keep ourselves and our families healthier.

> — President Barack Obama, State of the Union Address, January 20, 2015

Another application of biomarkers is to use them as surrogate endpoints in clinical trials in lieu of *true* or *hard* endpoints such as mortality or incident heart failure. This use has the advantage of reducing sample size and allowing for shorter follow-up periods (54). However, there are pitfalls to this practice. An example was the use of high-density lipoprotein cholesterol (HDL) as a surrogate endpoint instead of true cardiovascular outcomes. We know from epidemiological studies that an increase of HDL is associated with lower risk of CAD (55) but numerous clinical studies
with different HDL-raising pharmacological therapies have been ineffective in reducing cardiovascular events and in some cases even hazardous to the patients (56).

It is important to remain humble when interpreting results and drawing conclusions from biomarker studies including the results from this thesis, as biomarkers could really only serve as replacements for clinical outcomes if we fully understand the underlying pathophysiology which we rarely, if ever, truly do. This need for humility was expressed by the physician and philosopher Isaac Judaeus more than a 1000 years ago when commenting on the practice of uroscopy, the visual interpretation of urine (57).

But in our time there are fools who would base prophecies on it, without seeing the patient, and determine what disease is present and whether the patient will die and other foolishness.

Role of predictive biomarkers

The complexity and diversity of pathophysiological mechanisms of CMD combined with the advent of advanced large scale “–omic” studies has resulted in an abundance of potential biomarkers which is illustrated in **Figure 1** (58).

![Figure 1](image_url)
Figure 1. Identified Biomarkers for the Risk of Developing DM. The height of bars denotes total number of incident DM cases across all studies for each biomarker.(58)
However, with the exception of plasma glucose (PG) and HbA1c, which are strong DM predictors as a result of being part of the diagnosis, current biomarkers routinely used in clinical practice (e.g. obesity) are insufficiently precise predictors of DM.

Omics is a collective term for various disciplines in biology such as genomics, proteomics, lipidomics, transcriptomics and metabolomics all of which can provide insight into pathophysiological mechanisms and also identify novel biomarkers.

Protein profiling

Affinity-based immunoassays which uses antibodies linked to various reporters (e.g. fluorescence, radioactivity, enzymatic activity) remain the gold standard for the quantification and identification of proteins but have limitations regarding low-abundance proteins, cross-reactivity and high cost (59). A relatively recent development in protein profiling is called proximity extension assay (PEA). This method uses oligonucleotide acids to label two antibodies and then polymerase chain reaction (PCR) to amplify, detect and quantify (semi-quantitatively) proteins which allows for high specificity and sensitivity for low-abundance proteins in small sample volumes (60). This process is illustrated in **Figure 2** (60).

![Figure 2](image)

Figure 2. (A) Specific antibodies are equipped with oligonucleotides (PEA probes) and mixed with an antigen-containing sample. (B) All PEA probes bind their specific antigens and the oligonucleotides hybridize. Addition of a DNA polymerase leads to an extension and formation of a PCR template. (C) Universal primers are added. (D) An enzyme digests the DNA templates and remove all unbound primers. (E) Finally each individual DNA sequence is detected and quantified by microfluidic qPCR. Picture and description adapted from (60).

The PEA method has recently been compared to conventional immunoassays with excellent correlations both for biomarker levels as well as clinical outcomes making PEA a fitting choice for biomarker screening (61).

In **paper I** and **II** we used such a targeted multiplex protein platform called the Olink ProSeek Multiplex CVD III panel which consists of 92 proteins selected by leading experts in the field, with either established or proposed association with CVD, inflammation and metabolism (62-64).
In **paper III** and **paper IV** we investigated the prognostic role of both established and emerging biomarkers in an acute HF setting. Biomarkers reflecting different aspects of HF such as, cardiovascular stress, neurohormonal activation and renal function, were studied. Their pathophysiological mechanisms and possible connections to CMD are examined in the *Discussion* section of this thesis.
Aims

Overall aims

To explore diagnostic and prognostic biomarkers in cardiometabolic disease in population-based and heart failure cohorts.

Specific aims

Paper I: To explore potential biomarkers for incident diabetes in a population-based cohort using a multiplex proteomic panel

Paper II: To explore how our findings from **Paper I** associate with cardiovascular disease and mortality in order to identify novel biomarkers in cardiometabolic disease

Paper III: To assess the prognostic role of biomarkers of cardiovascular stress, neuroendocrine response and renal function in an acute heart failure population

Paper IV: To examine the diagnostic value of bio-ADM in congestion and penKid in worsening renal function and their prognostic value regarding mortality, re-hospitalization and length of hospital stay in two separate European acute heart failure cohorts
Materials and methods

Study populations

Malmö Preventive Project, MPP
During 1974-1992, birth cohorts, between 1921 and 1949, of inhabitants in Malmö, Sweden, were invited to participate in a large cohort study, i.e., the Malmö Preventive Project (MPP), with a total of 33,346 individuals attending in order to explore cardiovascular risk factors, alcohol consumption, glucometabolic disturbances and breast cancer (65). At baseline, participants underwent clinical examination regarding hypertension, DM, obesity, dyslipidemia, smoking and family history.

Re-examination of 18,240 surviving MPP participants, the MPP Re-Examination Study (MPP-RES), was conducted during 2002-2006 (63% men, 72% attendance rate, mean age 69±6 years).

In a subsample of the MPP-RES (1,792 participants), echocardiography and ECGs were recorded, further referenced as *MPP-RES echo*. These subjects were randomly selected from groups defined by glucometabolic status: normal fasting glucose; impaired fasting glucose; new onset DM; and prevalent DM, with oversampling from the groups with glucometabolic disturbances to ensure numerical balance between the groups (66).

All individuals participating in MPP and MPP-RES gave written informed consent and ethical approval was given by the Regional Ethics Board in Lund, Sweden.

The heart and brain failure investigation study, HARVEST-Malmö
HARVEST-Malmö started in March 2014 and is an ongoing study undertaken in patients hospitalized for HF (ICD-10: I50-) in Skåne University Hospital, Malmö (67). The inclusion criteria are admission to the Department of Cardiology or Internal Medicine for treatment of newly diagnosed or exacerbated HF regardless of etiology, duration or severity. The aim of the study is to identify markers and mechanisms for progressive HF and associated cognitive dysfunction in order to improve treatment, prognostication and potentially identify novel therapeutic targets.
Subjects undergo clinical examination and blood samples are drawn after overnight fast. Subjects also undergo a number of cognitive tests and all subjects are examined with transthoracic echocardiogram to assess cardiac function. Eligible subjects are invited to a follow-up examination and echocardiogram six months after hospital discharge. As of 2020, almost 500 subjects have been included in HARVEST-Malmö.

The only exclusion criterion is the inability to give informed consent. In the case of severe cognitive impairment, informed consent is collected from relatives. The study has been approved by the ethical review board at Lund University, Sweden and complies with the Declaration of Helsinki.

GREAT Network Rome (Global Research on Acute conditions team)

The GREAT Association is an International Network between experts operating in the management of acute clinical conditions (68). Between May 2013 and March 2015, 245 patients that were referred to the emergency department of Sant’Andrea hospital in Rome, Italy for HF symptoms and signs and who received a final diagnosis of new onset or worsening HF were enrolled to the GREAT Network Acute Heart Failure Rome Study. Inability to consent to the study was the only exclusion criteria. The study protocol complied with the Declaration of Helsinki and a written informed consent was obtained from all participants.

Paper-specific methods

Paper I

In *paper I* we investigated whether proteins from Olink ProSeek CVD III multiplex proteomic panel predict incident DM in MPP-RES echo (n=1792). Plasma samples from 1737 individuals were successfully analyzed. Patients with missing covariates at baseline (n = 30) and prevalent DM (n = 681) were excluded, resulting in 1026 eligible subjects for the main analyses of incident DM. 146 subjects developed DM during the median follow-up time (FUT) of 8.0 years. A flowchart of the study population of *paper I* and *II* is provided in **Figure 3**.

Paper II

In this paper we investigated how the seven proteins associated with incident DM identified in *paper I* are associated with incident HF, incident coronary events (CE), cardiovascular mortality (CVM) and all-cause mortality (ACM) in the MPP-RES echo cohort. Plasma samples from 1737 individuals were successfully analysed. For analyses of incident HF, cases of prevalent HF (n=30) were excluded. For analyses of incident CE, prevalent cases of CAD (n=185) and HF (n=30) were excluded prior to analysis. A total of 590 subjects departed from ACM and of these n=353 from
CVM with a median FUT 12.7 years. One-hundred-and-thirty subjects developed incident HF (median FUT 10.8 years) and 189 subjects developed incident CE (median FUT 10.7 years). A flowchart of the study population of **paper I** and **II** is provided in **Figure 3**.

Figure 3. Flowchart of MPP in paper I and II.
DM diabetes mellitus; FUT median follow-up time; ys years; CE coronary events; HF heart failure; CVM cardiovascular mortality; ACM all-cause mortality
Paper III

In Paper III we examined NT-proBNP, mid-regional proadrenomedullin (MR-proADM), copeptin, C-terminal pro-endothelin-1 (CT-pro-ET-1) and cystatin C and their prognostic role regarding ACM and re-hospitalization for cardiac causes in an acute HF setting. Between March 2014 and October 2017, a total of 283 consecutive patients hospitalized for HF were included in HARVEST-Malmö and underwent clinical examination including transthoracic echocardiography (TTE). Of these, 268 patients had a complete dataset on all covariates and were included in the study. A total of 57 subjects died with a median FUT of 17 months, and 90 patients were re-hospitalized due to cardiac causes (median FUT 5 months). A flowchart of the study population of paper III and IV is provided in Figure 4.

Paper IV

In Paper IV we investigated the diagnostic and prognostic abilities of Proenkephalin A 119-159 (penKid) and bioactive adrenomedullin (bio-ADM) in two European HF cohorts. In both cohorts, patients were examined for signs of congestion (dyspnoea, edema, signs of congestion on X-ray and auscultatory lung rales) and a clinical congestion score (CCS) was calculated by summing the individual scores for each sign of congestion. Worsening renal function was defined as an increase of plasma creatinine of >26.5 μmol/L or 0.3 mg/dL or 50% higher than the admission value within 48 hours of admission as used in previous studies(69, 70).

Between March 2014 and August 2018, 324 consecutive patients were included in HARVEST-Malmö for acute HF.

Between May 2013 and March 2015, 245 patients that received a final diagnosis of HF were enrolled to the GREAT Network Acute Heart Failure Rome Study. For all analyses subjects with missing data on any co-variates were excluded leaving a total of 530 subjects examined for congestion, worsening renal function, in-hospital mortality and length of hospital stay. Since there was no follow-up data from patients included from the GREAT Rome Study analyses of 1-year mortality and re-hospitalization were only performed in subjects included from HARVEST-Malmö. A flowchart of the study population of paper III and IV is provided in Figure 4.
Description of variables

Prevalent and incident DM

In **paper I** and **II** prevalent DM at baseline was defined as a self-reported physician diagnosis of DM, use of antidiabetic medication, a diagnosis of DM in any of the local or national diabetes registries prior to study entry, or two separate FPG measurements of ≥7.0 mmol/L when available. In **paper III** and **paper IV** prevalent DM was defined as either self-reported physician diagnosis of DM, use of antidiabetic medication or FPG ≥7 mmol/L. In **paper I**, data regarding incident DM was retrieved through record linkage of the Swedish personal identification number with national and regional registries as follows: The Malmö HbA1c Register that analyzed all HbA1c samples at the Department of Clinical Chemistry obtained in institutional and non-institutional care in Malmö from 1988 and onwards(71); The Swedish National Diabetes Register(72); The Regional Diabetes 2000 Register of the Skåne Region(73); The Swedish National Patient Register covering all somatic and psychiatric hospital
discharges and hospital based outpatient care(74); The Swedish Cause-of-Death Register(75); and The Swedish Prescribed Drug Register (prescription of anti-diabetic medication)(76). Type of diabetes was not specified from all registries but given the mean age of the study population and since all prevalent cases of diabetes were excluded, it is reasonable to assume that an absolutely overwhelming majority of the incident cases of diabetes were type 2 diabetes (DM).

Hypertension
In paper I and paper II, hypertension was defined as systolic blood pressure (SBP) >140 mmHg or diastolic blood pressure (DBP) >90 mmHg or the use of antihypertensive medication including calcium-channel blockers, beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, long acting nitrates and diuretics. Heart rate and blood pressure were measured twice in the supine position after 10 min of rest. In paper III and paper IV hypertension was defined as SBP >140 or DBP >90 mmHg. In HARVEST-Malmö nurses measured BP using a validated automated monitor and in MPP-RES echo an automated sphygmomanometer was used.

Smoking
Data on smoking was self-reported in all cohorts.

Prevalent and incident CVD
In paper II, prevalent HF was defined as a self-reported diagnosis of HF and by means of International Classification of Diseases (ICD) codes acquired from the local hospital diagnosis registry was used to define prevalent HF (ICD-10 code I50). Diagnoses of prevalent CE were self-reported and also by retrieval from local hospital diagnosis registry (ICD-10 codes I21, I22, I25). For incident HF and CE, participants were followed in local and national registers. CE was defined as coronary revascularization and/or fatal or nonfatal myocardial infarction. Data on ACM and CVM were retrieved through the Swedish Board on Health and Welfare and Statistics Sweden. Follow-up ended on 31st December 2018. Diagnoses of incident CE and HF were retrieved from record linkage using the Swedish personal identification number with the Swedish Hospital Discharge Register (SNHDR), the Swedish Cause of Death Register, and the Swedish Coronary Angiography and Angioplasty Registry.

In paper III and paper IV data on ACM was retrieved from the Swedish National Board of Health and Welfare’s Cause of Death Register. Data regarding the inhospital mortality and re-hospitalization due to cardiac causes were retrieved from the individual electronic medical records of the Skåne Health Care Region (Melior, Siemens Health Services, Solna, Sweden).

In paper IV prevalent HF was defined as either prior hospitalisation for HF or a HF diagnosis prior to inclusion in the study.
Laboratory tests

All fasting analyses were performed at the Department of Clinical Chemistry, Skåne University Hospital, attached to a national standardization and quality control system.

Biomarkers

For MPP-RES echo and HARVEST-Malmö biomarkers were analysed from fasting plasma samples frozen at -80°C. In the GREAT Rome study blood samples were collected at admission and stored at -80°C.

Proteomic analysis

In paper I and II plasma levels of 92 proteins were analyzed by the Proximity Extension Assay (PEA) technique using the Proseek Multiplex CVD III 96 × 96 reagents kit (Olink Bioscience, Uppsala, Sweden) which uses two oligonucleotide-labeled highly specific antibodies to bind to each target protein, which allows the formation of a polymerase chain reaction sequence that can then be detected and quantified (60). All data are presented as arbitrary units. One protein (NT-proBNP) was below detectable limits in >15% samples. Mean intra-assay and inter-assay variations were observed to be 8.1% and 11.4%, respectively.

NT-proBNP

In paper II NT-proBNP was measured with an electrochemiluminescence immunoassay (Elecsys, Roche Diagnostics, Basel, Switzerland) at the Department of Clinical Chemistry, Akershus University Hospital, Lorenskog, Norway. In paper III and IV NT-proBNP was analysed at the Department of Clinical Chemistry, Skåne University Hospital in Malmö, participating in a national standardization and quality control system using a sandwich assay based on ElectroChemiLuminiscence Immunoassay (Cobas, Roche Diagnostic, Basel, Switzerland). In paper IV, in the GREAT Rome study BNP and NT-proBNP were measured in Architect assays (Abbott Laboratories Diagnostics Division, Abbott Park, IL 60064 USA).

Cystatin C

Cystatin C was analysed at the Department of Clinical Chemistry, Skåne University Hospital, using an automated particle-based immunoassay (Hitachi Modular P analysis system; Roche, Basel, Switzerland).

Copeptin

Copeptin was measured at baseline using an ultrasensitive assay on KRYPTOR Compact Plus analyzers and a commercial sandwich immunoluminometric assay(77) (Thermo Fisher Scientific, B.R.A.H.M.S Biomarkers)
Mid-regional pro-adrenomedullin (MR-proADM)
MR-proADM levels were analysed via specific sandwich immunoluminometric assays (KRYPTOR, B.R.A.H.M. S, Berlin, Germany) in EDTA-treated plasma (78).

C-terminal pro-endothelin-1 (CT-pro-ET-1)
C-terminal pro-endothelin-1 was measured at baseline using Thermo Fisher Scientific B.R.A.H.M.S CT-pro-ET-1 KRYPTOR (79).

Proenkephalin A 119-159 (PenKid)
PenKid was measured by a chemiluminescence immunoassay (Sphingotest® penKid®, Sphingotec GmbH, Hennigsdorf, Germany) (80).

Bioactive adrenomedullin (bio-ADM)
Bio-ADM is the biologically form of adrenomedullin and was measured using a chemiluminescence immunoassay (Sphingotest® bio-ADM®, Sphingotec GmbH, Hennigsdorf, Germany)(81).

Echocardiography

In paper III TTEs were obtained by experienced sonographers using a Philips IE33 (Philips, Andover, MA, USA) with a 1–5 MHz transducer (S5-1), or a GE Vingmed Vivid 7 Ultrasound (GE, Vingmed Ultrasound, Horten, Norway) with a 1–4 MHz transducer (M3S). Measurements of ejection fraction, left ventricular volumes, atrial volumes, wall thickness were performed offline using Xcelera 4.1.1 (Philips Medical Systems, The Netherlands) according to the recommendations of the American Society of Echocardiography (82). Left ventricular mass was calculated according to the Devereux formula (83). The values were indexed to body surface area. Cine loops were obtained from standard views (parasternal long axis, apical 4- and 2-chamber). Internal left and right ventricular dimensions were measured from parasternal long axis view at end-diastole. Measurements of wall thickness were obtained in two-dimensional end-diastolic parasternal long axis view. Left ventricular volumes were calculated using the biplane Simpson method of disks, by manual tracing (papillary muscles included in the cavity) in two-dimensional end-diastolic and end-systolic frames defined as the largest and smallest left ventricular cavities, respectively,

in apical 4- and 2-chamber projections. Ejection fraction (EF) was calculated automatically from end-diastolic volumes (EDV) and end-systolic volume (ESV) using the following formula: \(EF = \frac{(EDV - ESV)}{EDV} \).
Statistical analysis

Paper I
Non-normally distributed variables were ln-transformed prior to analysis. The analyzed proteins were subsequently standardized by z-score transformation. Cox regression models and Harrell’s concordance index (C-index) (84) were used to calculate hazard ratios (HR) for incident DM per standard deviation (SD) of change of ln-transformed values in age- and sex-adjusted models (model 1). Proportional hazard assumption was tested using Schoenfeld residuals. Bonferroni-correction was used to address the issue of multiple testing (85). Only proteins that remained significant after Bonferroni correction (0.05/91 = 5.5 × 10^{-4}) in model 1 (age and sex) were further tested in the multivariable Cox regression model and Harrell’s C-index (model 2), which was adjusted for age, sex, BMI, hypertension, antihypertensive treatment, TG, HDL, cystatin C and physical activity. Furthermore, FPG was included on top of Model 2. The proteins associated with incident DM in model 1 were also tested for association with prevalent DM using logistic regressions in models 1, 2 and 3. All analyses were carried out using SPSS 22 (IBM, Armonk, New York, USA).

Paper II
All seven analysed proteins were ln-transformed and then standardized by z-score transformation. The proportional hazards assumption was tested using partial residuals. Cox regression was carried out adjusted for age and sex (Model 1), and a Bonferroni-corrected p-value < 0.007 (0.05/7) was considered statistically significant. Proteins that were significantly associated with the outcome were further analyzed using models adjusted for other relevant co-variates, in which a p-value <0.05 was considered significant. All analyses were adjusted for age, sex, BMI, smoking, DM, SBP, antihypertensive treatment (AHT), prevalent atrial fibrillation and cystatin C. For the analysis of ACM and prevalent CVD, prevalent HF, total cholesterol and HDL were included (Model 2a). For the analysis of incident CE; total cholesterol and HDL were included, and prevalent cases of CVD and HF were excluded prior to analysis (Model 2a). For the analysis of HF, prevalent CVD, heart rate and NT-proBNP were included and prevalent cases of HF excluded (Model 2b). All analyses were carried out using SPSS 25.

Paper III
All five investigated biomarkers were log-transformed and standardized by z-score transformation. Multivariable-adjusted Cox regression analyses were performed in two different models. Model 1 included age and sex, whereas Model 2 included age, sex, BMI, DM, smoking, atrial fibrillation, SBP, total cholesterol, HDL, and
NYHA-class at admission. Follow-up time was calculated as time between screening date and date of the first re-hospitalization, death, or end of follow-up through 1 October 2017. All analyses were performed using IBM SPSS 23, and a two-sided Bonferroni-corrected P-value of 0.05/5 = 0.010 was considered statistically significant in the Cox regression analyses. Echocardiographic measurements (eight different parameters) were analysed for associations with the five biomarkers in age-adjusted and sex-adjusted linear regression analysis, and thus a two-sided Bonferroni-corrected p-value <0.05/13 = 0.0038 was considered statistically significant.

Paper IV

In both cohorts both bio-ADM and penKid were log-transformed and standardized by z-score transformation prior to analyses. Since different assays were used for BNP/Nt-proBNP, the data from both cohorts were log transformed and then normalised (using z-score transformation) prior to pooling of the natriuretic peptide data. For all analyses, subjects with missing data on any of the covariates were excluded. The area under the curve (AUC) of bio-ADM for peripheral oedema, inhospital mortality, 1-year mortality and rehospitalisation was calculated by receiver operating characteristic (ROC) analysis. As for penKid, AUC was calculated for worsening renal function (WRF) and in-hospital mortality. The cross-sectional associations of bio-ADM with each of the four signs of congestion, as well as bio-ADM with a clinical congestion score, were explored using logistic regression models. Correlations between penKid and creatinine on admission were explored using Spearman’s correlation test. The cross-sectional associations of penKid and WRF were explored using two logistic regression models: crude (univariable) and in the pooled cohort adjusted for DM, SBP, angiotensin converting enzyme inhibitor (ACEi), angiotensin receptor blocker (ARB), betablockers, HF, creatinine and BNP; all previously associated with WRF (multivariable). The cross-sectional associations of bio-ADM and penKid with in-hospital mortality were explored using uni-variable and bi-variable logistic regression models due to the low event rate (24 events in the pooled cohort). In HARVEST-Malmö, additional analyses were carried out for 1-year mortality and rehospitalization at follow-up, using Cox regression models. In analyses of re-hospitalization, subjects that deceased during hospital stay were excluded from the model prior to analysis. Analyses of length of hospital stay were obtained using linear regression models. Analyses were performed using IBM SPSS 25 and a two-sided p<0.05 was considered statistically significant.
Results

Paper I

Subjects with prevalent DM at baseline (n=681) had higher TG and lower HDL levels, higher BMI, increased prevalence of hypertension and worse renal function. Subjects with incident diabetes (n=146; median follow-up time 8.0 years; interquartile range 12 years) were more often male, had higher BP, higher TG and lower HDL levels, as well as higher BMI at baseline, compared with those who did not develop diabetes. Baseline characteristics for subjects with and without prevalent DM are presented in Table 1 and baseline characteristics for subjects with and without incident DM are presented in Table 2.

Table 1. Baseline Characteristics of Study Participants with and without Prevalent Diabetes

<table>
<thead>
<tr>
<th></th>
<th>All subjects (n=1707)</th>
<th>Subjects without prevalent DM (n=1026)</th>
<th>Subjects with prevalent DM (n=681)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67.4 (±6.0)</td>
<td>66.9 (±6.1)</td>
<td>68.1 (±5.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>498 (29.1)</td>
<td>331 (32.2)</td>
<td>167 (24.4)</td>
<td>0.001</td>
</tr>
<tr>
<td>BMI</td>
<td>28.3 (±4.3)</td>
<td>27.4 (±3.9)</td>
<td>29.8 (±4.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>146.9 (±19.8)</td>
<td>145.3 (±19.2)</td>
<td>149.1 (±20.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>HT (%)</td>
<td>1069 (62.6)</td>
<td>570 (55.6)</td>
<td>499 (73.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td>6.2 (5.6-7.4)</td>
<td>5.8 (5.3-6.2)</td>
<td>7.8 (7.1-9.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td>1.3 (0.9-1.8)</td>
<td>1.1 (0.8-1.6)</td>
<td>1.5 (1.0-2.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.3 (1.0-1.5)</td>
<td>1.3 (1.1-1.6)</td>
<td>1.2 (1.0-1.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cystatin C (mg/l)</td>
<td>1.06 (0.95-1.20)</td>
<td>1.05 (0.95-1.19)</td>
<td>1.08 (0.95-1.24)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, HT: hypertension, FPG: fasting plasma glucose, TG: triglycerides, HDL: high-density lipoprotein cholesterol. Values are displayed as means (±standard deviation) or, for skewed variables, medians and interquartile (25-75) range
Table 2 Baseline Characteristics of Study Participants with and without Incident Diabetes

<table>
<thead>
<tr>
<th></th>
<th>All subjects (n=1026)</th>
<th>Subjects without incident diabetes (n=880)</th>
<th>Subjects with incident diabetes (n=146)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>66.9 (±6.1)</td>
<td>66.9 (±6.1)</td>
<td>66.7 (±5.8)</td>
<td>0.071</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>331 (32.2)</td>
<td>290 (32.8)</td>
<td>41 (28.1)</td>
<td>0.024</td>
</tr>
<tr>
<td>BMI</td>
<td>27.4 (±3.9)</td>
<td>27.0 (±3.7)</td>
<td>29.4 (±4.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>145.3 (±19.2)</td>
<td>145.3 (±19.5)</td>
<td>145.6 (±17.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>HT (%)</td>
<td>571 (55.6)</td>
<td>467 (53.0)</td>
<td>104 (71.2)</td>
<td>0.002</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td>5.8 (5.3-6.2)</td>
<td>5.7 (5.3-6.2)</td>
<td>6.3 (6.1-6.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td>1.1 (0.8-1.6)</td>
<td>1.1 (0.8-1.5)</td>
<td>1.3 (1.0-1.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.3 (1.1-1.6)</td>
<td>1.4 (1.1-1.6)</td>
<td>1.2 (1.0-1.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cystatin C (mg/l)</td>
<td>1.05 (0.95-1.19)</td>
<td>1.01 (0.95-1.18)</td>
<td>1.08 (0.95-1.22)</td>
<td>0.114</td>
</tr>
</tbody>
</table>

BMI: body mass index; SBP: systolic blood pressure; FPG: fasting plasma glucose; HT: hypertension, TG: triglycerides, HDL: high-density lipoprotein cholesterol. Values are displayed as means (± standard deviation) or, for skewed variables, medians and interquartile (25-75) range.

Associations of proteins with incident diabetes

In age- and sex-adjusted Cox analyses (model 1), seven proteins were associated with incident DM and fulfilled the pre-specified Bonferroni-corrected p-value of <5.5x10⁻⁴: paraoxonase-3 (PON3), fatty acid binding protein −4 (FABP4), plasminogen activator inhibitor 1 (PAI-1), insulin-like growth factor-binding protein 2 (IGFBP-2), scavenger receptor cysteine rich type 1 protein M130 (CD163), cathepsin D (CatD) and Galectin-4 (Gal-4). Results from the fully adjusted Cox regression analyses (models 2 and 3) are presented in Table 3.

Table 3. Cox Regression Analysis Examining Proteins relation to Incident Diabetes

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>p-value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>PON 3</td>
<td>0.65 (0.56-0.75)</td>
<td>3.3x10⁻⁹</td>
<td>0.79 (0.67-0.93)</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.74 (1.44-2.10)</td>
<td>9.3x10⁻⁹</td>
<td>1.46 (1.16-1.84)</td>
</tr>
<tr>
<td>PAI-1</td>
<td>1.70 (1.41-2.05)</td>
<td>4.0x10⁻⁹</td>
<td>1.50 (1.21-1.84)</td>
</tr>
<tr>
<td>IGFBP-2</td>
<td>0.66 (0.56-0.77)</td>
<td>2.9x10⁻⁹</td>
<td>0.82 (0.68-0.99)</td>
</tr>
<tr>
<td>CD163</td>
<td>1.50 (1.26-1.77)</td>
<td>3.0x10⁻⁹</td>
<td>1.34 (1.11-1.60)</td>
</tr>
<tr>
<td>CatD</td>
<td>1.33 (1.13-1.56)</td>
<td>5.2x10⁻⁹</td>
<td>1.20 (1.00-1.43)</td>
</tr>
<tr>
<td>Gal-4</td>
<td>1.37 (1.15-1.64)</td>
<td>5.4x10⁻⁹</td>
<td>1.30 (1.08-1.56)</td>
</tr>
</tbody>
</table>

Cox regression for incident diabetes (146 cases vs. 880 controls)) adjusted for age and sex (Model 1) and age, sex, BMI, HTN, TG, HDL, cystatin C and physical activity (Model 2) and age, sex, BMI, HTN, TG, HDL, cystatin C, physical activity and fasting plasma glucose (Model 3). PON 3; Paraoxonase, FABP4; fatty acid binding protein 4, PAI-1; Plasminogen activator inhibitor 1, IGFBP-2; Insulin-like growth factor-binding protein 2, CD163; scavenger receptor cysteine rich type 1 protein M130, CatD; Cathepsin D, Gal-4; Galectin-4.

Associations of proteins with prevalent diabetes

All seven proteins associated with incident DM in model 1 were significantly associated (p-values < 5.5x10⁻⁴) with prevalent diabetes in a binary logistic regression model 1. However, in the fully adjusted model 3 only Gal-4 and PAI-1 were significantly associated with prevalent diabetes.

Harrell’s concordance index models

None of the proteins showed a substantial increase in C-index.
Baseline characteristics of all subjects (n=1713), those deceased (n=590), with incident CE (n=189), and with incident HF (n=130) are presented in Table 4. The overall study population had a mean age of 67.4 years. More than two thirds of the population were male and more than a third had prevalent diabetes at baseline. There were no interactions between the investigated proteins and diabetes in the endpoint analyses.

Table 4. Baseline characteristics of the study population

<table>
<thead>
<tr>
<th>Demographics</th>
<th>All subjects (n=1713)</th>
<th>Deceased (n=590)</th>
<th>Incident HF (n=130)</th>
<th>Incident CE (n=189)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67.4 (±6.0)</td>
<td>70.9 (±4.9)</td>
<td>70.4 (±4.8)</td>
<td>69.0 (±5.6)</td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>498 (29.1)</td>
<td>179 (30.3)</td>
<td>28 (21.5)</td>
<td>28 (14.8)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>303 (17.7)</td>
<td>125 (21.2)</td>
<td>23 (17.7)</td>
<td>32 (16.9)</td>
</tr>
</tbody>
</table>

| Clinical profile |
|------------------|------------------|------------------|------------------|
| BMI (kg/m2) | 28.3 (±4.3) | 28.5 (±4.6) | 29.5 (±5.0) | 28.0 (±3.9) |
| Systolic BP (mmHg) | 146.6 (±20.2) | 146.5 (±21.1) | 148.2 (±21.5) | 151.6 (±20.8) |
| Heart rate (BPM) | 71.8 (±12.5) | 72.0 (12.5) | 70.5 (±14.4) | 71.1 (±12.5) |

| Medical history |
|-----------------|-----------------|-----------------|-----------------|
| Diabetes, n(%) | 604 (35.3) | 298 (50.5) | 72 (55.4) | 88 (46.6) |
| Prevalent HF, n (%) | 30 (1.8) | 25 (4.3) | N/A | N/A |
| Prevalent AF, n (%) | 97 (5.7) | 65 (11.0) | 16 (12.3) | 13 (6.9) |
| Prevalent CVD, n (%) | 185 (10.8) | 100 (16.9) | 41 (31.5) | N/A |
| AHT, n (%) | 802 (46.8) | 348 (59.0) | 86 (66.2) | 104 (55.0) |

| Laboratory |
|------------|-----------------|-----------------|-----------------|
| Cystatin C (mg/L) | 1.06 (0.95-1.20) | 1.14(0.99-1.33) | 1.16(1.0-1.3) | 1.12(0.99.1.29) |
| NT-proBNP (pg/mL) | 12 (6-25) | 21 (10-45) | 32 (15-69) | 14 (7-33) |
| Cholesterol (mmol/L) | 5.40 (4.6-6.2) | 5.2 (4.4-6.0) | 5.0 (4.1-5.7) | 5.5 (4.7-6.2) |
| HDL-C (mmol/L) | 1.25 (1.03-1.52) | 1.24 (1.03-1.50) | 1.20 (1.0-1.4) | 1.22 (0.97-1.43) |

Values are displayed as means (±standard deviation) or, for skewed variables, medians and interquartile (25-75) range. AF; atrial fibrillation; BMI; body mass index; BPM; beats per minute; BP; blood pressure; AHT; anti-hypertensive treatment; CVD; cardiovascular disease; HF; heart failure. NT-proBNP; N-terminal pro-B-type natriuretic peptide; HDL high-density lipoprotein; N/A not applicable, excluded prior to analysis.

Results from the fully adjusted models for all endpoints can be found in Table 5.
Analyses of all-cause mortality (ACM)

Five of the seven proteins (Gal-4, CatD, IGFBP2, CD163 and FABP4) were significantly associated with ACM in model 1 and model 2a (median follow-up time 12.7 years, interquartile range (IQR): 11.2-13.6 years; 590 deaths; Table 5).

Analyses of cardiovascular mortality (CVM)

Five proteins (Gal-4, CatD, IGFBP2, CD163 and FABP4) yielded significant associations with CVM in age and sex adjusted Cox regression analyses, (median follow-up time 12.7 years, IQR 11.2-13.6 years; 353 deaths). After further adjustment according to Model 2a, all but FABP4 remained significantly associated with CVM (Table 5).

Analyses of incident coronary events (CE)

Three proteins (Gal-4, CatD, FABP4) yielded significant associations with incident CE (median follow-up time 10.7 years, IQR 10.0-11.7 years; 164 events) in both model 1 and model 2a (Table 5).

Analyses of incident heart failure (HF)

Four proteins (Gal-4, CatD, FABP4, PON3) yielded significant associations with incident HF in age and sex adjusted Cox regression analyses (median follow-up time 10.8 years, IQR 10.2-11.7; 105 events), but only Gal-4 and CatD remained significantly associated with incident HF after further adjustment for Model 2b (Table 5).
Table 5. Cox Regression Analyses for risk of All-Cause Mortality, Cardiovascular mortality, incident Heart failure and incident Coronary Events

<table>
<thead>
<tr>
<th></th>
<th>All-Cause Mortality</th>
<th>Cardiovascular Mortality</th>
<th>Incident Heart failure</th>
<th>Incident Coronary Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 2a</td>
<td>Model 2a</td>
<td>Model 2b</td>
<td>Model 2a</td>
</tr>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p-value</td>
<td>HR</td>
</tr>
<tr>
<td>Gal-4</td>
<td>1.29</td>
<td>1.17-1.41</td>
<td>1.9x10^{-7}</td>
<td>1.38</td>
</tr>
<tr>
<td>CatD</td>
<td>1.26</td>
<td>1.15-1.37</td>
<td>2.1x10^{-7}</td>
<td>1.28</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.16</td>
<td>1.04-1.45</td>
<td>0.010</td>
<td>1.14</td>
</tr>
<tr>
<td>CD163</td>
<td>1.19</td>
<td>1.09-1.29</td>
<td>0.00009</td>
<td>1.21</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>1.17</td>
<td>1.05-1.30</td>
<td>0.004</td>
<td>1.18</td>
</tr>
<tr>
<td>PON3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>PAI-1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Did not reach Bonferroni-corrected p-value of 0.007 (0.05/7) in age- and sex adjusted model 1 and was therefore not further analysed in fully adjusted models.

Model 2a is adjusted for age, sex, BMI, systolic BP, AHT, smoking, DM, atrial fibrillation, prevalent CVD, cystatin C. Model 2a is further adjusted for prevalent HF, total cholesterol and HDL. In Model 2b prevalent cases of HF were excluded prior to analysis and model was further adjusted for heart rate and NT-proBNP.

BMI body mass index; BP blood pressure; AHT antihypertensive treatment; CVD cardiovascular disease. Gal-4 galectin-4; CatD cathepsin D; FABP4 fatty acid binding protein 4; CD163 Scavenger receptor cysteine rich type 1 protein M130; IGFBP2 Insulin-like growth factor-binding protein 2; PON3 Paraoxonase-3; PAI-1 Plasminogen activator inhibitor 1
Paper III

Baseline characteristics of the study population (n=268) are presented in Table 6. The mean age was 75 years, subjects were predominantly male (71%) and 39% had DM. More than 90% were treated with beta-blockers and ACEi/ARB.

A total of 57 subjects died during follow-up period (median time, 17 months; IQR 8–29). The most frequent cause of death was HF (n = 21) followed by sudden cardiac death (n = 7), cancer (n = 2), and stroke (n = 2). The remaining death causes (n = 21) consisted of different diagnoses and were defined as ‘other’ in the database.

During follow-up (median 5 months; IQR 1-12) 90 patients were re-hospitalized because of cardiac causes with the dominant cause being HF (n=79) followed by cardiac arrhythmia (n = 10) and myocardial infarction (n = 1).

Table 6. Baseline characteristics of the study population, HARVEST-Malmö (n=268)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>75.1 (±11.0)</td>
</tr>
<tr>
<td>Sex (female n; (%))</td>
<td>77 (29)</td>
</tr>
<tr>
<td>Smoking (n; (%))</td>
<td>31 (11.6)</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>27.4 (±5.6)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>137.4 (±27.7)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>79.2 (±15.3)</td>
</tr>
<tr>
<td>HT (n; (%))</td>
<td>106 (39.6)</td>
</tr>
<tr>
<td>Diabetes (n; (%))</td>
<td>105 (39)</td>
</tr>
<tr>
<td>AF (n; (%))</td>
<td>157 (58.6)</td>
</tr>
<tr>
<td>Newly diagnosed HF (n, (%))</td>
<td>85 (32)</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>39.1 (16.2)</td>
</tr>
<tr>
<td>Loop-diuretics (n, (%))</td>
<td>258 (96)</td>
</tr>
<tr>
<td>B-blockers (n, (%))</td>
<td>137 (92)</td>
</tr>
<tr>
<td>ACEi or ARB (n, (%))</td>
<td>208 (78)</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.2 (0.4)</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>3.6 (1.1)</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
<td>45.9 (16.8)</td>
</tr>
<tr>
<td>Nt-proBNP (pmol/L)</td>
<td>4077.5 [2175.0-8125.8]</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>1.6 [1.3-2.1]</td>
</tr>
<tr>
<td>Copeptin</td>
<td>30.9 [14.7-49.2]</td>
</tr>
<tr>
<td>MR-proADM</td>
<td>1.6 [1.1-2.2]</td>
</tr>
<tr>
<td>CT-proET1</td>
<td>149.3 [118.9-200.0]</td>
</tr>
</tbody>
</table>

Values are means (±standard deviation (SD) or median [25th-75th interquartile range]. BMI=body mass index; SBP= systolic blood pressure ; DBP= diastolic blood pressure; HT=hypertension; ACEi=angiotensin converting enzyme inhibitors; ARB= angiotensin II receptor antagonists; LVEF= LV ejection fraction; AF=atrial fibrillation, GFR=glomerular filtration rate.
Biomarkers and mortality

In Cox regression analyses adjusted for age and sex (*model 1*), all biomarkers except CT-pro-ET1, were significantly associated with increased post-discharge mortality (NT-proBNP, copeptin, MR-proADM, cystatin C; **Table 7**). In *model 2*, all biomarkers except CT-pro-ET1 were significantly associated with mortality; **Table 7**.

Table 7. Biomarkers and risk of all-cause mortality

<table>
<thead>
<tr>
<th></th>
<th>All-cause mortality (n=57)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95 CI%)</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>Cystatin C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.99 (1.52-2.62)</td>
<td>5.8x10-7</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>2.11 (1.56-2.86)</td>
<td>1.0x10-6</td>
<td></td>
</tr>
<tr>
<td>NT-proBNP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.88 (1.37-2.57)</td>
<td>8.2x10-5</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.85 (1.32-2.61)</td>
<td>4.0x10-4</td>
<td></td>
</tr>
<tr>
<td>Copeptin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.63 (1.20-2.20)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.70 (1.22-2.36)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>MR-proADM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.78 (1.32-2.41)</td>
<td>1.9x10-4</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.94 (1.36-2.75)</td>
<td>2.2x10-4</td>
<td></td>
</tr>
<tr>
<td>CT-proET1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.45 (1.08-1.95)</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.42 (1.03-1.95)</td>
<td>0.034</td>
<td></td>
</tr>
</tbody>
</table>

Model 1: adjusted for age and sex
Model 2: adjusted for age, sex, body mass index, diabetes, smoking, atrial fibrillation, systolic blood pressure, total cholesterol, high density lipoprotein and NYHA-class at admission

Biomarkers and re-hospitalization

In *model 1*, cystatin C and NT-proBNP were the only two of the five biomarkers significantly associated with risk of re-hospitalizations due to cardiac causes. In the fully adjusted *model 2*, NT-proBNP was the only biomarker that showed Bonferroni-adjusted significant association with risk of re-hospitalization due to cardiac causes (**Table 8**).

Table 8. Biomarkers and Risk of Re-hospitalization

<table>
<thead>
<tr>
<th></th>
<th>1st Re-hospitalization (n=90)</th>
<th>HR (CI 95%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystatin C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.33 (1.08-1.65)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.27 (1.01-1.59)</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>NT-proBNP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.39 (1.10-1.77)</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.43 (1.10-1.87)</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Copeptin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1.20 (0.96-1.49)</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1.20 (0.94-1.53)</td>
<td>0.152</td>
<td></td>
</tr>
</tbody>
</table>

Model 1: adjusted for age and sex
Model 2: adjusted for age, sex, body mass index, diabetes, smoking, atrial fibrillation, systolic blood pressure at admission, total cholesterol, high density lipoprotein and NYHA-class at admission
Biomarkers and echocardiographic measurements

In age and sex adjusted linear regression models, NT-proBNP was robustly associated with reduced ejection fraction ($\beta -7.07$, $p=8.6\times10^{-10}$). MR-proADM ($\beta 1.67$, $p=0.001$) and CT-proET1 ($\beta 1.45$, $p=0.002$) were significantly associated with increased right ventricular size. Finally, high levels of cystatin C were significantly associated with left posterior left ventricular wall hypertrophy ($\beta 1.81$, $p=0.001$).

Paper IV

Baseline characteristics for the HARVEST-Malmö cohort ($n=322$), GREAT Rome cohort ($n=208$) and the pooled cohort ($n=530$) are presented in Table 9. In the pooled cohort, 63.4% of the subjects presented with peripheral edema as a sign of congestion; 14.3% had worsening renal function; the median length of stay was 6 days, and the in-hospital mortality reached 5.1%. In the HARVEST-Malmö cohort where we had access to follow-up data, the re-hospitalization rate was 66.2% (median follow-up 174 days) and the 1-year mortality was 17.2%.
Table 9. Baseline characteristics of the HARVEST-Malmö cohort, the GREAT Network Rome cohort and the pooled cohort

<table>
<thead>
<tr>
<th></th>
<th>HARVEST–Malmö</th>
<th>GREAT Rome</th>
<th>Pooled cohort</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=322</td>
<td>n=208</td>
<td>n=530</td>
<td></td>
</tr>
<tr>
<td>Demographics, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>75.1±11.1</td>
<td>78.5±9.9</td>
<td>76.4±10.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Female sex (%)</td>
<td>97 (30.1)</td>
<td>114 (54.8)</td>
<td>211 (39.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>38 (11.8)</td>
<td>29 (13.9)</td>
<td>67 (12.6)</td>
<td>0.450</td>
</tr>
<tr>
<td>Clinical profile, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>137.3±27.5</td>
<td>150.7±33.7</td>
<td>142.3±30.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>73.6±12.6</td>
<td>81.4±16.8</td>
<td>77.0±14.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>7 (4-9)</td>
<td>6 (3-8)</td>
<td>6 (4-9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>38 (24-52)</td>
<td>40 (27-50)</td>
<td>40 (25-50)</td>
<td>0.036</td>
</tr>
<tr>
<td>Worsening renal function (%)</td>
<td>30 (9.3)</td>
<td>37 (17.8)</td>
<td>67 (12.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Persistent dyspnoea at admission</td>
<td>295 (91.6)</td>
<td>191 (91.8)</td>
<td>486 (91.7)</td>
<td>0.980</td>
</tr>
<tr>
<td>Edema</td>
<td>215 (66.8)</td>
<td>145 (69.8)</td>
<td>360 (67.9)</td>
<td>0.004</td>
</tr>
<tr>
<td>Signs of congestion on CXR</td>
<td>261 (81.1)</td>
<td>181 (87.0)</td>
<td>442 (83.4)</td>
<td>0.590</td>
</tr>
<tr>
<td>Rales at auscultation</td>
<td>223 (69.3)</td>
<td>171 (82.2)</td>
<td>394 (75.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Medical history, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>119 (37.0)</td>
<td>75 (36.1)</td>
<td>194 (36.6)</td>
<td>0.720</td>
</tr>
<tr>
<td>Prior heart failure</td>
<td>200 (62.1)</td>
<td>85 (40.9)</td>
<td>285 (53.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prevalent atrial fibrillation</td>
<td>153 (47.5)</td>
<td>96 (46.2)</td>
<td>249 (47.0)</td>
<td>0.762</td>
</tr>
<tr>
<td>Medication, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors/ARB</td>
<td>251 (77.9)</td>
<td>109 (52.4)</td>
<td>360 (67.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>279 (86.6)</td>
<td>101 (48.6)</td>
<td>380 (71.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diuretics</td>
<td>306 (95.0)</td>
<td>132 (63.5)</td>
<td>438 (82.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-ADM (pg/mL)</td>
<td>39.6 (25.6-64.5)</td>
<td>24.6 (9.5-48.4)</td>
<td>34.6 (18.7-59.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>penKid (pmol/L)</td>
<td>85.3 (62.8-118.4)</td>
<td>109.5 (81.7-168.5)</td>
<td>91.8 (67.9-135.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>BNP (pg/mL)</td>
<td>-</td>
<td>756 (366-1452)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td>4096 (2212-8645)</td>
<td>7811 (2038-10851)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Creatinine (mg/dL) admission</td>
<td>1.32±0.64</td>
<td>1.44±0.91</td>
<td>1.37±0.76</td>
<td>0.069</td>
</tr>
<tr>
<td>Creatinine (mg/dL) after 48 hours</td>
<td>1.35±0.64</td>
<td>1.53±1.0</td>
<td>1.42±0.81</td>
<td>0.016</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>3.8±0.5</td>
<td>4.3±0.6</td>
<td>4.0±0.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>140.5±3.3</td>
<td>137.3±5.9</td>
<td>139.2±4.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Haemoglobin (g/L)</td>
<td>127.6±18.3</td>
<td>123.2±24.8</td>
<td>125.9±21.2</td>
<td>0.019</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral edema (n;(%))</td>
<td>215 (66.8)</td>
<td>145 (69.8)</td>
<td>360 (67.9)</td>
<td>0.004</td>
</tr>
<tr>
<td>WRF (n;(%))</td>
<td>30 (8.1)</td>
<td>37 (20.7)</td>
<td>67 (14.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>In-hospital mortality (n;(%))</td>
<td>7 (1.9)</td>
<td>17 (8.2)</td>
<td>24 (5.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>One-year mortality (n;(%))</td>
<td>50 (17.2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Continuous data presented as mean±standard deviation or median (Q1–Q3), depending on distribution. CXR, chest X-ray; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; BNP, brain natriuretic peptide; NT-proBNP, N-terminal proBNP; bio-ADM, bioactive adrenomedullin; penKid, proenkephalin A 119-159
Congestion

Logistic regression analyses carried out for bio-ADM and each sign of congestion (dyspnoea, peripheral edema, signs of congestion on chest X-ray, and lung rales upon auscultation), revealed that each one SD increment of bio-ADM was only significantly associated with peripheral edema and no other sign of congestion. Bio-ADM remained significantly associated with peripheral edema with an odds ratio of 2.30 (1.29-2.97); p-value <0.001 even after adjusting for prior HF, systolic BP, Nt-proBNP/BNP and atrial fibrillation in the pooled cohort.

Analyses of bio-ADM and severe congestion (congestion score of 4) revealed significant association between bio-ADM and risk of having the highest congestion score; however, that association was driven solely by the association of bio-ADM and peripheral edema.

Worsening renal function (WRF)

PenKid was associated with WRF in crude logistic regression models, and remained significantly associated when further adjusted for diabetes, SBP, ACEi, ARB, beta-blockers, prior HF, creatinine, and NT-proBNP/BNP with an OR 1.74 (1.20-2.53); p-value 0.004 in the pooled cohort.

Clinical outcomes

Results from bio-ADM and penKid’s association with uni-variable logistic regression for in-hospital mortality, multi-variable linear regression for length of stay and multi-variable Cox regression analysis for re-hospitalization and one-year mortality can be found in **Table 10**.

Table 10. Association of bio-ADM and penKid with clinical outcomes

<table>
<thead>
<tr>
<th></th>
<th>Bio-ADM OR/β/HR</th>
<th>95% CI</th>
<th>p-value</th>
<th>PenKid OR/β/HR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-hospital mortality (n=24)</td>
<td>OR 1.50</td>
<td>1.00-2.26</td>
<td>0.051</td>
<td>2.24</td>
<td>1.57-3.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Length of stay</td>
<td>β 0.702</td>
<td>-</td>
<td><0.005</td>
<td>β 0.006</td>
<td>-</td>
<td>0.30</td>
</tr>
<tr>
<td>HARVEST-Malmö</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-hospitalization (n=188)</td>
<td>HR 1.15</td>
<td>1.06-1.47</td>
<td>0.007</td>
<td>1.10</td>
<td>0.93-1.30</td>
<td>0.27</td>
</tr>
<tr>
<td>1-year mortality (n=50)</td>
<td>HR 1.35</td>
<td>1.01-1.79</td>
<td>0.043</td>
<td>HR 1.35</td>
<td>1.04-1.77</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Uni-variable logistic regression was performed for in-hospital mortality
For length of stay linear regression adjusted for age, sex, DM, systolic BP, atrial fibrillation, smoking and prior HF
For re-hospitalization and 1-year mortality Cox regression analysis adjusted for age, sex, DM, systolic BP, atrial fibrillation, smoking, NT-proBNP/BNP and prior HF
OR odds ratio; HR hazard ratio; β standardized beta-coefficient
Discussion

This discussion will attempt to present some unifying themes or mechanisms in CMD using the biomarkers studied in this thesis. However, the first part of the Discussion will be based mainly on the results from **Paper I** and **Paper II**, and the second part will be based predominantly on the results from **Paper III** and **Paper IV** (focused on biomarkers in the acute heart failure setting).

Cardiometabolic biomarkers

In **Paper I** we studied how 92 proteins were associated with incident DM. We identified 7 proteins with independent associations with incident DM, three of which, to our knowledge, were not previously reported. DM is often simplified to a combination of insulin resistance (IR) and insulin deficiency. However, this rather simplistic view of DM development was expanded by Defronzo to eight distinct mechanisms constituting an *ominous octagon* (86). This model was then further expanded with the addition of systemic inflammation(87) and impaired insulin mediated vasodilatation(88) to ten distinct pathophysiological abnormalities resulting in hyperglycemia and ultimately DM as illustrated in **Figure 5** (89) constituting not an ominous octet but a *destructive decagon*.

![Figure 5. Pathophysiological mechanisms of hyperglycemia (89). With permission from SpringerNature.](image-url)
Recent studies have also shown that the composition of the gut microbiota plays an essential and causal role in the development of DM (90, 91).

Genetic components

In addition to the abovementioned mechanisms there is also a strong genetic component in the development of DM. With the exception of a few rare variants, DM is a complex polygenic disease and genome wide association studies have identified more than a hundred common genetic variants associated with DM (92, 93). However, these variants only have modest effects and more than half of non-diabetic subjects also carry these risk variants (92, 94). Nonetheless, the identification of these risk variants, albeit their high prevalence and modest risk increase, has aided in the understanding of the pathogenesis of DM. The combination of risk variants into genetic risk scores showed that high genetic risk subjects were more likely to develop DM independently of traditional clinical risk factors (95).

Many of the mechanisms involved in development of DM are also applicable in CMD with multi-organ IR playing the central and driving role in CMD (96, 97). The following segments will highlight a few of these mechanisms using the biomarkers studied in this thesis as a vantage point.

Insulin resistance

IR lies at the core of DM and CMD. The skeletal muscle and liver are responsible for most of the glucose uptake after a meal and are both progressively resistant to the actions of insulin in CMD (97). In skeletal muscle, defects in insulin signalling, glucose transport and mitochondrial dysfunction all contribute to IR (89).

The homeostasis model assessment of insulin resistance (HOMA-IR) uses FPG and insulin concentration to assess IR with higher values indicating more severe IR (98) and is strongly linked to CVD (99). Conversely, high levels of *insulin-like growth factor binding protein-2* (IGFBP-2) have been shown to promote glucose uptake thereby reducing IR and are inversely associated with incident DM, as shown in Paper I and others before us (62, 100). Furthermore, in Paper I we showed an inverse association with IGFBP-2 and prevalent DM which has also been shown previously (101).

In animal studies, transgenic mice overexpressing human IGFBP-2 were resistant to the development of obesity and IR when fed a high-fat/high energy diet. Furthermore, they had decreased leptin levels, increased glucose sensitivity, and lower blood pressure compared to wild-type mice. The authors suggested a direct negative effect of IGFBP-2 on adipogenesis, thus perhaps playing a role in obesity prevention (102).
However, in Paper II, IGFBP-2 was associated with both ACM and CVM in adjusted models and with incident CE in age and sex-adjusted analyses (Table 5). Our findings are supported from a recently published study from the Framingham Heart Study (FHS), also using a proteomic approach, where IGFBP-2 was associated with both ACM and CVM as well as incident HF but not CE (103). These contradictory findings are rather perplexing as IGFBP-2 has been shown to be inversely associated with arterial stiffness as measured by pulse wave velocity, in itself a risk marker for CVD (101), and lower levels of IGFBP-2 have been associated with increased risk of the metabolic syndrome (104). The seemingly opposing role of IGFBP-2 in CMD and mortality warrants further studies.

Dyslipidemia and obesity

Obesity in an attempt to be less stigmatizing and more scientific, is sometimes referred to as adiposity-based chronic disease (ABCD), which is a complex process involving abnormalities in the amount, distribution and function of adipose tissue (105). IR is present not only in skeletal muscle and liver but also in the fat cells or adipocytes causing increased lipolysis. This leads to elevated FFA levels which in the liver not only stimulate gluconeogenesis leading to hyperglycemia, but also increases TG levels and clearance of anti-oxidative HDL(97). This further perpetuates IR in muscle and liver and is referred to as lipotoxicity (106).

The fat cells aren’t passive containers of fat but produce cytokines or adipokines such as fatty acid binding protein-4 (FABP4) that serve as a carrier of FFAs. In Paper I FABP4 was associated with incident DM as shown previously (107).

Genetic knockout mice without expression of FABP4 were developmentally normal and when fed a high-fat/high-energy diet developed obesity but not IR or DM unlike the control mice indicating that FABP4 is a central link between obesity and IR (108).

Elevated levels of FABP4 has further been associated with CVD in a population study (109) and increased CVM and CE in patients with prevalent CVD (110). This is in line with our findings from Paper II where FABP4 was associated with ACM, CVM and HF in age- and sex adjusted analyses and incident CE in the adjusted model.

Treatment with a FABP4-inhibitor in mice resulted in reduced atherosclerotic lesions and improved glucose control (111) and thus the development of specific monoclonal antibodies targeting FABP4 could also be an interesting therapeutic alternative (112).

Another central characteristic of CMD is dyslipidemia with high TG levels and low levels of HDL, both traditional strong risk factors for CVD (113). While HDL levels provide information about the amount of HDL, they don’t necessarily reflect the
function or composition of HDL which is illustrated by the fact that half of patients who suffer a CE have normal or even elevated levels of HDL (114, 115).

In Paper I we found that higher levels of the HDL-bound protein Paraoxonase-3 (PON-3) had a protective effect against incident DM in fully adjusted models including FPG suggesting a glucose-independent pathway. This inverse association of PON-3 with DM has later been confirmed in another Swedish study (116). Higher levels of PON-3 were also inversely associated with prevalent DM which is consistent with earlier findings that increased duration of DM is associated with reduced paraoxonase activity (117).

In paper II we saw that elevated levels of PON-3 were associated with reduced ACM and HF in age- and sex adjusted analyses which is consistent with two previous studies that showed that higher levels of PON-3 and paraoxonase activity was associated with reduced atherosclerotic burden measured by coronary angiography in diabetic subjects (117, 118). In vitro studies have shown that PON-3 not only prevents the formation of oxidized low-density lipoprotein cholesterol (LDL) but also inhibits its pro-inflammatory activity (119). Oxidized LDL is a marker for oxidative stress and has been associated with incident DM (120) thus, in some sense, closing the loop for PON-3 and its possibly unifying role in CMD.

Inflammation

Low-grade inflammation has been shown to precede and predict development of DM and CVD supporting the concept that chronic inflammation is a predictor of CMD development (87) (121, 122).

In Paper I, we confirmed the association previously presented in a Danish population study (123) of the macrophage specific protein scavenger receptor cysteine rich type 1 protein M130 (CD163) with incident DM. CD163 is highly expressed in adipose tissue and may present a link between inflammation, obesity and CMD (124). CD163 has also been associated with increased coronary atherosclerotic burden independently of traditional risk factors (125) which is in line with our findings from Paper II of CD163 being associated with incident CE in age- and sex adjusted analyses and with ACM and CVM in fully adjusted models.

Furthermore, the lysosomal endopeptidase Cathepsin D (CatD) can possibly contribute to the chronic adipose inflammation seen in CMD by causing adipocyte apoptosis which is associated with IR (126). In a Swedish proteomic study, CatD was associated with IR in two large community cohorts (127). This is consistent with our findings from Paper I where CatD was associated with incident and prevalent DM. However, a Mendelian randomization study from the same Swedish group was unable to show any significant causal relationship for CatD and DM (116) but, as the authors themselves state, their study might have been
underpowered to show a causal link for the proteins tested in Mendelian randomization analysis.

Nonetheless, CatD still presents an interesting link in CMD as it has also been associated with incident CE (128) and in a proteomic study of 82 proteins, CatD was the strongest predictor of dysglycemia in an acute coronary syndrome (ACS) setting (129). In Paper II CatD was, along with Gal-4, the only protein associated with all investigated outcomes (ACM, CVM, CE, and HF) in adjusted models.

It has been suggested that CatD participates in the apoptosis of foam cells, a determinant of plaque instability (130). Furthermore, in patients with diabetes, CatD has been shown to truncate ApoA1 (the main protein of HDL) to ApoA1Δ (1-38) which binds to LDL and increases its susceptibility to oxidation, possibly contributing to the increased risk of CVD in diabetes (131) and to DM itself (120) similar to the effects of low paraoxonase activity described earlier.

In the ACS setting, previous studies of CatD are somewhat conflicting with elevated CatD levels being associated with myocardial infarction (132) but in another study of ACS-subjects, lower levels were associated with increased mortality and more severe CAD (133). Finally in a small study of ACS-subjects, CatD was elevated at admission compared to controls but at follow-up lower levels of CatD were associated with new-onset HF and recurrent CE (134). These results are based on small studies and hard to interpret. Further, our findings of CatD’s associations with mortality and cardiovascular outcomes in a general population might not be comparable with the findings in populations that were in acute distress.

Inflammation and DM are considered pro-thrombotic states (135) and the anti-fibrinolytic protease inhibitor plasminogen activator inhibitor-1 (PAI-1) has been associated with incident DM by us in Paper I (62) and in a recent meta-analysis (136). PAI-1 was borderline associated with incident CVD in the Framingham cohort (137) but we were unable to show any significant associations for PAI-1 regarding CVD or mortality in Paper II.

Incretin system

Oral glucose ingestion results in a larger insulin response than intravenous infusion of glucose which is called the *incretin effect* and is caused by the release, from the small intestine, of our two major incretin hormones; gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) (138). This incretin effect is significantly blunted or even absent in subjects with DM (139). Both GLP-1 and GIP stimulate insulin secretion but GLP-1 has several other cardiometabolic beneficial effects including suppression of glucagon, increased satiety, reduced blood pressure, improved dyslipidemia and an overall cardioprotective effect in CAD and HF (138, 140).
Galectin-4 (Gal-4) is a small protein in the gastrointestinal tract where it transports other proteins from the Golgi apparatus to the apical cell membrane of the enterocyte in a process called apical trafficking (141). One protein that is dependent on Gal-4 for its transportation is the protease dipeptidyl peptidase-4 (DPP-4)(141). In Gal-4-depleted mice, DPP-4 is misguided when transported and accumulates intracellularly, as opposed to being expressed at the apical membrane of the enterocyte in the presence of Gal-4 (141).

DPP-4 cleaves and inactivates GIP and GLP-1, which leads to several cardiometabolically adverse effects, including endothelial dysfunction, IR and dyslipidemia (142). Thus, the introduction of incretin-based antidiabetic medication in the form of DPP-4 inhibitors or GLP-1 agonists represented a major advance in DM treatment, without risks of hypoglycemia or weight gain (138). In the LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) trial the GLP-1 agonist liraglutide showed lower risk of CE and CVM and was the first anti-diabetic medication to be approved as therapy to reduce CVD in patients with DM (30). Liraglutide was followed by semaglutide, another GLP-1 agonist, which has also shown cardiovascular benefits (143). It should be noted however, that the use of DPP-4 inhibitors have not shown any cardiovascular benefits and has in fact elicited some concern due to increased hospitalization for HF and a recent meta-analysis consisting of both randomized clinical trials and observational studies suggested an increased risk in certain patients (144).

Nonetheless, as a novel finding, we have shown in **Paper I** that increased levels of Gal-4 are associated with prevalent and incident DM in fully adjusted models including FPG. In **Paper II**, Gal-4 was, as a novel finding to the best of our knowledge, associated with all investigated outcomes (CE, HF, CVM and ACM); all in fully adjusted models including NT-proBNP for incident HF.

As alluded to earlier, one possible explanation for our findings is that increased levels of Gal-4 lead to an increased expression of DPP-4 and thus reduced activity of the beneficial incretin GLP-1 as described above. As a last note, another Swedish research group from Sweden, also using the OLINK Proseek CVD III panel, found that Gal-4 was associated with aortic stenosis requiring surgery in two separate cohorts, and that Gal-4 in the discovery cohort was associated with aortic stenosis in the absence of CAD. Their findings could possibly be explained by the same mechanism described above, with increased levels of Gal-4 leading to increased activity of DPP-4, as DPP-4 has been shown to induce aortic valve calcification (145).

This concludes the first part of the discussion that was based on findings from **Paper I** and **Paper II**. The following part will try to maintain the cardiometabolic perspective but will be slightly more geared towards acute HF and results from **Paper III** and **Paper IV**.
Hypertension and endothelial dysfunction

There is a well-established relationship between IR and hypertension through several different mechanisms (146). The elevated levels of FFAs seen in IR and DM have a vasoconstrictive effect (147) and renal sodium absorption is increased in CMD (148).

Copeptin, which is the stable C-terminal fragment of the biologically active hormone *arginine vasopressin* is released from the pituitary gland in conditions of low plasma volume and low blood pressure. Elevated levels have been associated with hypertension, DM, CAD and mortality (71, 149-151). Based on these findings it has been suggested that disturbances in the vasopressin system measured through copeptin is a unifying possibly causal link in CMD (152).

Copeptin is highly predictive of adverse events in the acute HF setting (153). In **Paper III** we found that higher levels of copeptin was associated with post-discharge mortality in a fully adjusted model. This finding is supported by a recent meta-analysis consisting of 10 prospective cohort studies demonstrating that the predictive value of copeptin is comparable to NT-proBNP for all-cause mortality in HF patients (154). However, we could not identify a significant association with re-hospitalization that has been demonstrated earlier (153).

Based on the above described findings of copeptin’s role in DM, a pilot study showed that increased water intake could reduce copeptin levels in healthy subjects (155) which propelled an ongoing clinical trial showing that water supplementation could reduce both copeptin levels and FPG thus possibly reducing the risk of DM (156).

Although copeptin was shown to be the best predictor of 90 day-mortality and re-hospitalization in a prospective multi-center study testing multiple biomarkers (157), the safety and efficacy of lowering copeptin by water supplementation in a state of fluid overload such as HF remains to be seen.

Adrenomedullin (ADM) is secreted from endothelial cells as a response to vascular wall stress and promotes vasodilation by increasing nitric oxide and decreasing endothelin-1 (158). It has also been shown to be a key determinant in regulating vascular integrity and endothelial permeability (159, 160) The elevated levels of ADM seen in hypertension are thought to be compensatory and protective as it promotes natriuresis and vasodilation (161). However, ADM also plays a part in glucose metabolism; when subjects are injected with ADM, it inhibits insulin release and thus causes hyperglycemia (162). Furthermore, elevated levels of ADM are seen in subjects with diabetes, possibly through hyperglycemia-induced altered vascular function (163). Midregional pro-adrenomedullin (MR-proADM) is secreted in equimolar amounts to ADM and is more stable and therefor preferably measured (78).
In **Paper III** we showed that MR-proADM was associated with increased post-discharge mortality in HF patients and in **paper IV** we showed that bio-ADM was associated with length of hospital stay and re-hospitalization and borderline associated with in-hospital mortality (p=0.051). MR-proADM has previously been shown to be superior to NT-proBNP in predicting post-discharge mortality in HF patients (164).

For bio-ADM, our findings are supported by an earlier study showing that higher levels of bio-ADM in HF patients were associated with a composite primary outcome consisting of death, re-hospitalization, emergency dialysis, cardiac arrest, respiratory failure, prolonged hospitalisation and ACS in 30 days.(165)

Furthermore in **Paper III** we found that MR-proADM was associated with increased right ventricular size suggesting increased pressure in the pulmonary circulation, and rat studies show that infusion of ADM is associated with decreased right ventricular and atrial pressures (166).

In **Paper IV** we found that bio-ADM was strongly associated with peripheral edema as a sign of congestion in HF patients. With the risk of comparing apples to oranges, it is possible that the increased levels of MR-proADM is a compensatory mechanism to decrease pulmonary pressure and counteract the right ventricular dilatation but instead resulting in vasodilation which is manifested as peripheral edema, as seen in **Paper IV**.

Presently there are no biomarkers to assess congestion adequately. Congestion is the dominating reason patients are admitted to the hospital for HF and residual congestion at discharge is associated with high mortality and re-hospitalization (167). Natriuretic peptides can be unreliable in assessing congestion (168, 169) which is consistent with findings (unpublished) from **Paper IV** where NT-proBNP/BNP was not associated with any sign of congestion (peripheral edema, rales, CXR findings and dyspnea) in age- and sex adjusted analyses.

Currently, to assess congestion, the ESC recommends daily clinical evaluation of signs of congestion (170), which is inexact and subject to inter-observer variability. Thus, there is a need for a reliable and objective method to monitor the presence of congestion.

A Dutch study showed a significant decrease in bio-ADM in HF patients with little or no residual congestion after 1 week, compared with patients with significant residual congestion. Congestion was assessed by a comprehensive graded composite score of clinical and laboratory values(171). Several studies followed in supporting bio-ADM as a potential novel biomarker of congestion and predictor of adverse clinical events that can possibly aid in the guidance of treatment (172, 173).

Endothelin-1 (ET-1) like ADM, is secreted from the endothelial cells but contrary to ADM, ET-1 is a potent vasoconstrictor and has been associated with CVD including hypertension, HF and CAD (174). Furthermore, ET-1 has been implicated
in promoting IR and diabetes-related vascular complications by inhibiting glucose uptake in skeletal muscle cells and adipocytes, stimulating lipolysis and the release of pro-inflammatory cytokines (175). Moreover, unpublished data from the ESC Digital Congress 2020 showed that increased levels of ET-1 are associated with incident DM independently of FPG, suggesting an glucose-independent pathophysiological pathway (176).

C-terminal proendothelin-1 (CT-proET-1) is an inactive cleavage fragment from ET-1 and also more stable and therefore preferably measured (79). In Paper III we showed that CT-proET-1 was borderline associated with post-discharge mortality in age- and sex adjusted analyses which is supported by a meta-analysis comprising of 32 studies and almost twenty thousand subjects that showed increased levels of CT-proET-1 were associated with worse prognosis and increased mortality in HF patients (177).

The role of ET-1 in pulmonary arterial hypertension (PAH) is well-established with increased levels leading to pulmonary vasoconstriction (178) which can help explain our findings from Paper III where CT-proET-1 was associated with right ventricular dilatation.

PAH is often treated with endothelin-receptor antagonists (ETRA) and studies have shown that such treatment also improves insulin sensitivity (179) and based on ET-1’s role in CMD, it has been suggested that it may be beneficial to widen the treatment indication for ETRAs beyond PAH(180).

Renal aspects in cardiometabolic disease

Chronic kidney disease is a strong risk factor for CVD (181) and diabetic nephropathy is the leading cause of end-stage renal disease (182). In IR and DM, the kidneys’ ability to reabsorb glucose from the urine is augmented in a maladaptive effort to conserve glucose. This mechanism is of particular interest since the advent of inhibitors of the sodium glucose co-transporter 2 (SGLT-2) that not only have a glucose lowering effect but also very promising cardio- and renoprotective effects (183-186).

Cystatin C is a well-established marker for renal function superior to creatinine (187) and a well-known predictor of CVD (188). Furthermore, cystatin C levels are significantly higher in subjects with DM (189) and has been linked to incident DM and CMD (190), but a causal association between cystatin C and DM or CVD has been challenged through negative Mendelian randomization studies (191, 192). In Paper III cystatin C was the strongest predictor of mortality highlighting the massive impact renal dysfunction has on prognosis in HF.

The prognostic significance of renal function was also shown in Paper IV where penKid was associated with worsening renal function (WRF), in-hospital mortality
and 1-year mortality and its prognostic utility for CVM and hospitalization has previously been shown (193).

PenKid is a stable breakdown product of endogenous opioids (i.e. enkephalins) and has emerged as a highly dynamic marker of acute kidney injury in HF and sepsis (70, 194). PenKid is considered an inflammation-independent marker of kidney function that allows the early diagnosis of acute kidney injury by predicting the future change in serum creatinine (195).

One possible mechanism for penKid, both in WRF and its prognostic value in mortality, might be related to the cardiodepressive effects of enkephalins(196). This theory is indirectly supported by the fact that administration of opiates to HF patients resulted in worse prognosis in HF patients even after adjustment for clinical presentation and vital parameters (197). From a CMD perspective, based on experimental studies there has been speculation that an increased sensitivity to enkephalins might be important in the pathogenesis of DM (198) but no studies pertaining to pro-enkephalin’s potential part have been found.

Natriuretic peptides

Brain natriuretic peptide (BNP) or its more stable fragment NT-proBNP is released from the cardiac ventricles in response to mechanical and neurohormonal stimuli and is central in the diagnosis and prognosis of HF (170). From a cardiological perspective NPs have a number of beneficial effects including reduced myocardial hypertrophy, arterial vasodilation, increased natriuresis and reduced activity of the renin–angiotensin–aldosterone system (199). The elevated levels of NPs that are associated with worse prognosis in HF and in CAD independent of concomitant HF thus seem paradoxical but are thought to be compensatory and the result of a relative deficiency and resistance to BNP (200), not unlike the high levels of insulin seen in DM and IR.

We were unable to find a significant association for NT-proBNP and incident DM in **Paper I** but in **Paper III**, however, NT-proBNP, as expected, was associated with post-discharge mortality and was the only biomarker that independently associated with re-hospitalization.

There is an inverse association between NPs, obesity and DM (201) possibly through increased clearance and degradation by the peptidase neprilysin which is expressed at increased levels in obesity (202, 203). In a post-hoc analysis of the *Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure* (PARADIGM-HF) trial (204) treatment with sacubitril/valsartan, a combined angiotensin receptor-neprilysin inhibitor, resulted in lower long-term HbA1c reduction suggesting a role for neprilysin inhibition in glycemic control (205).
Furthermore, Mendelian randomization studies provide evidence for a potential causal role of BNP in DM with lower levels increasing risk of DM (206). In addition, low levels of BNP’s cousin *atrial natriuretic peptide* which is released from the atria in the heart has been associated with incident DM and confirmed in Mendelian randomization studies suggesting a causal association (207, 208).
CMD is the leading cause of mortality and morbidity worldwide and poses an enormous challenge to health care systems. While Kannel’s seminal work on identifying risk factors for CVD from the Framingham cohort (209) has provided a framework; traditional risk factors while potent (210), are imperfect in their predictive ability. This is illustrated by the fact that many patients presenting with an ACS lack any of the conventional risk factors (211) and in the case of DM it has been shown in both Swedish and Japanese populations that the cardiometabolic process begins more than 20 years before actual diagnosis is made (212, 213).

This disguised presence of CMD in the absence of conventional risk factors stresses the need for novel biomarkers that provide additional value to traditional risk factors and can provide new insights into the underlying pathophysiological mechanisms.

Wang et al performed an interesting simulation adding up to a 100 hypothetical biomarkers to a traditional risk factor model for CVD. They found that the most important element to improving the model’s predictive ability was the correlation or rather lack thereof, of the hypothetical biomarkers. It took 50 moderately correlated biomarkers to improve the model but less than 10 if they were weakly correlated (214).

I believe this creates a rationale for exploratory studies, such as ours, of novel pathophysiological pathways in CMD that may someday have diagnostic, prognostic, and therapeutic implications.

In **Paper I** we identified Gal-4 and PON-3 as two novel associations for incident DM independently of glucose. Since most screening measures for DM and IR (FPG, OGTT and HbA1c) naturally are based on glucose, in future studies it would be intriguing to see how other biomarkers perform in identifying high-risk but normoglycemic individuals that may benefit from heightened clinical vigilance, lifestyle intervention or even pharmacological treatment. In the case of Gal-4 and the results from **Paper II** where it was associated with all investigated outcomes and given its possible role in the incretin system, if one were to speculate, it may be of value of initiating treatment with a GLP-1 agonist sooner rather than later.

In general, using a biomarker approach when choosing between treatment options addresses the pursuit of personalized medicine and will hopefully provide the precision desired to successfully treat our patients in the future.
For many clinicians, including myself, there are many times when it is frustrating how difficult it is to assess the congestion status of a patient admitted for HF. We auscultate the lungs for rales, check the legs for edema and, if still ambitious, look for presence of jugular venous distension. Sometimes we resort to more advanced methods such as chest X-ray, pulmonary ultrasound or measuring natriuretic peptides but still the question remains; is the patient “dry” or “wet”? If we are too aggressive with diuretics we risk jeopardizing renal function and if we’re not aggressive enough we prolong the patient’s suffering or even worse, given today’s scarcity of hospital beds, the length of hospital stay. Obviously a biomarker is needed.

Bio-ADM has emerged as a biomarker for residual congestion and the clinical and prognostic consequences that entails. Thus, guiding decongestive treatment i.e. diuretics, with bio-ADM possibly in conjunction with a highly dynamic marker for renal function such as penKid, could be of assistance to the treating clinician and ultimately the patient.

As mentioned earlier, vasodilation and vascular integrity are the most important effects of adrenomedullin but it’s believed that its effect depend on its location (215). Whilst intravascular ADM promotes vascular integrity and reduce endothelial permeability which would be beneficial in an acute HF setting; interstitial ADM has the opposite effect promoting vasodilation which is detrimental in situations of low-perfusion such as cardiogenic shock or sepsis (216, 217). As illustrated in Figure 6, a monoclonal antibody, adrecizumab, targeting bio-ADM and then trapping and translocating it intravascularly has been developed (218) constituting a novel treatment strategy and currently phase II studies in HF are being initiated.

![Figure 6. Role of adrenomedullin in the intra- and extravascular space and mode of action for adrecizumab. With permission from Adrenomed AG.](image-url)
Popular summary in Swedish

Biomarkörer inom kardiometabol sjukdom

En biomarkör kan enklast definieras som något mätbart och objektivt och något som ger information om en patients hälsotillstånd. Detta i motsats till symptom som är patients subjektiva upplevelse av en sjukdom. Biomarkörer kan bland annat användas för att påvisa eller utesluta sjukdom, utvärdera sjukdomsutveckling eller behandlingseffekt.

Proteomik beskriver mönstret av proteiner hos en människa vid olika tillstånd och är ett spännande sätt att kartlägga vilka proteiner och i vilken mängd som uttrycks hos människor som till exempel utvecklar en viss sjukdom.

Det övergripande syftet med den här avhandlingen var att studera olika proteiner, vissa redan etablerade som biomarkörer och vissa mer experimentella, och deras effekt på insjuknande i diabetes och hjärtkärlsjukdom och i gränslandet däremellan som ibland benämns kardiometabol sjukdom.

Deltagarna har sedan dess följts i nationella register för diabetes, hjärtkärlsjukdom och död.

I det tredje och fjärde arbetet har vi använt oss av HARVEST-studien (HeARt and brain failure inVESTigation trial) som är en pågående studie av patienter inlagda för hjärtsvikt vid Kardiologiska och Internmedicinska kliniken vid Skånes Universitetssjukhus, Malmö. Patienterna får genomgå ett stort batteri av tester både på hjärtat men även på deras kognitiva förmågor. För närvarande är cirka 500 patienter inkluderade.

I det första arbetet använde vi oss av en särskild proteomisk analys som möjliggör att man kan analysera nästan 100 olika proteiner i en mikroliter plasma och vi kunde identifiera 7 proteiner som var förknippade med insjuknande i diabetes varav 4 av proteiner inte tidigare fanns beskrivna i litteraturen.

I det andra arbetet byggde vi vidare på resultaten från det första arbetet och undersökte hur dessa 7 proteiner var förknippade med hjärtinfarkt, hjärtsvikt och dödighet och fann att två proteiner, Galectin-4 och Cathepsin-D, var förknippade med samtliga utfall vilket inte tidigare fanns beskrivet. Galectin-4 har tidigare kopplats samman med inkretiner som är hormoner som frisätts från magtarmkanalen då den utsätts för socker och syntetiska inkretiner används idag som läkemedel mot diabetes men har även i vissa fall visat sig minska risken för hjärtkärlsjukdom. Cathepsin-D är ett litet protein som klyver och i viss mån inaktiverar de positiva antioxidativa effekterna av HDL som ibland brukar benämnas som det goda kolesterolot.

I det tredje arbetet övergick vi till hjärtsviktspatienter i HARVEST-studien och undersökte fem olika proteiner som är involverade i de olika kompensatoriska mekanismer som träder i kraft när kroppen drabbas av hjärtsvikt. Vi fann att förhöjda nivåer av fyra av proteinerna var förknippade med en ökad risk för död efter utskrivning men endast ett protein, NT-proBNP, var förknippat med ökad risk för återinläggning. NT-proBNP är idag den mest använda biomarkören för hjärtsvikt både som screening och i viss mån för att bedöma behandlingseffekt.

I det fjärde och avslutande arbetet undersökte vi två tämligen nya biomarkörer, bioADM och penKid. Bio-ADM frisätts från kärlväggen och har en stärkande effekt på kärlväggen när det befinner sig inuti kärlbanan men när det befinner sig utanför kärlväggen har det en avslappnande effekt på de muskelceller som omger kärlväggen vilket leder till ett ökat vätskeutträde och kan ge upphov till bland annat ökad bensvullnad vid hjärtsvikt. Bio-ADM har därför föreslagits som en ny biomarkör för kvarvarande övervätskning vid hjärtsvikt och kan hjälpa den behandlande läkaren om patienten är i fortsatt behov av vätskedrivande behandling. PenKid är en biomarkör för njurfunktion och signalerar väldigt tidigt om njurfunktionen börjar ta skada vid till exempelvis aggressiv behandling med vätskedrivande läkemedel. Kombinationen av dessa biomarkörer är därför särskilt tilltalande för den behandlande läkaren då man kan få stöd huruvida patienten är...
fortsatt övervätskad, vilket kan vara en väldigt svår klinisk bedömning, och därmed i behov av ytterligare vätskedrivande terapi samtidigt som man får en tidig signal om njurfunktionen börjar påverkas. Vi kunde visa att förhöjda nivåer av bioADM var förknippat med övervätskning men även förlängd sjukhusvård och ökad risk för återinläggning medan penKid var förknippat med ökad dödlighet både under sjukhusvistelsen och efter utskrivning.
Errata

Paper III
In the Results section, subheading Biomarkers and mortality, we state that all five biomarkers were associated with post-discharge mortality in age- and sex-adjusted Cox regression analyses. However, as seen in Table 2 the p-value for CT-pro-ET-1 is 0.014 and thus did not meet the pre-specified Bonferroni-corrected p-value of <0.01 (0.05/5).

Paper IV
In table 1 under Peripheral oedema the correct number for the pooled cohort should be n=360 (215+145).
Acknowledgements

This work would not have been possible without the support from a long list of smart and caring people. The American business tycoon Jack Welch once said that if you’re the smartest guy in the room, then you’re in the wrong room. Well, I have had the great privilege to be in the right room with the people below.

My main supervisor, professor Martin Magnusson, your devotion and enthusiasm always seem limitless. Thank you for always being on-call 24/7 and knowing when to push and when to lift the foot off the gas pedal.

My fellow HARVEST-ite PhD Amra Jujic, your dedication and willingness to help, support and explain are Gandhi-esque and second to none.

My co-supervisor professor Olle Melander, your generosity and scientific astuteness always leave me in awe.

PhD Hannes Holm, my colleague, fellow HARVEST-ite and person second only to Anna, whom I’ve spent most nights in the same bed with. I have always enjoyed sleeping with you and hope to continue in the future.

PhD Erasmus Bachus, fellow HARVEST-ite and god of wine. This journey wouldn’t have been the same without you.

Professor Peter Nilsson, thank you for your interest in my work and sharing your knowledge and insights so generously.

My boss and head of Cardiology in Malmö, Ole Hansen, for your support both in the clinic and in writing this thesis.

My dear colleagues in the clinic – Gordana Tasevska, Margrét Leósdóttir, Zoran Trivic, Torbjörn Pehrsson, Tord Juhlin, Klas Persson, Git Jarevi, Tina Tanha, Artur Fedorowski and many more for creating a great place to do actual work.

The research nurses in HARVEST, Hjördis Jernhed and Dina Chatziapostolou for your diligence and attention to detail. It is a privilege to work with you.

The admirable administrators of the Department of Cardiology; Maria Georgsson, Janet Feldtblad and Annika Ahrnbom thank you for solving impossible puzzles to make sure I had time to complete this thesis.

Gunilla Hughes Wulkan, thank you for all of your help and support. You truly are a logistic wonder.
My colleague and neighbour, PhD Marcus Ohlsson for always speaking the cold hard truth but almost always softening the blow by providing a seemingly endless supply of high-quality, homebrewed hop juice.

My great friends and fellow golf aficionados; Pontus Malmunger, Mathias Thelin, Petter Tärbe, Niclas Miörner, Hans Morén, Per Alverstrand and Harald Drewke. Thank you for the laughs, early morning tee-times and for making sure it took five years to finish this thesis so I could truly savour the experience.

To my parents, Lennart and Anne-Marie and my siblings Robin, Alex and Johanna. Your love, support and belief in me throughout my entire life… There are no words.

To Anna, love of my life, and my children Sixten, Rosa and Bianca, you remind me every day that there is more to life than p-values, proteins and perfectly struck five-irons. Your love is everything to me.
References

140. Del Olmo-Garcia MI, Merino-Torres JF. GLP-1 Receptor Agonists and Cardiovascular Disease in Patients with Type 2 Diabetes. J Diabetes Res. 2018;2018:4020492.

Using a Targeted Proteomics Chip to Explore Pathophysiological Pathways for Incident Diabetes—The Malmö Preventive Project

John Molvin1,2, Manan Pareek1,4, Amra Jujic1, Olle Melander1,5, Lennart Råstam1, Ulf Lindblad6, Bledar Daka6, Margrét Leósdóttir1,2, Peter M. Nilsson1,2, Michael H. Olsen3,7 & Martin Magnusson1,2,8

Multiplex proteomic platforms provide excellent tools for investigating associations between multiple proteins and disease (e.g., diabetes) with possible prognostic, diagnostic, and therapeutic implications. In this study our aim was to explore novel pathophysiological pathways by examining 92 proteins and their association with incident diabetes in a population-based cohort (146 cases of diabetes versus 880 controls) followed over 8 years. After adjusting for traditional risk factors, we identified seven proteins associated with incident diabetes. Four proteins (Scavenger receptor cysteine rich type 1 protein M130, Fatty acid binding protein 4, Plasminogen activator inhibitor 1 and Insulin-like growth factor-binding protein 2) with a previously established association with incident diabetes and 3 proteins (Cathepsin D, Galectin-4, Paraoxonase type 3) with a novel association with incident diabetes. Galectin-4, with an increased risk of diabetes, and Paraoxonase type 3, with a decreased risk of diabetes, remained significantly associated with incident diabetes after adjusting for plasma glucose, implying a glucose independent association with diabetes.

The worldwide prevalence of type 2 diabetes has risen steadily from 108 million in 1980 to 422 million in 2014 and constitutes a major threat to public health through increased morbidity and mortality1. Almost half of all deaths attributable to hyperglycemia occur before the age of 70 years, highlighting the need for early identification and lifestyle interventions of high-risk individuals as well as identifying novel therapeutic targets2. Although often simplified to a combination of insulin resistance and insulin deficiency, much remains to be explored regarding the complex pathogenic processes underlying the disease. This creates a rationale for applying a multi-system approach, including the exploration of pathophysiological pathways that may have diagnostic, prognostic, and therapeutic implications.

The recently developed proximity extension assay technology3 has enabled simultaneous analyses of large sets of proteins in small biological sample volumes. We used such an immunoassay designed to analyze 92 proteins with proposed involvement in inflammation / immunity, cardiovascular disease, and metabolism, in order to explore potential pathophysiological pathways for incident diabetes in a population-based cohort.

1Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden. 2Department of Cardiology, Skåne University Hospital Malmö, Malmö, Sweden. 3Cardiology Section, Department of Internal Medicine, Holbæk Hospital, Holbæk, Denmark. 4Brigham and Women’s Hospital Heart & Vascular Center, Harvard Medical School, Boston, Massachusetts, USA. 5Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden. 6Institute of Medicine, Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 7Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, University of Southern Denmark, Odense, Denmark. 8Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. Correspondence and requests for materials should be addressed to J.M. (email: johnmolvin@gmail.com)
Materials and Methods

Study sample. During 1974–1992, specific birth cohorts between 1921 and 1949 of inhabitants in Malmö, Sweden, were invited to participate in a large cohort study, i.e., the Malmö Preventive Project (MPP), with a total of 33,346 individuals attending (attendance rate 71%). Re-examination of 18,238 MPP survivors, who were still residing in the Malmö area, the MPP Re-Examination Study (MPP-RES), was conducted during 2002–2006 (attendance rate 72%). In a subsample of 1,792 participants, echocardiography was performed. These subjects were randomly selected from groups defined by glucometabolic status: normal fasting glucose, impaired fasting glucose, new onset diabetes and prevalent diabetes, with oversampling in the groups with glucometabolic disturbances to ensure numerical balance, as described previously⁴. The reason for this oversampling was to ensure sufficient numbers in each group as the study originally was designed to investigate myocardial structure and function in elderly subjects in relation to their glucometabolism. Data on lifestyle and medical history were obtained through a self-administered questionnaire. Physical activity was self-reported and categorized into 4 levels from sedentary lifestyle to physically active at a great extent. Height and weight were measured and body mass index (BMI, kg/m²) subsequently calculated. Blood pressure was measured twice in the supine position after 10 minutes of rest, and blood samples were drawn after an overnight fast and stored at −80 °C. Hypertension was defined as systolic blood pressure (SBP) > 140 mmHg and diastolic blood pressure (DBP) > 90 mmHg or the use of anti-hypertensive medication. Plasma samples from a total of 1,737 individuals from this subsample were successfully analyzed with the Olink Proseek Multiplex CVD III 96 × 96 proximity extension assay. Patients with missing covariates at baseline (n = 30) and prevalent diabetes (n = 681) were excluded, resulting in 1026 eligible subjects for the main analyses of incident diabetes.

All participants signed a written informed consent form before entering MPP-RES. The study was approved by The Regional Ethical Review board at Lund University, Sweden (LU 244-02) and complied with the Helsinki Declaration.

Proteomic Profiling. Plasma levels of proteins were analyzed by the Proximity Extension Assay (PEA) technique using the Proseek Multiplex CVD III 96 × 96 reagents kit (Olink Bioscience, Uppsala, Sweden) which uses two oligonucleotide-labeled highly specific antibodies in the formation of a polymerase chain reaction sequence that can then be detected and quantified⁶. The CVD III panel, published in several well-renowned journals⁵–⁷, consists of ninety-two proteins, carefully selected by leading experts in the field, with either established or proposed association with cardiovascular disease, inflammation and metabolism. The CVD I panel partially overlapping with the CVD III panel has previously been used to explore potential biomarkers for insulin resistance⁸ but no similar studies have been performed using the CVD III panel. The CVD III panel was also recently used for replication in a publication describing the genomic atlas of the human plasma proteome⁹. All data are presented as arbitrary units. One protein was below detectable limits in >15% samples (N-terminal pro-brain natriuretic peptide (Nt-proBNP)). Across all 92 assays, the mean intra-assay and inter-assay variations were observed to be 8.1% and 11.4%, respectively. Validation data and coefficients of variance for all proteins can be found in the online supplemental material (Validation data CVD III) and further technical information about the assays are available on the Olink homepage (http://www.olink.com).

Laboratory Assays. All fasting analyses (plasma glucose, serum high-density lipoprotein (HDL), and serum triglycerides (TG)) were performed at the Department of Clinical Chemistry, Malmö University Hospital, attached to a national standardization and quality control system (Beckman Coulter LX20, Beckman Coulter Inc., Brea, USA). Plasma cystatin C was analysed with an automated particle-enhanced immunoturbidimetric method, using reagents from DakoCytomation (Glostrup, Denmark).

Classification of prevalent and incident diabetes in MPP-RES. Prevalent diabetes at baseline was defined as a self-reported physician diagnosis of diabetes, use of antidiabetic medication, a diagnosis of diabetes in any of the local or national diabetes registries prior to study entry, or two separate fasting plasma glucose measurements of ≥ 7.0 mmol/L when available. Incident diabetes was retrieved through record linkage of the Swedish personal identification number with national and regional registries as follows: The Malmö HBA1, Register that analyzed all HbA1 samples at the Department of Clinical Chemistry obtained in institutional and non-institutional care in Malmö from 1988 and onwards⁹; The Swedish National Diabetes Register¹⁰; The Regional Diabetes 2000 Register of the Skåne Region¹¹; The Swedish National Patient Register covering all somatic and psychiatric hospital discharges and hospital based outpatient care¹²; The Swedish Cause-of-Death Register¹³; and The Swedish Prescribed Drug Register (prescription of anti-diabetic medication)¹⁴. Type of diabetes was not specified from all registries but given the mean age of the study population and since all prevalent cases of diabetes were excluded, it is reasonable to assume that an absolutely overwhelming majority of the incident cases of diabetes were type 2 diabetes.

Statistical Analysis. Non-normally distributed variables (all 91 proteins, TG, HDL, glucose and cystatin C) were In-transformed prior to analysis. Cox proportional-hazards regression models and Harrell’s concordance index (C-index)¹⁶ were used to calculate hazard ratios (HRs) for incident diabetes per standard deviation (SD) of change of log-transformed values in age- and sex-adjusted models (model 1). Proportional hazard assumption was tested using Schoenfeld residuals. Only proteins that remained significant after Bonferroni correction (0.05/91 = 5.5 × 10⁻⁶) in model 1 were further tested in the multivariable Cox regression model and Harrell’s C-index (model 2), which was adjusted for age, sex, BMI, hypertension, anti-hypertensive treatment, TG, HDL, cystatin C and physical activity and furthermore in model 3 (entering fasting plasma glucose at baseline on top of model 2). The proteins associated with incident diabetes in model 1 were also tested for association with prevalent diabetes with binary logistic regression in models 1, 2 and 3.
Baseline characteristics of subjects with (n = 880) and without incident diabetes (n = 1026). Values are displayed as means ± standard deviation or, for skewed variables, medians and interquartile (25–75) range.

All subjects (n = 1026) Subjects without incident diabetes (n = 880) Subjects with incident diabetes (n = 146) p-value

Age (years)	66.9 (±6.1)	66.9 (±6.1)	66.7 (±5.8)	0.071
Sex (% female)	331 (32.2)	290 (32.8)	41 (28.1)	0.024
BMI	27.4 (±3.9)	27.0 (±3.7)	29.4 (±4.1)	<0.001
SBP (mmHg)	145.3 (±19.2)	145.3 (±19.5)	145.6 (±19.0)	0.002
HDL (mmol/l)	1.3 (1.1–1.6)	1.4 (1.1–1.6)	1.2 (1.0–1.4)	<0.001

 Associations of proteins with incident diabetes. In age- and sex-adjusted Cox analyses (model 1), 7 proteins were associated with incident diabetes and fulfilled the prespecified Bonferroni-corrected p-value of <5.5 × 10−4: paraoxonase-3 (PON3) (p = 3.3 × 10−3), fatty acid binding protein 4 (FABP4) (p = 9.3 × 10−4), plasminogen activator inhibitor 1 (PAI) (p = 4.0 × 10−3), insulin-like growth factor-binding protein 2 (IGFBP-2) (p = 2.9 × 10−3), scavenger receptor cysteine rich type 1 protein M130 (CD163) (p = 3.9 × 10−3), cathepsin D (CTSD) (p = 5.2 × 10−3) and Galectin-4 (Gal-4) (p = 5.4 × 10−3) (Table 3). When further entering fasting plasma glucose (highly associated with incident diabetes; HR 1.30, 95% CI: 1.25–1.35; p = 9.1 × 10−39) as a covariate (model 3), the following four proteins remained significantly associated with increased risk of diabetes; PAI, Gal-4, CD163 and FABP4. Only PON3 remained significantly associated with decreased risk of diabetes (Table 3).

 Associations of proteins with prevalent diabetes. All 7 proteins associated with incident diabetes in model 1 were significantly associated (p-values <5.5 × 10−4) with prevalent diabetes in a binary logistic regression model 1. However, in the fully adjusted model 3 only Gal-4 and PAI were nominally significantly associated with prevalent diabetes (Table 4).
found a significantly increased risk of incident diabetes in subjects with high baseline CD163 levels\(^1\). CD163 is a cysteine rich type 1 protein M130 (CD163) associated with type 2 diabetes\(^2\), suggesting a causal relationship. In addition, alleles of various single nucleotide polymorphisms (SNPs) which elevate plasma PAI-1, are individually associated with incident diabetes (146 cases vs. 880 controls in the MPP) adjusted for age and sex (Model 1) and age, sex, BMI, HTN, InTG, lnHDL, lncystatin C, physical activity and lnglucose (Model 3). PAI; Plasminogen activator inhibitor 1, IGFBP-2; Insulin-like growth factor-binding protein 2, CD163; scavenger receptor cysteine rich type 1 protein M130, CTSD; Cathepsin D, Gal-4; Galectin-4.

Table 3. Cox Regression Analysis Examining Proteins relation to Incident Diabetes.

<table>
<thead>
<tr>
<th>OR (95% CI)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td>Model 2</td>
<td></td>
<td>Model 3</td>
<td></td>
</tr>
<tr>
<td>PAI</td>
<td>1.55 (1.22–1.50)</td>
<td>2.0 × 10 (^{-4})</td>
<td>1.00 (0.89–1.13)</td>
<td>0.984</td>
<td>0.80 (0.67–0.95)</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.61 (1.44–1.81)</td>
<td>3.6 × 10 (^{-16})</td>
<td>1.16 (1.01–1.34)</td>
<td>0.049</td>
<td>1.02 (0.82–1.27)</td>
</tr>
<tr>
<td>CD163</td>
<td>1.58 (1.40–1.78)</td>
<td>8.3 × 10 (^{-14})</td>
<td>1.35 (1.20–1.52)</td>
<td>3.5 × 10 (^{-12})</td>
<td>1.17 (0.99–1.38)</td>
</tr>
<tr>
<td>Gal-4</td>
<td>1.97 (1.76–2.22)</td>
<td>6.8 × 10 (^{-29})</td>
<td>1.85 (1.63–2.10)</td>
<td>1.7 × 10 (^{-18})</td>
<td>1.54 (1.28–1.84)</td>
</tr>
<tr>
<td>PON3</td>
<td>0.59 (0.53–0.66)</td>
<td>1.7 × 10 (^{-15})</td>
<td>0.78 (0.45–1.35)</td>
<td>6.6 × 10 (^{-5})</td>
<td>0.94 (0.79–1.12)</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>0.60 (0.54–0.67)</td>
<td>4.2 × 10 (^{-23})</td>
<td>0.77 (0.68–0.88)</td>
<td>1.1 × 10 (^{-15})</td>
<td>1.04 (0.86–1.26)</td>
</tr>
<tr>
<td>CTSD</td>
<td>1.73 (1.55–1.92)</td>
<td>1.4 × 10 (^{-13})</td>
<td>1.46 (1.30–1.65)</td>
<td>2.3 × 10 (^{-13})</td>
<td>1.14 (0.96–1.35)</td>
</tr>
</tbody>
</table>

Table 4. Logistic Regression Analysis Examining Proteins relation to Prevalent Diabetes.

<table>
<thead>
<tr>
<th>OR (95% CI)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td>Model 2</td>
<td></td>
<td>Model 3</td>
<td></td>
</tr>
<tr>
<td>PAI</td>
<td>1.70 (1.41–2.05)</td>
<td>4.0 × 10 (^{-8})</td>
<td>1.50 (1.21–1.84)</td>
<td><0.0001</td>
<td>1.40 (1.14–1.72)</td>
</tr>
<tr>
<td>FABP4</td>
<td>0.66 (0.56–0.77)</td>
<td>2.9 × 10 (^{-10})</td>
<td>0.82 (0.68–0.99)</td>
<td>0.039</td>
<td>0.89 (0.74–1.08)</td>
</tr>
<tr>
<td>CD163</td>
<td>1.50 (1.26–1.77)</td>
<td>3.0 × 10 (^{-8})</td>
<td>1.34 (1.11–1.60)</td>
<td>0.002</td>
<td>1.22 (1.02–1.46)</td>
</tr>
<tr>
<td>PON3</td>
<td>1.33 (1.13–1.56)</td>
<td>5.2 × 10 (^{-8})</td>
<td>1.20 (1.00–1.43)</td>
<td>0.050</td>
<td>1.08 (0.91–1.29)</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.37 (1.15–1.64)</td>
<td>5.4 × 10 (^{-8})</td>
<td>1.30 (1.08–1.56)</td>
<td>0.005</td>
<td>1.27 (1.07–1.52)</td>
</tr>
</tbody>
</table>

Harrell’s concordance index models. The basic model 1 yielded a C-index of 0.542 and an addition of any one of the 7 proteins resulted in a gain in C-statistics ranged from 4.4–10.7 percentage-units. Furthermore, an addition any one of the 7 proteins to the basic model 2 (C-index 0.692) resulted in a gain in C-statistic ranged from 0.02–1.4 percentage-units.

Finally, as compared with the basic model 3 (C-index 0.780) additions any one of the 5 proteins resulted in a gain in C-statistic that ranged from 0–0.5 percentage-units (Supplementary Table 2).

Discussion

In this community-based sample of 1026 older individuals without known diabetes, we identified 7 proteins associated with incident diabetes. To the best of our knowledge, 3 of these associations (CTSD, Gal-4 and PON3) have not been previously reported.

Proteins with a previously established association with incident diabetes. Scavenger receptor cysteine rich type 1 protein M130 (CD163). Our findings are in line with a large prospective cohort study, which found a significantly increased risk of incident diabetes in subjects with high baseline CD163 levels\(^4\). CD163 is implicated in adipose tissue inflammation and may represent a glucose-independent mechanism in diabetes\(^4\).

Fatty acid binding protein, adipocyte (FABP4). Increased FABP4 has earlier been associated with diabetes\(^4\). FABP4 may act as a mediator between diabetes and obesity due to its role in lipid metabolism and glucose utilization\(^3\).

Plasminogen activator inhibitor 1 (PAI-1). A recent meta-analysis supported a link between PAI-1 and incident diabetes\(^5\), which is in concert with our findings that also imply the association to be glucose-independent. In addition, alleles of various single nucleotide polymorphisms (SNPs) which elevate plasma PAI-1, are individually associated with type 2 diabetes\(^5\), suggesting a causal relationship.

Insulin-like growth factor-binding protein 2 (IGFBP-2). Inter-individual heterogeneity in endogenous IGFBP levels may influence the risk of developing type 2 diabetes\(^6\) and in a prospective nested case-control investigation,
plasma IGFBP-2 levels were strongly and inversely associated with the risk of diabetes\(^3\) which is consistent with the protective effects of IGFBP-2 seen in our study.

Proteins with a novel association with incident diabetes

Cathepsin D (CTSD). A recent proteomic study showed a cross-sectional association between CTSD and prevalent insulin resistance\(^4\). This finding together with our finding that CTSD is associated with both prevalent and incident diabetes suggest that CTSD may have a mechanistic role in the development of diabetes and insulin resistance. The main effects of the lysosomal endoprotease CTSD include intracellular protein turnover and extracellular matrix breakdown\(^5\). It has been suggested that CTSD acts a mediator between obesity and chronic adipose tissue inflammation as weight gain has shown to stimulate CTSD activity leading to adipocyte apoptosis, which is an important contributor to insulin resistance\(^6\). Furthermore, increased CTSD activity has in experimental studies been shown to be involved in the truncation of ApoA1 (the most abundant protein in HDL) to ApoA1 Δ(1–38); a variant which is more abundant in patients with diabetes and more susceptible to oxidation\(^7\).

Galectin-4 (Gal-4). Gal-4 is a small lectin protein expressed almost exclusively in the gastrointestinal tract and is involved in protein apical trafficking and lipid raft stabilization i.e. the transport of proteins from inside the cell to the cell membrane. One of the proteins transported from the Golgi apparatus to the apical cell membrane of the enterocyte is the protease dipeptidyl peptidase-4 (DPP-4)\(^8\). DPP-4’s most known effect is the inactivation of our two most abundant incretins; glucose-dependent insulinotropic polypeptide (GIP) and proglucagon-derived peptide glucagon-like peptide-1 (GLP-1)\(^9\). GLP-1 analogues and DPP-4 inhibitors are well-established treatments in type 2 diabetes and recently two major studies of GLP-1 analogues have shown, in addition to lowering blood glucose, a reduced risk of cardiovascular disease\(^10,11\) and mortality\(^12\). One possible explanation of our finding that Gal-4 is associated with both incident and prevalent diabetes is that increased expression of Gal-4 leads to increased activity of DPP-4 and thus reduced activity of GLP-1 and increased risk of diabetes and cardiovascular complications. Although other galectins (e.g. Gal-3\(^13\) and Gal –1\(^14\)) have been associated with diabetes, no association of Gal-4 with diabetes has, to our knowledge, been reported before.

Paraoxonase type 3 (PON3). PON3 is similar to paraoxonase type 1 (PON1) in activity but differs from it in substrate specificity\(^15\). Both PON3 and PON1 are bound to HDL and because of their similar properties as anti-oxidants, it is possible PON3 also plays a role in the prevention of LDL and HDL oxidation\(^15\). Previous studies have consistently reported that PON1 is lower in patients with diabetes compared to control subjects\(^15\). Although we could not find previous data regarding PON3 in plasma and subsequent risk of diabetes, there are studies that have described lower levels of PON3 with an increased duration of diabetes and in patients with diabetes and coronary artery disease (CAD) compared to subjects with diabetes without CAD\(^15,16\). All these findings are in line with the diabetes protective effects of PON3 seen in our study.

Study limitations. Since type 2 diabetes is a multifactorial disease with a range of known risk factors contributing to its pathogenesis, these risk factors should be considered when conclusions are drawn regarding associations. Although we attempted adjustment for a heterogeneous panel of risk factors, the observational nature of this study prevents us from ruling out that other confounders may have affected the outcome of our analysis. Furthermore, we did not have the possibility for repeated or confirmatory measurements of the proteins through an additional method. Baseline HbA1c was missing in >30% of the subjects and therefore excluded which is a weakness as HbA1c is a very strong predictor for incident diabetes. There was no oral glucose tolerance test performed in these subjects. Moreover, our data was collected at a single regional center, without the option of replicating the findings although we attempted to limit the risk of false positive findings by Bonferroni correction. The original selection of the population with oversampling of groups based on glucometabolic disturbances mentioned in the Methods section can raise concerns how well this cohort represents the background population but the rate of incidence of diabetes in this cohort is comparable to other similar cohorts\(^16,19\). Furthermore, as mentioned in the Methods section, type of diabetes was not specified from the registries but we have assumed that the incidence of type 1 diabetes must be extremely low due to the participants’ mean age of 67.4 (±6.0) years at the baseline examination.

Lastly, although the CVD III panel is only partially directed towards metabolism, it also includes proteins associated with cardiovascular disease and inflammation and thus a more specifically designed assay towards diabetes and/or metabolism could possibly have revealed additional findings.

Conclusion
Our study confirmed previously established associations with incident diabetes for CD163, FABP4, PAI, and IGFBP-2. Furthermore, we identified novel associations for CTSD, Gal-4 and PON3 with incident diabetes. Gal-4 and PON3 remained significantly associated with incident diabetes after adjusting for plasma glucose, implying a glucose independent association with diabetes. None of the proteins showed a substantial increase in C-index which, at present, would not warrant clinical use as a biomarker. Nevertheless, the associations of these three proteins could represent novel biological mechanisms, broadening our understanding of the complex pathogenesis of diabetes. First and foremost, our results merit replication in an independent cohort and if successful, future prospective studies to clarify their role in the possible pathogenesis of diabetes.

References

Author Contributions

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-36512-y.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019
Proteomic exploration of common pathophysiological pathways in diabetes and cardiovascular disease

John Molvin1,2*, Amra Jujić1,2, Olle Melander1,3, Manan Pareek4,5, Lennart Råstam1, Ulf Lindblad6, Bledar Daka6, Margrét Leósdóttir1,2, Peter M. Nilsson1,3, Michael H. Olsen7,8 and Martin Magnusson1,2,9

1Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden; 2Department of Cardiology, Skåne University Hospital, Malmö, Sweden; 3Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden; 4Department of Internal Medicine, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA; 5Department of Cardiology, North Zealand Hospital, Hillerød, Denmark; 6Institute of Medicine, Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 7Centre for Individualized Medicine in Arterial Diseases (CIMA), University of Southern Denmark, Odense, Denmark; 8Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark; 9Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden

Abstract

Aims The epidemiological association between diabetes and cardiovascular disease is well established, but the pathophysiological link is complex and multifactorial. We investigated seven proteins, previously linked to incident diabetes mellitus, and their association with cardiovascular disease and mortality.

Methods and results Plasma samples from 1713 individuals from the Swedish population-based Malmö Preventive Project (mean age 67.4 ± 6.0 years; 29.1% women) were analysed with a proximity extension assay panel. Seven proteins [saccharide receptor cysteine rich type 1 protein M130 (CD163), fatty acid-binding protein 4 (FABP4), plasminogen activator inhibitor 1 (PAI), insulin-like growth factor-binding protein 2 (IGFBP2), cathepsin D (CTSD), galectin-4 (GAL4), and paraoxonase-3 (PON3)] previously shown to be associated with incident diabetes were analysed for associations with all-cause mortality (ACM), cardiovascular mortality (CVM), incident coronary events (CEs), and incident heart failure (HF). After exclusion of prevalent cases of respective outcome, proteins that met Bonferroni-corrected significance were analysed in multivariable Cox regression models. Significant associations were identified between five proteins [GAL4 (hazard ratio; 95% confidence interval: 1.17–1.41), CTSD (1.15–1.37), CD163 (1.09–1.30), IGFBP2 (1.05–1.30), and FABP4 (1.04–1.29)] and ACM and four proteins [GAL4 (1.38–1.56), CTSD (1.14–1.43), CD163 (1.09–1.36), and IGFBP2 (1.03–1.35)] with CVM. Three proteins [GAL4 (1.14–1.57), CTSD (1.12–1.50), and FABP4 (1.05–1.55)] were significantly associated with incident CE and two [GAL4 (1.03–1.54) and CTSD (1.01–1.46)] were associated with incident HF after adjusting for traditional risk factors including N-terminal pro-brain natriuretic peptide.

Conclusions In a general Swedish population, four proteins previously shown to be associated with diabetes were associated with ACM and CVM. Three proteins were associated with incident CE. Finally, GAL4 and CTSD displayed novel associations with incident HF and were the only proteins associated with all outcomes.

Keywords Cardiometabolic disease; Cardiovascular disease; Cathepsin D; Diabetes; Galectin-4; Proteomics

Received: 4 May 2020; Revised: 7 August 2020; Accepted: 15 September 2020
*Correspondence to: John Molvin, Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, 20502 Malmö, Sweden. Tel: +46 (0) 40 33 72 74; Fax: +46 40 331902. Email: johnmolvin@gmail.com

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Introduction

Cardiovascular disease (CVD) is the leading cause of death in patients with type 2 diabetes and occurs more frequently and earlier in life than in subjects without diabetes. Subjects with diabetes carry up to a quadrupled risk of cardiovascular mortality and morbidity compared with those without diabetes. Furthermore, their arteries are associated with an accelerated and more extensive atherosclerotic process, resulting in narrower lumen, higher plaque burden, and plaques more prone to ulceration and rupture. The difference in heart failure (HF) burden is even more discouraging, with HF surpassing both myocardial infarction and stroke as the most common complication of type 2 diabetes. Furthermore, the
prognosis in subjects with concomitant diabetes and HF is significantly worse than in subjects with HF alone.5

Although the macrovascular, microvascular, and non-vascular complications of diabetes are well established from an epidemiological perspective, the underlying pathophysiological mechanisms are complex and not fully understood.6 Most efforts to reduce cardiovascular events and mortality by glucose-lowering agents have been largely unsuccessful and sometimes even harmful,7–9 which emphasizes the need for novel mechanism-based therapeutic strategies.

Multiplex proteomic platforms represent an appealing approach for exploration of pathophysiological pathways and novel associations between multiple proteins and disease, with possible diagnostic, prognostic, and therapeutic implications. We recently used such a panel10 based on proximity extension assay technique to explore associations between 92 proteins and incident diabetes in a population-based cohort. The study identified seven proteins associated with incident diabetes, four of which were novel associations.11

The aim of this observational study was to explore how these seven proteins associate with CVD and mortality and to explore possible common pathophysiological pathways, in an attempt to bridge the knowledge gap in cardiometabolic disease.

Methods

Study sample

During 1974–1992, specific birth cohorts between 1921 and 1949 of inhabitants in Malmö, Sweden, were invited to participate in the Malmö Preventive Project (MPP), a large screening study with a total of 33 346 individuals attending (attendance rate 71%). Re-examination of 18 238 MPP survivors, who were still residing in the Malmö area [the MPP Re-Examination Study (MPP-RES)], was conducted during 2002–2006 (attendance rate 72%). In a subsample of 1792 participants, echocardiography was performed.11 These subjects were randomly selected from groups defined by glucometabolic status: normal fasting glucose, impaired fasting glucose, new-onset diabetes, and prevalent diabetes, with oversampling in the groups with glucometabolic disturbances to ensure numerical balance, as described previously.12

Clinical examination

Height and weight were measured and body mass index (kg/m²) subsequently calculated. Heart rate and blood pressure were measured twice in the supine position after 10 min of rest, and blood samples were drawn after an overnight fast and plasma stored at −80°C. Data on smoking and current medication were self-reported. Diabetes status, prevalence of atrial fibrillation, prevalence of HF, and prevalence of CVD (myocardial infarction and/or stroke) were retrieved through regional and national registers.

All participants signed a written informed consent form before entering MPP-RES. The study was approved by the Regional Ethical Review board at Lund University, Sweden (LU 244-02) and complied with the Helsinki Declaration.

Laboratory assays

Blood samples were drawn after an overnight fast. The samples were centrifuged, and plasma was stored at −20°C until the time of analysis. N-terminal pro-brain natriuretic peptide (NT-proBNP) was measured with an electrochemiluminescence immunoassay (Elecsys, Roche Diagnostics, Basel, Switzerland) at the Department of Clinical Chemistry, Akershus University Hospital, Lørenskog, Norway.

Proteomic profiling

A total of 1737 individuals provided blood samples that were successfully analysed with the Olink proximity assay. Plasma levels of proteins were analysed by the proximity extension assay technique using the Proseek Multiplex CVD III 96 x 96 reagents kit (Olink Bioscience, Uppsala, Sweden). The CVD III panel consists of 92 proteins with either established or proposed associations with CVD, inflammation, and metabolism. All data are presented as arbitrary units. One protein was below detectable limits in >15% samples (NT-proBNP); therefore, we used measurements of NT-proBNP as carried out by the local laboratory (for details, see Laboratory assays). Across all 92 assays, the mean intra-assay and inter-assay variations were 8.1% and 11.4%, respectively. Validation data and coefficients of variance for all proteins can be found in the Supporting Information (validation data CVD III), and further technical information about the assays are available on the Olink website (http://www.olink.com). In this study, we analysed seven proteins, previously linked to incident diabetes: scavenger receptor cysteine rich type 1 protein M130 (CD163), fatty acid-binding protein 4 (FABP4), plasminogen activator inhibitor 1 (PAI), insulin-like growth factor-binding protein 2 (IGFB2), cathepsin D (CTSD), galectin-4 (GAL4), and paraoxonase-3 (PON3).11

Endpoints

Participants were followed in local and national registers for incident coronary events (CEs) and incident HF. CE was defined as coronary revascularization and/or fatal or non-fatal myocardial infarction. Data on all-cause mortality (ACM) and cardiovascular mortality (CVM) were retrieved through
the Swedish Board on Health and Welfare and Statistics, Sweden. Follow-up ended on 31 December 2018. Diagnoses of incident CE and incident HF were retrieved from record linkage using the Swedish personal identification number with the Swedish Hospital Discharge Register, the Swedish Cause of Death Register, and the Swedish Coronary Angiography and Angioplasty Registry. International Classification of Diseases, Ninth and Tenth Revision (ICD-9 and ICD-10) codes are found in the Supporting Information.

Statistical analysis

All skewed variables were ln-transformed [the seven proteins, cystatin C, and high-density lipoprotein cholesterol (HDL)]. The analysed proteins were subsequently standardized by z score transformation. The proportional hazards assumption was tested using partial residuals. Cox regression was carried out adjusted for age and sex (Model 1), and a Bonferroni-corrected P value of 0.007 (0.05/7) was considered statistically significant. Proteins that were significantly associated with the outcome of interest were then analysed further using models adjusted for other relevant covariates, in which a P value of 0.05 was considered significant. All analyses were adjusted for age, sex, body mass index, smoking, prevalent diabetes, systolic blood pressure, anti-hypertensive treatment, prevalent atrial fibrillation, and cystatin C. For the analysis of ACM and CVM, prevalent CVD, prevalent HF, total cholesterol, and HDL were included (Model 2a). For the analysis of incident CE, total cholesterol and HDL were included, and prevalent cases of CVD and HF were excluded prior to analysis (Model 2b). For the analysis of HF, prevalent CVD, heart rate, and NT-proBNP were included and prevalent cases of HF excluded (Model 2b). All analyses were carried out using SPSS 25.0.

Results

Baseline characteristics of all subjects (n = 1713), those deceased (n = 590), with incident CE (n = 189), and with incident HF (n = 130) are presented in Table 1. The overall study population had a mean age of 67.4 years, male predominance (70.9%), and more than a third had prevalent diabetes at baseline (35.3%). The overall prevalence of CVD was 10.8%, and almost half of the population was on anti-hypertensive treatment (46.8%). There were no interactions between the investigated proteins and diabetes in the endpoint analyses.

Analyses of all-cause mortality

In age-adjusted and sex-adjusted analyses, five of the seven proteins (GAL4, CTSD, IGFBP2, CD163, and FABP4) were significantly associated with ACM. All associations remained significant after further adjusting according to Model 2a [median follow-up time 12.7 years, interquartile range (IQR) 25–75: 11.2–13.6 years; 590 deaths; Table 2].

Analyses of cardiovascular mortality

Five proteins (GAL4, CTSD, IGFBP2, CD163, and FABP4) yielded significant associations with CVM in age-adjusted

<table>
<thead>
<tr>
<th>Table 1 Baseline characteristics of the study population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Women, n (%)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
</tr>
<tr>
<td>Clinical profile</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
</tr>
<tr>
<td>Heart rate (BPM)</td>
</tr>
<tr>
<td>Medical history</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
</tr>
<tr>
<td>Prevalent HF, n (%)</td>
</tr>
<tr>
<td>Prevalent AF, n (%)</td>
</tr>
<tr>
<td>Prevalent CVD, n (%)</td>
</tr>
<tr>
<td>AHT, n (%)</td>
</tr>
<tr>
<td>Laboratory</td>
</tr>
<tr>
<td>Cystatin C (mg/L)</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
</tr>
</tbody>
</table>

Values are displayed as means (± standard deviation) or, for skewed variables, medians and interquartile range (25–75).
Table 2 Cox regression analysis for risk of all-cause mortality

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>P value</td>
<td>HR</td>
</tr>
<tr>
<td>GAL4</td>
<td>1.42</td>
<td>1.30–1.56</td>
<td>2.9×10^-14</td>
<td>1.29</td>
</tr>
<tr>
<td>CTS5</td>
<td>1.33</td>
<td>1.23–1.45</td>
<td>6.6×10^-10</td>
<td>1.26</td>
</tr>
<tr>
<td>CD163</td>
<td>1.22</td>
<td>1.12–1.33</td>
<td>3.0×10^-6</td>
<td>1.19</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>1.19</td>
<td>1.08–1.30</td>
<td>3.0×10^-3</td>
<td>1.17</td>
</tr>
<tr>
<td>PON3</td>
<td>0.90</td>
<td>0.84–0.97</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>PAI</td>
<td>1.09</td>
<td>0.99–1.19</td>
<td>0.057</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Cox regression analysis for risk of cardiovascular mortality

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>P value</td>
<td>HR</td>
</tr>
<tr>
<td>GAL4</td>
<td>1.56</td>
<td>1.38–1.75</td>
<td>2.8×10^-13</td>
<td>1.38</td>
</tr>
<tr>
<td>CTS5</td>
<td>1.35</td>
<td>1.22–1.50</td>
<td>2.1×10^-8</td>
<td>1.28</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.35</td>
<td>1.20–1.52</td>
<td>4.5×10^-7</td>
<td>1.14</td>
</tr>
<tr>
<td>CD163</td>
<td>1.25</td>
<td>1.12–1.40</td>
<td>5.4×10^-5</td>
<td>1.21</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>1.26</td>
<td>1.12–1.42</td>
<td>1.7×10^-4</td>
<td>1.18</td>
</tr>
<tr>
<td>PAI</td>
<td>1.08</td>
<td>0.97–1.21</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>PON3</td>
<td>0.92</td>
<td>0.84–1.02</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Cox regression analysis for risk of incident coronary events

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>P value</td>
<td>HR</td>
</tr>
<tr>
<td>GAL4</td>
<td>1.44</td>
<td>1.23–1.68</td>
<td>5.0×10^-6</td>
<td>1.34</td>
</tr>
<tr>
<td>CTS5</td>
<td>1.38</td>
<td>1.20–1.58</td>
<td>9.0×10^-4</td>
<td>1.30</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.36</td>
<td>1.16–1.60</td>
<td>1.2×10^-4</td>
<td>1.27</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>1.20</td>
<td>1.03–1.41</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>PON3</td>
<td>0.95</td>
<td>0.83–1.09</td>
<td>0.486</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Cox regression analysis for risk of incident heart failure

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>P value</td>
<td>HR</td>
</tr>
<tr>
<td>GAL4</td>
<td>1.49</td>
<td>1.23–1.81</td>
<td>4.9×10^-5</td>
<td>1.26</td>
</tr>
<tr>
<td>CTS5</td>
<td>1.30</td>
<td>1.09–1.55</td>
<td>0.003</td>
<td>1.21</td>
</tr>
<tr>
<td>FABP4</td>
<td>1.38</td>
<td>1.13–1.67</td>
<td>0.001</td>
<td>0.95</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>1.01</td>
<td>0.84–1.22</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>PON3</td>
<td>0.90</td>
<td>0.69–0.93</td>
<td>0.003</td>
<td>0.95</td>
</tr>
<tr>
<td>PAI</td>
<td>1.00</td>
<td>0.84–1.20</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

Analyses of incident coronary events

In age-adjusted and sex-adjusted Cox regression analyses, three proteins (GAL4, CTS5, and FABP4) yielded significant associations with incident CE (median follow-up time 10.7 years, IQR 10.0–11.7 years; 164 events) that all remained after further adjustment per Model 2a (Table 4).

Discussion

In this community-based sample of 1713 individuals, we analysed seven diabetes-associated proteins in relation to ACM, CVM, incident CE, and incident HF. Four proteins (GAL4, CTS5, CD163, and IGFBP2) were associated with both...
ACM and CVM. For incident CE, associations for three proteins (GAL4, CTSD, and FABP4) remained significant in the fully adjusted model, with GAL4 and CTSD as novel findings. Finally, both GAL4 and CTSD were associated with incident HF after adjustment for traditional risk factors including NT-proBNP. In the end, GAL4 and CTSD were the only proteins associated with all outcomes and represent novel findings to the best of our knowledge. Below follows a brief description of the proteins with known associations with CVD and mortality and a more extensive discussion regarding our novel findings of GAL4 and CTSD. However, PON3 and PAI did not predict any outcome and will not be further discussed.

Proteins with previously established associations with cardiovascular outcomes and mortality

Scavenger receptor cysteine rich type 1 protein M130
CD163 is a marker of macrophage activation and has previously been linked to diabetes, atherosclerosis, and increased mortality in several acute and chronic inflammatory diseases. However, our findings of CD163 being associated with CVM and ACM in a general population have, to the best of our knowledge, not been described earlier.

Insulin-like growth factor-binding protein 2
In a recently published study from the Framingham Heart Study that also used the proteomic approach, IGFBP2 was associated with both ACM and CVM, which our findings support. However, in contrast to our findings, IGFBP2 was associated with incident HF, but not with atherosclerotic CVD in the Framingham Heart Study. This could very well be an effect of the difference in baseline characteristics between the two cohorts, particularly the predominance of men in our study (71% vs. 47%) and prevalence of diabetes (41% vs. 11%).

Fatty acid-binding protein 4
FABP4 is expressed and secreted from adipocytes and acts as an adipokine for insulin resistance and atherosclerosis. In a recent review, FABP4’s role in cardiovascular and metabolic disease, as both a biomarker and as potential treatment target, was discussed. Prior studies have shown increased circulating FABP4 levels to be associated with type 2 diabetes, hypertension, dyslipidaemia, atherosclerosis, HF, and long-term cardiovascular events and mortality, which is in line with our findings.

Proteins with a novel association with cardiovascular outcomes and mortality

Galectin-4
To the best of our knowledge, our study is the first to demonstrate a relationship between GAL4 and both ACM and CVM, incident CE, and incident HF. GAL4 is a part of the galectin family of 15 small lectin proteins, and unlike its siblings, GAL4 is expressed almost exclusively in the gastrointestinal tract of healthy subjects. This has made it an interesting candidate as a cancer marker because it is induced by several malignancies. GAL4 most likely performs several functions, including cell adhesion and induction of intracellular signalling. Another function of GAL4 is the stabilization of lipid rafts for the apical transport of proteins from the Golgi apparatus to the apical membrane of the enterocyte. This is interesting because one of the transported proteins is the protease dipeptidyl peptidase-4 (DPP-4). In GAL4-depleted mice, DPP-4 is misguided when transported and accumulates intracellularly, as opposed to being expressed at the apical membrane of the enterocyte in the presence of GAL4. DPP-4 is well known for cleavage and inactivation of our two most common incretins: glucose-dependent insulinotropic polypeptide and proglucagon-derived peptide glucagon-like peptide-1 (GLP-1). The inactivation of glucose-dependent insulinotropic polypeptide and GLP-1 by DPP-4 leads to several cardiometabolically adverse effects, including endothelial dysfunction, insulin resistance, and hyperlipidaemia. Thus, the introduction of incretin-based anti-diabetic medication in the form of DPP-4 inhibitors or GLP-1 agonists represented a major advance in diabetes treatment, without risks of hypoglycaemia or weight gain. However, the use of DPP-4 inhibitors has elicited some concern due to increased hospitalization for HF and a recent meta-analysis consisting of both randomized clinical trials and observational studies suggesting an increased risk in certain patients. In contrast to this, the GLP-1 agonist liraglutide was the first anti-diabetic medication to be approved as therapy to reduce CVD in patients with diabetes. Accordingly, one possible explanation for our findings is that increased levels of GAL4 lead to an increased expression of DPP-4 and thus reduced activity of the beneficial incretin GLP-1. This would also support our original finding of GAL4’s association with incident diabetes. Finally, researchers from Sweden, also using the Olink Proseek CVD III panel, reported that GAL4 was associated with aortic stenosis requiring surgery in two separate cohorts and that GAL4 in the discovery cohort was associated with aortic stenosis in the absence of coronary artery disease. The last finding could, however, not be replicated in the validation cohort. Their findings could possibly be explained by the same mechanism described above, with increased levels of GAL4 leading to increased activity of DPP-4, as DPP-4 has been shown to induce aortic valve calcification.

Cathepsin D
Together with GAL4, CTSD was the only protein to be associated with all outcomes, where the finding of CTSD’s association with ACM, CVM, and incident HF in a general population appears to represent novel findings. CTSD has,
however, previously been linked to incident CE in a recent Swedish study.27

CTSD has more often been studied as an independent prognostic factor and potential target for anti-cancer treatment.28

CTSD is a lysosomal endopeptidase whose main functions include intracellular protein turnover and extracellular matrix breakdown, but due to its ability to cleave many different target proteins, there are several possible biological functions.28

CTSD is also present extracellularly in human atherosclerotic lesions. It is possible that CTSD released by macrophages participates in the modification of low-density lipoprotein, resulting in both extracellular and intracellular accumulation of lipids in the arterial intima.29 CTSD has also been suggested to participate in the apoptosis of foam cells, a determinant of plaque instability.30 These described mechanisms can add to the understanding of our findings. Furthermore, in patients with diabetes, CTSD has been shown to truncate ApoA1 (the main protein of HDL) to ApoA1\(\Delta (1-38)\), which binds to low-density lipoprotein and increases its susceptibility to oxidation, possibly contributing to the increased risk of CVD in diabetes.31

In the setting of an acute coronary syndrome (ACS), previous studies of CTSD are somewhat conflicting. Vivanco et al. used a proteomic approach to demonstrate that CTSD was significantly higher in the plasma of ACS patients as compared with healthy subjects.32 However, in a Turkish study of patients presenting with ACS, levels of CTSD were significantly and independently lower in patients who had a higher rate of in-hospital mortality, more severe coronary artery disease, and lower left ventricular ejection fraction.33 Finally, in another Turkish study based on 88 patients presenting with ST-elevation myocardial infarction, CTSD levels were increased at admission as compared with controls. However, at 6-month follow-up, the relationship was inverse, with lower levels of CTSD being associated with new-onset HF and recurrent adverse CE.34 The authors speculated that the lower levels of CTSD were a marker for impaired endogenous phagocytosis and remodelling.

These results are based on small studies and hard to interpret. Further, our findings of CTSD’s associations with mortality and cardiovascular outcomes in a general population might not be comparable with the findings in populations that were in acute distress.

Study strengths and limitations

The use of a well-characterized, prospective cohort with many participants and a long follow-up time is a significant strength of the current study; however, all diagnoses were based on retrieval from national registries and not clinical re-examination, which could potentially skew the results. Because we investigated a variety of outcomes with several known risk factors/markers contributing to their different pathogeneses, these risk factors/markers should be considered when conclusions are drawn regarding associations. The observational nature of this study prevents any conclusions to be drawn regarding causality. Furthermore, it was not possible to repeat or confirm measurements of the proteins through an additional method. The original selection of the population with oversampling of groups for glucometabolic disturbances mentioned in the Methods section may raise concerns of this cohort’s representation of the background population. Moreover, our data were collected at a single regional centre, comprising subjects of predominantly European descent, limiting generalizability of the results.

Conclusions

In this observational, prospective study, we identified the diabetes-associated proteins GAL4 and CTSD being associated with all investigated outcomes: ACM, CVM, incident CE, and incident HF in a general population. All findings, with the exception of CTSD’s association with incident CE, represent, to the best of our knowledge, novel findings.

Conflict of interest

None declared.

Funding

M.M. was supported by grants from the Wallenberg Centre for Molecular Medicine, Lund University (ALFSKANE-675271), Medical Faculty of Lund University (ALFSKANE-432021 and ALFSKANE-436111), Skåne University Hospital, the Crafoord Foundation, the Ernhold Lundström’s Research Foundation, Region Skåne, the Hulda and Conrad Mossfelt Foundation, the Southwest Skåne’s Diabetes Foundation, the Kock’s Foundation, the Research Funds of Region Skåne, and the Swedish Heart-Lung Foundation (2015-0322).

The MPP-RES study 2002–2006 was supported by The Swedish Heart-Lung Foundation, the Hulda and E Conrad Mossfelt’s Foundation, and the Ernhold Lundström’s Foundation to P.M.N.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Data S1. Endpoint definitions.
References

33. Vivanco F, Martin-Venegas M, Duran MC, Barderas MG, Blanco-Colio L,

Cardiovascular biomarkers predict post-discharge re-hospitalization risk and mortality among Swedish heart failure patients

John Molvin1,2,*, Amra Jujic1,2, Erasmus Bachus1,3, Widet Gallo1, Gordana Tasevska-Dinevska2, Hannes Holm1, Olle Melander1,3, Artur Fedorowski1,2 and Martin Magnusson1,2,4

1Department of Clinical Sciences, Lund University, Malmö, Malmö, Sweden; 2Department of Cardiology, Skåne University Hospital, Malmö, Carl-Bertil Laurells gata 9, 214 28, Malmö, Sweden; 3Department of Internal Medicine, Skåne University Hospital, Malmö, Malmö, Sweden; 4Wolffberg Centre for Molecular Medicine, Lund University, Lund, Lund, Sweden

Aim The aim of this study was to assess the predictive role of biomarkers, associated with cardiovascular stress and its neuroendocrine response as well as renal function, in relation to mortality and risk of re-hospitalization among consecutive patients admitted because of heart failure (HF).

Methods and results A total of 286 patients (mean age, 75 years; 29% women) hospitalized for newly diagnosed or exacerbated HF were analysed. Associations between circulating levels of mid-regional pro-adrenomedullin (MR-proADM), copeptin, C-terminal pro-endothelin-1, N-terminal pro-brain natriuretic peptide (NT-proBNP), cystatin C, and all-cause mortality as well as risk of re-hospitalization due to cardiac causes were assessed using multivariable Cox regression models. A two-sided Bonferroni-corrected P-value of 0.05/5 = 0.010 was considered statistically significant. All biomarkers were related to echocardiographic measurements of cardiac dimensions and function. A total of 57 patients died (median follow-up time, 17 months). In the multivariable-adjusted Cox regression analyses, all biomarkers, except C-terminal pro-endothelin-1, were significantly associated with increased mortality: NT-proBNP (hazard ratio (HR) 1.85, 95% confidence interval (CI) 1.17–2.17; \(P = 4.0 \times 10^{-4}\)), MR-proADM (HR 1.94, 95% CI 1.36–2.75; \(P = 2.2 \times 10^{-4}\)), copeptin (HR 1.70, 95% CI 1.22–2.36; \(P = 0.002\)), and cystatin C (HR 2.11, 95% CI 1.56–2.86; \(P = 1.0 \times 10^{-4}\)). A total of 90 patients were re-hospitalized (median time to re-hospitalization, 5 months). In multivariable Cox regression analyses, NT-proBNP was the only biomarker that showed significant association with risk of re-hospitalization due to cardiac causes (HR 1.43, 95% CI 1.10–1.87; \(P = 0.009\)).

Conclusions Among patients hospitalized for HF, elevated plasma levels of NT-proBNP, MR-proADM, copeptin, and cystatin C are associated with higher mortality after discharge, whereas NT-proBNP is the only biomarker that predicts the risk of re-hospitalization due to cardiac causes.

Keywords Heart failure (HF); Mid-regional pro-adrenomedullin (MR-proADM); Copeptin; C-terminal pro-endothelin-1 (CT-pro-ET-1); N-terminal pro-brain natriuretic peptide (NT-proBNP); Cystatin C

Received: 23 April 2019; Accepted: 1 June 2019

*Correspondence to: John Molvin, Department of Cardiology, Skåne University Hospital, Malmö, Carl-Bertil Laurells gata 9, 214 28 Malmö, Sweden. Email: john.molvin@med.lu.se

Introduction

Heart failure (HF) is not only one of our deadliest and most widespread diseases but also one of the most common causes of hospitalization and re-hospitalization.1 Although the care of patients with HF has improved over the last decades, physicians need better tools to predict adverse events and risk stratify patients hospitalized for HF.

Biomarkers have been shown to have limited value for clinical assessment in addition to traditional risk factors in regard to prediction of cardiovascular disease.2 However, biomarkers related to inflammation and haemodynamic stress have recently been shown to predict or rule out early post-discharge events in patients hospitalized for acute HF.3 In particular, creatinine, brain natriuretic peptides (BNPs), pro-adrenomedullin, and endothelin 1 (ET-1) were all significantly...
higher in subjects that died because of HF. Furthermore, these four biomarkers also showed additive value in low-risk vs. high-risk prediction of early post-discharge death or HF re-admission in patients hospitalized for acute HF.\(^3\)

In this study, we analysed the following biomarkers: mid-regional pro-adrenomedullin (MR-proADM), copeptin, C-terminal pro-endothelin-1 (CT-pro-ET-1), N-terminal pro-brain natriuretic peptide (NT-proBNP), and cystatin C; these are biomarkers associated with cardiovascular stress and the neuroendocrine response it incites as well as renal function to assess their predictive role in relation to mortality and risk of re-hospitalization in a Swedish prospective HF cohort. Finally, because echocardiography is the most common modality to diagnose and grade severity of HF, the plasma levels of the biomarkers were related to echocardiographic measurements of cardiac dimension and function.

Methods

Study population

The HeART and Brain Failure inVESTigation project in Malmö, Sweden (HARVEST—Malmö), is an ongoing study undertaken in patients hospitalized for HF (ICD-10: IS0) in Skåne University Hospital, Malmö.\(^4,5\) The inclusion criteria for the HARVEST study are admission to the Department of Cardiology or Internal Medicine for treatment of newly diagnosed or exacerbated HF. The only exclusion criterion is the inability to give informed consent. In case of severe cognitive impairment, informed consent has been collected from relatives.

Between March 2014 and October 2017, a total of 283 consecutive patients hospitalized for HF were included and underwent clinical examination. Of these, 268 patients had complete dataset on all covariates and were included in the present analysis. The study was approved by the ethical review board at Lund University, Sweden. A written informed consent was obtained from all participants.

Clinical examination

After admission to the clinical ward, study participants were examined with anthropometric measurements, and blood samples were drawn after overnight fast. Body mass index was calculated as kg/m\(^2\), and data regarding the study participants’ medication were collected. Prevalent diabetes was defined as either self-reported diagnosis of type 2 diabetes or use of antidiabetic medication. Hypertension was defined as either systolic blood pressure \geq140 mmHg or diastolic blood pressure \geq90 mmHg.\(^6\) A diagnosis of atrial fibrillation was based on previous hospital records or on admission echocardiography. Information about patients’ medication was retrieved at discharge.

Laboratory assays

Analyses of high-density lipoprotein and plasma cholesterol were carried out upon admission at the Department of Clinical Chemistry, Skåne University Hospital, Malmö, participating in a national standardization and quality control system. For the biomarker analyses, blood samples were collected after admission within 24 h in a fasting condition. Blood samples were stored at -80 °C.

N-terminal pro-brain natriuretic peptide

N-terminal pro-brain natriuretic peptide was analysed at the Department of Clinical Chemistry, Skåne University Hospital, Malmö, participating in a national standardization and quality control system using ElectroChemiluminescenceimmunoassay (Cobas NPU21571).

Cystatin C

Cystatin C was analysed at the Department of Clinical Chemistry, Skåne University Hospital, using an automated particle-based immunoassay (Hitachi Modular P analysis system; Roche, Basel, Switzerland).

Copeptin

Copeptin was measured at baseline using an ultrasensitive assay on KRYPTOR Compact Plus analyzers and a commercial sandwich immunoluminometric assay (Thermo Fisher Scientific, B.R.A.H.M.S Biomarkers) as previously described.\(^7\) The lower detection limit was 0.4 pmol/L, and the functional assay sensitivity ($<20\%$ inter-assay coefficient of variation) was less than 1 pmol/L.

Mid-regional pro-adrenomedullin

The MR-proADM levels were analysed at baseline via specific sandwich immunoluminometric assays (KRYPTOR, B.R.A.H.M.S, Berlin, Germany) in EDTA-treated plasma.\(^8\) Mean inter-assay coefficient of variation was $<10\%$.\(^9\)

C-terminal pro-endothelin-1

C-terminal pro-endothelin-1 was measured at baseline using Thermo Fisher Scientific B.R.A.H.M.S CT-pro-ET-1 KRYPTOR. The analytical detection limit of CT-pro-ET-1 was 0.4 pmol/L, and inter-laboratory coefficient of variation was $<10\%$ for values >10 pmol/L.\(^10\)

Echocardiography

Conventional transthoracic echocardiograms were obtained using a Philips IE33 (Philips, Andover, MA, USA) with a 1–5 MHz transducer (5S-1) or with a GE Vingmed Vivid 7 Ultrasound (GE, Vingmed Ultrasound, Horten, Norway) with a 1–4 MHz transducer (M3S). All studies were performed by experienced sonographers. Cine loops were obtained from standard views (parasternal long axis and apical four chamber views).
and two chamber). Measurements were performed offline using Xcelera 4.1.1 (Philips Medical Systems, The Netherlands) according to the recommendations of the American Society of Echocardiography.\(^1\)\(^2\) Internal left and right ventricular dimensions were measured from parasternal long-axis view at end diastole. Measurements of wall thickness were obtained in two-dimensional end-diastolic parasternal long-axis view. Left ventricular mass (LVM) was calculated according to the Devereux formula: LVM (g) = \(0.8([LVEDD + IVSd + PWD]^3 - LVEDD^3]) + 0.6.\(^1\)\(^2\) Left ventricular volumes were calculated using the biplane Simpson method of discs, by manual tracing (papillary muscles included in the cavity) in two-dimensional end-diastolic and end-systolic frames defined as the largest and smallest left ventricular cavities, respectively, in apical four-chamber and two-chamber projections. Ejection fraction (EF) was calculated automatically from end-diastolic volume (EDV) and end-systolic volume (ESV) using the following formula: EF = (EDV - ESV) EDV. For assessment of left atrium (LA) volumes, the biplane area–length method was used: LA volume = \((0.85 \times \text{LA Area} 4 \times \text{LA Area} 2 \times \text{ch} \times \text{Longest atrial length})\). The values were indexed to body surface area. The LA endocardial borders were manually traced in both apical four-chamber and two-chamber views. Right atrium volumes were obtained using a single-plane disc summation technique in a dedicated apical four-chamber view.

Echocardiographic measurements were available in 198 of the study subjects with full data on age, sex, and biomarkers.

Endpoint assessment

Mortality was defined as all-cause mortality during the follow-up and was retrieved from the Swedish National Board of Health and Welfare’s Cause of Death Register. Data regarding the re-hospitalization due to cardiac causes were retrieved from the individual electronic medical records of the Skåne Health Care Region (Melior, Siemens Health Services, Solna, Sweden), which cover all the citizens in the study catchment area.

Statistics

The variables are presented as means (± standard deviation) or median [25th–75th inter-quartile range (IQR)]. All variables that were not normally distributed were log transformed (NT-proBNP, cystatin C, copeptin, MR-proADM, and CT-pro-ET-1). Multivariable-adjusted Cox regression models were applied and log transformed, and standardized values of NT-proBNP, cystatin C, copeptin, MR-proADM, and CT-pro-ET-1 were entered as independent variables. Model 1 included age and sex, whereas Model 2 included age, sex, body mass index, diabetes status, smoking, presence of atrial fibrillation, systolic blood pressure at admission, total cholesterol, high-density lipoprotein, and New York Heart Association class at admission. The time variable was calculated as follow-up time between screening and date of the first re-hospitalization, death, or end of follow-up through 1 October 2017. All analyses were performed using SPSS Windows Version 23.0, and a two-sided Bonferroni-corrected \(P\)-value of 0.05/5 = 0.010 was considered statistically significant in the Cox regression analysis.

Echocardiographic measurements of cardiac dimensions and hypertrophy (eight different modalities) were tested for possible associations with the five biomarkers in age-adjusted and sex-adjusted linear regression analysis, and a two-sided Bonferroni-corrected \(P\)-value of 0.05/13 = 0.0038 was considered statistically significant.

Results

The study population had a mean age of 75 years, were predominantly male (71%), 39% had diabetes, and 59% had previous or prevalent atrial fibrillation at inclusion. A high percentage of the patients received treatment with beta-blockers (92%) and angiotensin-converting enzyme inhibitors/angiotensin II receptor antagonists (78%) (Table 2).

During follow-up period (median time, 17 months; IQR [8–29]), a total of 57 patients died. The most frequent cause of death was HF (n = 21) followed by cardiac arrest (n = 7), cancer (n = 2), and stroke (n = 2). The remaining death causes (n = 21) consisted of different diagnoses and were defined as ‘other’ in the database.

A total of 90 patients were re-hospitalized (median follow-up time, 5 months; IQR [1–12]) because of cardiac causes. The most common cardiac causes of re-hospitalization were HF (n = 79) followed by cardiac arrhythmia (n = 10) and myocardial infarction (n = 1).

Biomarkers and mortality

In the Cox regression analyses adjusted for age and sex, all five biomarkers were significantly associated with increased post-discharge mortality (Table 2). In the multivariable analyses, all biomarkers, except CT-pro-ET-1, were significantly associated with mortality: cystatin C [hazard ratio (HR) 2.11, 95% confidence interval (CI) 1.56–2.86; \(P = 1.0 \times 10^{-6}\)], NT-proBNP (HR 1.85, 95% CI 1.17–2.17; \(P = 4.0 \times 10^{-4}\)), copeptin (HR 1.70, 95% CI 1.22–2.36; \(P = 0.002\)), and MR-proADM (HR 1.94, 95% CI 1.36–2.75; \(P = 2.2 \times 10^{-4}\) (Table 2). Receiver operating characteristic curve analyses revealed Bonferroni-corrected significant associations for all biomarkers and all-cause mortality, except for CT-pro-ET-1: NT-proBNP (HR 0.669, 95% CI 0.590–0.749; \(P < 0.001\)), cystatin C (HR 0.722, 95% CI 0.649–0.794; \(P < 0.001\)), copeptin (HR 0.671, 0.504–0.893; \(P = 0.01\)), MR-proADM (HR 0.76, 95% CI 0.634–0.929; \(P = 0.006\)), and NT-proET-1 (HR 0.698, 95% CI 0.572–0.852; \(P = 0.001\)).
In HF patients, the predictive value of cystatin C in
–0.95
–0.0
–24.17
–23.61
–20.0
–19.4
–18.9
–18.3
–16.8
–16.2
–15.6
–15.3
–13.7
–13.2
–11.5
–11.0
–10.6
–10.3
–10.0
–9.5
–9.0
–8.5
–8.0
–7.5
–7.0
–6.5
–6.0
–5.5
–5.0
–4.5
–4.0
–3.5
–3.0
–2.5
–2.0
–1.5
–1.0
–0.5
0
6.0
12.0
18.0
24.0
30.0
36.0
42.0
48.0
54.0
60.0
66.0
72.0
78.0
84.0
90.0
96.0
102.0
108.0
114.0
120.0

AHT, antihypertensive treatment; ARB, angiotensin II receptor antagonist; BMI, body mass index; CT-pro-ET-1, C-terminal proendothelin-1; DBP, diastolic blood pressure; GFR, glomerular filtration rate; HDL, high-density lipoprotein; HF, heart failure; HT, hypertension; LVEF, left ventricular ejection fraction; MR-proADM, mid-regional pro-adenomedullin; NT-proBNP, N-terminal pro-brain natriuretic peptide.

Values are means (± standard deviation) or median [25th–75th interquartile range].

95% CI 0.597–0.745; P < 0.001), MR-proADM (HR 0.655, 95% CI 0.575–0.734; P < 0.001), and CT-pro-ET-1 (HR 0.589, 95% CI 0.506–0.673; P = 0.036).

Biomarkers and echocardiographic measurements

High plasma NT-proBNP levels were robustly associated with reduced systolic left ventricular function as measured by EF (Table 4). MR-proADM and CT-pro-ET-1 were significantly associated with increased right ventricular size (Table 4). Finally, high levels of cystatin C were significantly associated with left posterior left ventricular wall hypertrophy and borderline associated with interventricular septum hypertrophy (Table 4).

Discussion

In this study, among patients hospitalized for newly diagnosed or exacerbated HF, elevated plasma levels of NT-proBNP, cystatin C, copeptin, and MR-proADM were significantly associated with increased post-discharge mortality on top of traditional cardiovascular risk factors. The only biomarker significantly associated with risk of re-hospitalization was NT-proBNP.

Cystatin C

Cystatin C is an established sensitive marker of glomerular filtration\(^\text{14}\) and a well-known predictor of cardiovascular disease.\(^\text{14}\) In HF patients, the predictive value of cystatin C in regard to mortality is higher compared with creatinine.\(^\text{15}\)

Table 1 Baseline characteristics of the study population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>75.1 (±11.0)</td>
</tr>
<tr>
<td>Sex (female), n (%)</td>
<td>77 (29)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>31 (11.6)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.4 (±5.6)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>137.4 (±27.7)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>79.2 (±15.3)</td>
</tr>
<tr>
<td>HT, n (%)</td>
<td>106 (39.6)</td>
</tr>
<tr>
<td>AHT, n (%)</td>
<td>268 (100%)</td>
</tr>
<tr>
<td>Beta-blockers, n (%)</td>
<td>137 (92)</td>
</tr>
<tr>
<td>ACEI or ARB, n (%)</td>
<td>208 (78)</td>
</tr>
<tr>
<td>Aldosterone antagonists, n (%)</td>
<td>14 (5)</td>
</tr>
<tr>
<td>Loop diuretics, n (%)</td>
<td>258 (96)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>105 (39)</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>3.6 (1.1)</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.2 (0.4)</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
<td>45.9 (16.8)</td>
</tr>
<tr>
<td>AF, n (%)</td>
<td>157 (58.6)</td>
</tr>
<tr>
<td>Newly diagnosed HF, n (%)</td>
<td>85 (32)</td>
</tr>
<tr>
<td>NT-proBNP (pmol/L)</td>
<td>4077.5 [2175.0–8125.8]</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>1.6 [1.3–2.1]</td>
</tr>
<tr>
<td>Copeptin</td>
<td>30.9 [14.7–49.2]</td>
</tr>
<tr>
<td>MR-proADM</td>
<td>1.6 [1.1–2.2]</td>
</tr>
<tr>
<td>CT-pro-ET-1</td>
<td>149.3 [118.9–200.0]</td>
</tr>
<tr>
<td>LVEF, n (%)</td>
<td>39.1 (16.2)</td>
</tr>
</tbody>
</table>

Table 2 Cardiac biomarkers and risk of all-cause mortality

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Total mortality (HR (95% CI))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystatin C (n = 258; 56 events)</td>
<td>Model 1 1.99 (1.52–2.62) 5.8 × 10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>Model 2 2.11 (1.56–2.86) 1.0 × 10⁻⁶</td>
</tr>
<tr>
<td>NT-proBNP (n = 262; 55 events)</td>
<td>Model 1 1.43 (1.30–1.57) 6.1 × 10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>Model 2 1.55 (1.39–1.74) 4.0 × 10⁻⁶</td>
</tr>
<tr>
<td>Copeptin (n = 259; 57 events)</td>
<td>Model 1 1.53 (1.20–2.20) 0.002</td>
</tr>
<tr>
<td></td>
<td>Model 2 1.80 (1.22–2.53) 0.002</td>
</tr>
<tr>
<td>MR-proADM (n = 250; 53 events)</td>
<td>Model 1 1.78 (1.32–2.41) 1.0 × 10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>Model 2 1.94 (1.36–2.75) 2.5 × 10⁻⁴</td>
</tr>
<tr>
<td>CT-pro-ET-1 (n = 260; 57 events)</td>
<td>Model 1 1.45 (1.08–1.95) 0.014</td>
</tr>
<tr>
<td></td>
<td>Model 2 1.42 (1.03–1.95) 0.034</td>
</tr>
</tbody>
</table>

CI, confidence interval; CT-pro-ET-1, C-terminal pro-endothelin-1; HR, hazard ratio; MR-proADM, mid-regional pro-adenomedullin; NT-proBNP, N-terminal pro-brain natriuretic peptide.

Cox regressions: Model 1: adjusted for age and sex; Model 2: adjusted for age, sex, body mass index, diabetes status, smoking, atrial fibrillation, systolic blood pressure at admission, total cholesterol, high-density lipoprotein, and New York Heart Association class at admission.
However, although these studies indicate that cystatin C might serve as a marker of disease susceptibility, a causal involvement has been repeatedly counter-proven in Mendelian randomization analyses. 16,17 Hence, high levels of cystatin C are only regarded as robust markers of kidney function. In this context, it is not unexpected to see that higher levels of cystatin C are strongly associated with mortality in our study. Poor renal function has been shown to increase risk of cardiac remodelling (e.g. left ventricular hypertrophy), 18 and indeed, we found an association between cystatin C and left ventricular hypertrophy, which in itself is a strong predictor of mortality. 18 Moreover, the median glomerular filtration rate value in our cohort was low (mean 50 000 mL/min), further implying an interplay between cardiac and renal dysfunction, often referred to as the cardio-renal syndrome.

N-terminal pro-brain natriuretic peptide

N-terminal pro-brain natriuretic peptide is an established biomarker reflecting HF severity and has earlier been associated with adverse outcomes in various HF populations. 20 In our study, NT-proBNP was the only biomarker that predicted re-hospitalization. Our results are in line with previous reports where elevated mature BNP levels predicted 30 day readmission for HF in over 50 000 subjects. 21 Our finding that NT-proBNP is associated with reduced left ventricular function is concordant with previous studies. 22

Table 3 Cardiac biomarkers and risk of re-hospitalization

<table>
<thead>
<tr>
<th>1st re-hospitalization</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystatin C (n = 257; 89 events)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 1.33 (1.08–1.65)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Model 2 1.27 (1.01–1.59)</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>NT-proBNP (n = 261; 89 events)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 1.39 (1.10–1.77)</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Model 2 1.43 (1.10–1.87)</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Copeptin (n = 258; 88 events)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 1.20 (0.96–1.49)</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td>Model 2 1.20 (0.94–1.53)</td>
<td>0.152</td>
<td></td>
</tr>
<tr>
<td>MR-proADM (n = 249; 81 events)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 1.28 (1.02–2.61)</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>Model 2 1.22 (0.93–1.596)</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>CT-pro-ET-1 (n = 260; 89 events)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 1.30 (1.04–1.62)</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Model 2 1.22 (0.95–1.57)</td>
<td>0.115</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; CT-pro-ET-1, C-terminal pro-endothelin-1; HR, hazard ratio; MR-proADM, mid-regional pro-adrenomedullin; NT-proBNP, N-terminal pro-brain natriuretic peptide.

Cox regressions: Model 1: adjusted for age and sex; Model 2: adjusted for age, sex, body mass index, diabetes status, smoking, atrial fibrillation, systolic blood pressure at admission, total cholesterol, high-density lipoprotein, and New York Heart Association class at admission.

Table 4 Biomarkers associated with echocardiographic measurements

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>EF (%)</th>
<th>LA volume (mL/m²)</th>
<th>LVMI (g/m²)</th>
<th>IVSDd (mm/mm²)</th>
<th>RVIDd (mm/m²)</th>
<th>LVIDd (mm/m²)</th>
<th>LA volume (mL/m²)</th>
<th>RVDD (mm/m²)</th>
<th>RVDD (mm/m²)</th>
<th>PWDd (mm/m²)</th>
<th>PWDd (mm/m²)</th>
<th>PWDd (mm/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystatin C (n = 189)</td>
<td>0.54 (1.26)</td>
<td>3.23 (2.08)</td>
<td>4.21 (3.08)</td>
<td>0.24 (0.54)</td>
<td>1.81 (0.55)</td>
<td>0.36 (0.26)</td>
<td>0.23 (1.23)</td>
<td>0.35 (1.67)</td>
<td>1.22 (0.5)</td>
<td>1.23 (0.24)</td>
<td>0.56 (1.23)</td>
<td></td>
</tr>
<tr>
<td>NT-proBNP (n = 191)</td>
<td>0.48 (1.29)</td>
<td>2.63 (1.04)</td>
<td>2.65 (1.28)</td>
<td>0.38 (0.79)</td>
<td>1.16 (0.47)</td>
<td>1.06 (0.33)</td>
<td>0.33 (1.28)</td>
<td>0.25 (0.24)</td>
<td>1.09 (0.47)</td>
<td>1.21 (0.24)</td>
<td>0.56 (1.23)</td>
<td></td>
</tr>
<tr>
<td>MR-proADM (n = 185)</td>
<td>0.56 (1.27)</td>
<td>3.23 (2.08)</td>
<td>4.21 (3.08)</td>
<td>0.24 (0.54)</td>
<td>1.81 (0.55)</td>
<td>0.36 (0.26)</td>
<td>0.23 (1.23)</td>
<td>0.35 (1.67)</td>
<td>1.22 (0.5)</td>
<td>1.23 (0.24)</td>
<td>0.56 (1.23)</td>
<td></td>
</tr>
</tbody>
</table>

β are unstandardized coefficients. Linear regressions are adjusted for age and sex.

J. Molvin et al.

DOI: 10.1002/ehf2.12486

ESC Heart Failure 2019; 6: 992–999
Copeptin

Copeptin is located in the C-terminal section of the arginine vasopressin precursor and is a long-term stable pro-arginine vasopressin surrogate marker. It has been implicated in poor outcome and mortality in numerous diseases such as diabetes, myocardial infarction, and stroke. Copeptin is highly prognostic of 90 day adverse events in patients with acute HF, adding prognostic value to clinical predictors. A recent meta-analysis comprising 10 prospective cohort studies demonstrated that the predictive value of copeptin is comparable with NT-proBNP for all-cause mortality in HF patients. However, the possible use of copeptin as a target in biomarker-guided therapy in clinical practice remains to be investigated.

Mid-regional pro-adrenomedullin

Adrenomedullin is a hormone with vasodilatory, natriuretic, and hypotensive effects. As adrenomedullin is an unstable hormone, its mid-regional prohormone fragment (MR-proADM) is more suitable for measurements, and its concentrations are correlated with those of adrenomedullin. A recent trial that included HF patients demonstrated that MR-proADM predicted mortality within 2 weeks superiorly to both mature BNP and NT-proBNP. When copeptin and MR-proADM were combined, the 14 day mortality prediction improved additionally. In a model where MR-proADM was added to BNP/NT-proBNP, the prediction of 90 day mortality significantly improved. The association between MR-proADM and right ventricular size deserves further comment. Adrenomedullin has previously been proposed to participate in the mechanism that counteracts hypertension in the pulmonary circulation. Compensatory elevated levels of MR-proADM can therefore be expected in conditions that are associated with elevated pulmonary arterial pressure (e.g. decompensated HF) and consequently, right ventricular dilation, as seen here.

C-terminal pro-endothelin-1

Endothelin 1 is a potent vasopressor peptide and positive inotrope that has been implicated in myocardial infarction, hypertension, and HF. The C-terminal fragment of the endothelin-1 prohormone peptide (CT-pro-ET-1) is a stable surrogate marker for the instable ET-1. A recent meta-analysis focused on ET-1, pro-endotelin-1, and CT-pro-ET-1 demonstrated that increased levels of all three isoforms of the endothelin family were associated with poor prognosis or mortality in HF populations. In the light of increased ET-1 levels and their association with elevated pulmonary vascular resistance, which in turn leads to right ventricular dilatation and failure, our association between CT-pro-ET-1 levels and right ventricular diameter are sound and logical. As ET-1 is highly expressed in the lung, it can contribute to a strong vasoconstriction of the pulmonary arteries and veins and, consequently, to pulmonary hypertension.

In summary, progression of HF evokes abnormal neurohormonal compensatory responses. Measurements of biomarkers of neurohormonal systems could serve as novel tools for risk prediction in HF patients. However, it is necessary to emphasize that their clinical utility should be a target of further exploration. Taken together, our findings consolidate some of the prior observations on cardiovascular risk biomarkers and their predictive potential in relation to adverse outcomes in HF patients.

Study limitations

There are several strengths and limitations to this study. As we included patients admitted for new or worsening HF, with inability to deliver informed consent to the study as only exclusion criteria, our study population is most likely representative of the real-life clinical experience. However, our data were collected at a single centre, and the sample size was relatively small, which limits their applicability to other populations of HF patients. Moreover, the subjects included in HARVEST—Malmö were mainly of European descent, and the conclusions drawn might not be generalizable to all ancestries.

Conclusions

Among patients hospitalized for HF, elevated plasma levels of NT-proBNP, MR-proADM, copeptin, and cystatin C are significantly associated with increased post-discharge mortality, whereas NT-proBNP is the only biomarker that independently predicts the risk of re-hospitalization.

Acknowledgements

We thank the research nurses Hjördis Jernhed and Dina Chatziapostolou for their valuable contributions, and we thank all the staff at the echocardiographic laboratory at Skåne University Hospital, Malmö. The Knut och Alice Wallenberg’s Stiftelse is acknowledged for generous support.

Conflict of interest

None declared.
Ethics statement

The study was approved by the ethics committee at Lund University, Sweden. All participants in this study signed a written informed consent form.

Data availability statement

Data will be available upon request.

References

Funding

Dr Magnusson was supported by grants from the Medicinska Fakulteten, Lunds Universitet, Skåne University Hospital, the Crafoord Foundation, the Enhold Lundström Stiftelse, the Region Skåne, the Hulda och E Conrad Mossfélts Stiftelse for Vetenskaplig Forsknin Inom Hjärt- och Kärlsjukdomarnas Område, the Southwest Skåne Diabetes Foundation, the Kocksa Foundation, the Research Funds of Region Skåne, the Häjrt-Lungfonden, and the Wallenberg Center for Molecular Medicine, Lund University.

Paper IV
Bioactive adrenomedullin, proenkephalin A and clinical outcomes in an acute heart failure setting

John Molvin,1,2 Amra Jujic,1,2 Silvia Navarin,3,4 Olle Melander,2,5 Giada Zoccoli,3,4 Oliver Hartmann,6 Andreas Bergmann,6 Joachim Struck,6 Erasmus Bachus,6 Salvatore Di Somma,3,4 Martin Magnusson1,2

ABSTRACT

Objectives In an acute heart failure (AHF) setting, proenkephalin A 119–159 (penKid) has emerged as a promising prognostic marker for predicting worsening renal function (WRF), while bioactive adrenomedullin (bio-ADM) has been proposed as a potential marker for congestion. We examined the diagnostic value of bio-ADM in congestion and penKid in WRF and investigated the prognostic value of bio-ADM and penKid regarding mortality, rehospitalisation and length of hospital stay in two separate European AHF cohorts.

Methods Bio-ADM and penKid were measured in 530 subjects hospitalised for AHF in two cohorts: Swedish HeArt and bRain failure inVESTigation trial (HARVEST-Malmö) (n=322, 30.1% female; mean age 75.1±11.1 years; 12 months follow-up) and Italian GREAT Network Rome study (n=208, 54.8% female; mean age 78.5±9.9 years; no follow-up available).

Results PenKid was associated with WRF (area under the curve (AUC) 0.65, p<0.001). In multivariable logistic regression analysis of the pooled cohort, penKid showed an independent association with WRF (adjusted OR 1.74, p=0.004). Bio-ADM was associated with peripheral oedema (AUC 0.71, p<0.001), which proved to be independent after adjustment (aOR 2.30, p<0.001). PenKid was predictive of inhospital mortality (OR 2.24, p<0.001). In HARVEST-Malmö, both penKid and bio-ADM were predictive of 1-year mortality (aOR 1.34, p=0.038 and aOR 1.39, p=0.030). Furthermore, bio-ADM was associated with rehospitalisation (aOR 1.25, p=0.007) and length of hospital stay (β=0.702, p=0.005).

Conclusion In two different European AHF cohorts, bio-ADM and penKid perform as suitable biomarkers for early detection of congestion severity and WRF occurrence, respectively, and are associated with pertinent clinical outcomes.

INTRODUCTION

The cardiorenal syndrome can generally be defined as a pathophysiological disorder of the heart and kidneys, where acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ.1 Worsening renal function (WRF) and neurohormonal activation are important contributors to fluid retention and acute decompensation in heart failure. The use of biomarkers might help to differentiate between different phenotypes in acute heart failure (AHF) with different outcomes and optimal treatment strategies. Biomarkers reflecting haemodynamic stress/systolic dysfunction are the B-type natriuretic peptides (BNP/N-terminal proBNP (NT-proBNP)), which are often used to follow the progression of heart failure.2 However, their prognostic value in predicting death in AHF is suboptimal.3 Also, high baseline values of BNP in patients with AHF have not shown any association with clinical signs of congestion,4 5 and NT-proBNP-guided therapy was recently shown not to

Key questions

What is already known about this subject?

In an acute heart failure setting, proenkephalin A 119–159 (penKid) has emerged as a promising prognostic marker for predicting worsening renal function with much faster reactivity time then creatinine, while bioactive adrenomedullin (bio-ADM) has been proposed as a potential marker for assessment of residual congestion.

What does this study add?

This study substantiates the scarce knowledge about both bio-ADM and penkid and identifies two novel biomarkers for congestion assessment and kidney function. Congestion assessed by bio-ADM was associated with longer hospital stay and higher risk of rehospitalisation. penKid was associated with worsening renal function and higher risk of both in-hospital and postdischarge mortality.

How might this impact on clinical practice?

Bio-ADM might help identify subjects with residual congestion, who could benefit from intensified diuretic therapy. penKid, with its fast rise when kidneys are damaged, could help identify patients who do not tolerate the intensified diuretic therapy, faster than creatinine.
significantly improve time to first hospitalisation or cardiovascular mortality.6

A biomarker reflecting renal status, Cystatin C, has been found to predict clinical outcomes in patients with AHF with greater accuracy than creatinine, estimated glomerular filtration rate (eGFR) and blood urea nitrogen. However, these results derive mostly from patients with apparently preserved renal function and may not be applicable to patients with heart failure with concomitant renal dysfunction.7 Consequently, new biomarkers are called on for an improved cardiorenal risk stratification of patients with AHF.

Bioactive adrenomedullin (bio-ADM) is a vasoactive peptide hormone and a protective factor of vascular integrity.7 A new immunoassay especially developed to measure bio-ADM8 was recently used in a study suggesting bio-ADM as a marker of congestion in AHF.9 Furthermore, bio-ADM has been shown to be associated with adverse events within 30 days after hospitalisation for AHF.10

Enkephalin peptides exert cardiodepressive effects.11 One of those is proenkephalin A 119–159 (penKid, also described as PENK), freely filtered through the glomerulus.12 In chronic heart failure, higher penKid concentrations were found to be associated with lower GFR and renal blood flow.13 PenKid has also been shown to predict adverse clinical outcomes in acute myocardial infarction14 and AHF.15 Thus, the possibility to adequately assess congestion together with real time renal function could be of significant value in the prediction and prevention of the cardiorenal syndrome and ultimately improving patient care.

In the present study, taking advantage of two separate AHF cohorts from Sweden and Italy, we examined the association between bio-ADM and clinical signs of congestion and the relationship between penKid and WRF. Furthermore, we assessed the possible impact of bio-ADM and penKid related to worsening of prognosis for each biomarker separately.

METHODS

HARVEST-Malmö

The HeArt and bRain failure inVESTigation trial (HARVEST-Malmö)16 is an ongoing study in Malmö, Sweden, with the sole inclusion criteria being admitted to a cardiology or internal medicine ward for treatment of heart failure regardless of the aetiology, duration or severity. Between March 2014 and August 2018, 324 consecutive patients admitted to cardiology or internal medicine wards under the diagnosis of either new onset or worsening chronic congestive heart failure were enrolled. Inability to consent to the study was the only exclusion criteria. For patients with severe cognitive impairment, defined as mini mental test examination score <13 points, the relatives are instead being informed and asked for permission for the patient’s behalf. The study was complied with the Declaration of Helsinki. A written informed consent was obtained from all participants.

GREAT Network Rome

Between May 2013 and March 2015, 245 patients that were referred to the emergency department of Sant’Andrea hospital complaining of heart failure symptoms and signs and who received a final diagnosis of new onset or worsening chronic congestive heart failure were enrolled to the GREAT Network Acute Heart Failure Rome Study, with inability to consent to the study as the only exclusion criteria. The study protocol was complied with the Declaration of Helsinki. A written informed consent was obtained from all participants.

Clinical examination

In both cohorts, the examination included a clinical examination, blood sample donations and blood pressure measurements at admission. Diabetes was defined as either self-reported physician diagnosis of type 1 or type 2 diabetes, or use of antidiabetic medication or fasting plasma glucose ≥7 mmol/L. Prior heart failure was defined as either prior hospitalisation for heart failure or a heart failure diagnosis prior to inclusion in the study.

Laboratory assays

All laboratory assays are described in the online Supplemental Material.

Outcomes

In both cohorts, patients were examined for signs of congestion (dyspnoea, oedema, signs of congestion on X-ray and auscultatory lung rales). Further, a clinical congestion score (CCS) was calculated by summing the individual scores for each sign of congestion. A score from 0 to 4 points was attributed to each patient.

WRF was defined as an increase of plasma creatinine of ≥26.5 μmol/L or 0.3 mg/dL or 50% higher than the admission value within 48 hours of admission.13 17 In-hospital mortality was defined as all-cause mortality during the hospital stay in both cohorts. For HARVEST-Malmö, where we had follow-up data, 1-year mortality was defined as all-cause mortality within 1 year from study inclusion and obtained from Swedish total population register Statistics Sweden.

Rehospitalisation (available in HARVEST-Malmö only) was defined as the first of any unplanned readmissions for worsening heart failure until 2 July 2018 and was obtained through regional administrative patient registries.

Statistics

In both cohorts, variables with non-normal distribution (bio-ADM and penKid) were log-transformed and normalised (using z-score transformation) prior to analyses. Since different assays were used for natriuretic peptides, the data from both cohorts were log transformed and then normalised (using z-score transformation) prior to pooling of the natriuretic peptide data. For all analyses,
subjects with missing data on any of the covariates were excluded.

The area under the curve (AUC) of bio-ADM for peripheral oedema, in-hospital mortality, 1-year mortality and rehospitalisation was calculated by receiver operating characteristic (ROC) analysis. As for penKid, AUC was calculated for WRF and in-hospital mortality. The cross-sectional associations of bio-ADM with each of the four signs of congestion, as well as bio-ADM with CCS, were explored using logistic regression models.

Correlations between penKid and creatinine on admission were explored using Spearman’s correlation test. The cross-sectional associations of penKid and WRF were explored using two logistic regression models: crude (univariable) and in the pooled cohort adjusted for diabetes, systolic blood pressure (SBP), ACE inhibitor (ACEi), angiotensin receptor blockers (ARB), beta-blockers, prior heart failure, creatinine and BNP, all previously associated with WRF (multivariable). The cross-sectional associations of bio-ADM and penKid with in-hospital mortality were explored using univariable and bivariable logistic regression models due to the low event rate (24 events in the pooled cohort).

In HARVEST-Malmö, additional analyses were carried out for 1-year mortality and rehospitalisation at follow-up, using Cox regression models. In analyses of
 RESULTS

Detailed characteristics of the study populations are presented in table 1. Number of events for peripheral oedema and WRF within low and high levels of bio-ADM and penKid are presented in the online supplementary table 1, where low and high levels are defined based on previous descriptions in literature.8 12

Congestion

The ROC analyses for bio-ADM and peripheral oedema resulted in an AUC of 0.745 (95% CI 0.684 to 0.807) (HARVEST-Malmö), 0.661 (95% CI 0.576 to 0.726) (GREAT Network Rome) and 0.710 (95% CI 0.663 to 0.757) (pooled cohort). Logistic regression analyses carried out for bio-ADM and each sign of congestion (dyspnoea, oedema, signs of pulmonary oedema on chest X-ray and lung rales) revealed that each one SD increment of bio-ADM was significantly associated with peripheral oedema (table 2). The distribution of bio-ADM according to peripheral oedema for each centre is illustrated in figure 1. Analyses of bio-ADM and severe congestion (congestion score of 4) revealed significant associations between each one SD increment of bio-ADM and risk of having the highest congestion score; however, those associations are driven mainly by the presented associations of bio-ADM and peripheral oedema (table 2). Subgroup analyses revealed that the association of bio-ADM and peripheral oedema was present and significant in both sexes when analysed separately (women: OR 1.42 (95% CI 0.69 to 2.56); p=0.394). However, due to the low number of events when analysed separately, those results should be interpreted with caution.

Worsening renal function

Spearman correlation analyses for penKid and plasma creatinine at admission resulted in R of 0.577 (p<0.001) (HARVEST-Malmö), 0.645 (p<0.001) (GREAT Network Rome) and 0.598 (p<0.001) (pooled cohort).

The ROC analyses for penKid and WRF resulted in an AUC of 0.654 (95% CI 0.532 to 0.757) (HARVEST-Malmö), 0.591 (95% CI 0.490 to 0.692) (GREAT Network Rome) and 0.632 (95% CI 0.583 to 0.721) (pooled cohort). In crude logistic regression models, and further adjusted for diabetes, SBP, ACEi, angiotensin receptor blockers (ARB), beta-blockers, prior heart failure, creatinine and BNP in the pooled cohort, penKid was associated with WRF (table 3). Further, we also analysed WRF using the delta creatinine (creatinine after 48 hours—creatinine at admission) as a dependent variable in multivariate linear regression analyses, and the analyses revealed significant associations between penKid and delta creatinine (crude model (β −0.422; p=0.002); multivariate model adjusted for diabetes, SBP, ACEi, ARB, beta-blockers, prior heart failure, creatinine and BNP (β −0.392; p=0.004) in the pooled cohort. The distribution of penKid according to WRF for each centre is illustrated in figure 2. Subgroup analyses revealed that the association of penKid and WRF was present and significant in men (OR 3.72 (95% CI 2.90 to 6.92); p=0.001), but only a trend was seen in women (OR 1.42 (95% CI 0.98 to 2.05); p=0.063) in fully adjusted model.

In-hospital mortality

Bioactive adrenomedullin

Univariable and bivariable logistic regression models exploring associations of bio-ADM with in-hospital mortality are presented in table 4 (n=470; 24 events). As for ROC analyses, the AUC for bio-ADM and in-hospital mortality was 0.614 (95% CI 0.467 to 0.761) (HARVEST-Malmö), 0.657 (95% CI 0.507 to 0.807) (GREAT Network Rome) and 0.606 (95% CI 0.483 to 0.729) (pooled cohort). Subgroup analyses revealed that the association of bio-ADM and in-hospital mortality was present and significant in men (OR 1.76 (95% CI 1.04 to 2.97); p=0.034), but not in women (OR 1.33 (95% CI 0.69 to 2.56); p=0.394). However, due to the low number of events when analysed separately, those results should be interpreted with caution.

Proenkephalin

Univariable and bivariable logistic regression models exploring associations of penKid with in-hospital mortality are presented in table 4, where penKid was associated with in-hospital mortality in all analyses. The ROC analyses for penKid and in-hospital mortality resulted in an AUC of 0.630 (95% CI 0.396 to 0.864) (HARVEST-Malmö), 0.732 (95% CI 0.596 to 0.868) (GREAT Network Rome) and 0.735 (95% CI 0.618 to 0.851) (pooled cohort). Subgroup analyses revealed that the association of penKid and in-hospital mortality was present and significant in both sexes when analysed separately (men: OR 2.46 (95% CI 1.63 to 3.69); p<0.001 and women: OR 2.17 (95% CI 1.56 to 2.97); p=0.043). However, due to the low event rate for in-hospital mortality in both sexes when analysed separately, those results should be interpreted with caution.

One-year mortality

Due to the low event rate for in-hospital mortality in HARVEST-Malmö, we performed additional analyses of biomarkers and 1-year mortality (n=290, 50 events).

Bioactive adrenomedullin

ROC analyses of bio-ADM for 1-year mortality resulted in an AUC of 0.586 (95% CI 0.502 to 0.669), p=0.044. Cox regression models revealed that each one SD increment in bio-ADM was associated with increased 1-year mortality in the crude model (HR 1.38, 95% CI 1.03 to 1.74, p=0.029), age-adjusted and sex-adjusted model (HR 1.33, 95% CI 1.03 to 1.72, p=0.029) and further adjusted for diabetes, SBP, atrial fibrillation, smoking, NT-proBNP and prior heart failure (HR 1.35, 95% CI 1.01 to 1.79, p=0.043).
Table 2 Associations of bio-ADM and congestion

<table>
<thead>
<tr>
<th></th>
<th>HARVEST-Malmö</th>
<th>GREAT Network Rome</th>
<th>Pooled cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N; events OR (95% CI) P value</td>
<td>N; events OR (95% CI) P value</td>
<td>N; events OR (95% CI) P value</td>
</tr>
<tr>
<td>Peripheral oedema</td>
<td>276; 200 2.93 (2.04 to 4.21) <0.001</td>
<td>192; 116 1.71 (1.24 to 2.36) <0.001</td>
<td>486; 322 2.22 (1.76 to 2.80) <0.001</td>
</tr>
<tr>
<td>Persistent dyspnoea</td>
<td>295; 272 1.03 (0.67 to 0.8) 0.888</td>
<td>191; 177 0.76 (0.46 to 1.23) 0.302</td>
<td>486; 449 0.90 (0.64 to 1.24) 0.507</td>
</tr>
<tr>
<td>Congestion on X-ray</td>
<td>274; 239 0.98 (0.69 to 1.39) 0.914</td>
<td>188; 169 1.11 (0.68 to 1.79) 0.677</td>
<td>482; 408 0.99 (0.75 to 1.33) 0.977</td>
</tr>
<tr>
<td>Rales</td>
<td>291; 209 0.96 (0.75 to 1.23) 0.746</td>
<td>192; 160 1.09 (0.74 to 1.61) 0.650</td>
<td>483; 364 0.93 (0.76 to 1.15) 0.486</td>
</tr>
<tr>
<td>Severe congestion</td>
<td>253; 122 1.39 (1.22 to 2.06) <0.001</td>
<td>187; 76 1.30 (0.97 to 1.75) 0.077</td>
<td>440; 198 1.47 (1.21 to 1.78) <0.001</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral oedema</td>
<td>276; 200 3.12 (2.14 to 4.56) <0.001</td>
<td>192; 116 1.69 (1.22 to 2.35) 0.002</td>
<td>486; 322 2.29 (1.81 to 2.91) <0.001</td>
</tr>
<tr>
<td>Persistent dyspnoea</td>
<td>295; 272 1.04 (0.68 to 1.59) 0.852</td>
<td>191; 177 0.72 (0.42 to 1.21) 0.213</td>
<td>486; 449 0.92 (0.66 to 1.29) 0.239</td>
</tr>
<tr>
<td>Congestion on X-ray</td>
<td>274; 239 0.97 (0.68 to 1.38) 0.967</td>
<td>188; 169 1.12 (0.69 to 1.82) 0.653</td>
<td>482; 408 0.98 (0.73 to 1.29) 0.867</td>
</tr>
<tr>
<td>Rales</td>
<td>291; 209 0.96 (0.75 to 1.24) 0.780</td>
<td>192; 160 1.11 (0.75 to 1.64) 0.598</td>
<td>483; 364 0.96 (0.78 to 1.19) 0.722</td>
</tr>
<tr>
<td>Severe congestion</td>
<td>253; 122 1.65 (1.26 to 2.17) <0.001</td>
<td>187; 76 1.27 (0.94 to 1.71) 0.115</td>
<td>440; 198 1.48 (1.21 to 1.80) <0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral oedema</td>
<td>276; 200 3.01 (2.02 to 4.47) <0.001</td>
<td>192; 116 1.79 (1.26 to 2.54) 0.001</td>
<td>486; 322 2.30 (1.29 to 2.97) <0.001</td>
</tr>
<tr>
<td>Persistent dyspnoea</td>
<td>295; 272 0.97 (0.61 to 1.55) 0.903</td>
<td>191; 177 0.79 (0.45 to 1.39) 0.451</td>
<td>486; 449 0.95 (0.66 to 1.36) 0.948</td>
</tr>
<tr>
<td>Congestion on X-ray</td>
<td>274; 239 0.93 (0.65 to 1.34) 0.702</td>
<td>188; 169 0.99 (0.58 to 1.69) 0.973</td>
<td>482; 408 0.90 (0.67 to 1.22) 0.491</td>
</tr>
<tr>
<td>Rales</td>
<td>291; 209 0.94 (0.71 to 1.25) 0.680</td>
<td>192; 160 1.18 (0.78 to 1.80) 0.436</td>
<td>483; 364 0.98 (0.78 to 1.24) 0.894</td>
</tr>
<tr>
<td>Severe congestion</td>
<td>253; 122 1.58 (1.18 to 2.11) <0.002</td>
<td>187; 76 1.33 (0.97 to 1.82) 0.079</td>
<td>440; 198 1.46 (1.18 to 1.80) <0.001</td>
</tr>
</tbody>
</table>

Values are OR with 95% CI for associations of bio-ADM and each sign of congestion, as well as bio-ADM and severe congestion (highest values on the congestion score (CCS=4). Model 1 is age and sex adjusted. Model 2 is further adjusted for systolic blood pressure, log-transformed and normalised B-type natriuretic peptide, prevalent atrial fibrillation and prior heart failure. CCS, clinical congestion score; HARVEST, HeArt and bRain failure inVESTigation trial; bio-ADM, bioactive adrenomedullin.
Pronkenthalin

ROC analyses of penKid and 1-year mortality resulted in an AUC of 0.639 (95% CI 0.549 to 0.729), \(p = 0.001 \). Cox regression models revealed that each one SD increment in penKid levels was associated with increased 1-year mortality in crude analyses (HR 1.66, 95% CI 1.31 to 2.10, \(p < 0.001 \)), in an age-adjusted and sex-adjusted model (HR 1.49, 95% CI 1.14 to 1.94, \(p = 0.004 \)) and further adjusted

Table 3: Associations of penKid and worsening renal function

<table>
<thead>
<tr>
<th></th>
<th>HARVEST-Malmö N=323 (30 events)</th>
<th>GREAT Network Rome N=178 (37 events)</th>
<th>Pooled cohort N=501 (67 events)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95% CI P value</td>
<td>OR 95% CI P value</td>
<td>OR 95% CI P value</td>
</tr>
<tr>
<td>Univariable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.98 (0.95 to 1.02) 0.299</td>
<td>1.01 (0.97 to 1.04) 0.715</td>
<td>1.00 (0.98 to 1.03) 0.932</td>
</tr>
<tr>
<td>Sex</td>
<td>6.72 (1.57 to 28.8) 0.010</td>
<td>0.94 (0.48 to 1.84) 0.847</td>
<td>1.22 (0.73 to 2.04) 0.443</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.40 (0.65 to 3.03) 0.389</td>
<td>1.12 (0.56 to 2.2) 0.751</td>
<td>1.23 (0.74 to 2.04) 0.425</td>
</tr>
<tr>
<td>SBP</td>
<td>1.00 (0.98 to 1.01) 0.621</td>
<td>1.01 (1.00 to 1.02) 0.158</td>
<td>1.01 (1.00 to 1.02) 0.100</td>
</tr>
<tr>
<td>ACE-i</td>
<td>0.72 (0.34 to 1.52) 0.384</td>
<td>1.32 (0.66 to 2.64) 0.432</td>
<td>0.83 (0.51 to 1.37) 0.468</td>
</tr>
<tr>
<td>ARB</td>
<td>0.60 (0.22 to 1.64) 0.320</td>
<td>0.52 (0.21 to 1.31) 0.165</td>
<td>0.54 (0.28 to 1.06) 0.074</td>
</tr>
<tr>
<td>Betablockers</td>
<td>1.32 (0.38 to 4.56) 0.665</td>
<td>1.20 (0.61 to 2.36) 0.590</td>
<td>0.81 (0.47 to 1.39) 0.444</td>
</tr>
<tr>
<td>Prior HF</td>
<td>1.14 (0.84 to 1.55) 0.407</td>
<td>0.71 (0.35 to 1.42) 0.330</td>
<td>0.90 (0.62 to 1.31) 0.590</td>
</tr>
<tr>
<td>Creatinine</td>
<td>2.73 (1.79 to 4.18) <0.001</td>
<td>1.16 (0.83 to 1.62) 0.396</td>
<td>1.63 (1.28 to 2.08) <0.001</td>
</tr>
<tr>
<td>BNP</td>
<td>1.16 (0.79 to 1.70) 0.459</td>
<td>0.90 (0.64 to 1.26) 0.532</td>
<td>1.01 (0.78 to 1.29) 0.966</td>
</tr>
<tr>
<td>PenKid</td>
<td>1.81 (1.21 to 2.70) 0.004</td>
<td>1.37 (0.99 to 1.89) 0.059</td>
<td>1.67 (1.31 to 2.14) <0.001</td>
</tr>
<tr>
<td>Multivariable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.98 (0.95 to 1.01) 0.173</td>
<td>1.54 (0.80 to 2.98) 0.197</td>
<td>0.92 (0.61 to 1.41) 0.652</td>
</tr>
<tr>
<td>Sex</td>
<td>0.92 (0.51 to 1.66) 0.919</td>
<td>0.92 (0.51 to 1.66) 0.919</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.00 (0.99 to 1.01) 0.373</td>
<td>1.00 (0.99 to 1.01) 0.373</td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>0.80 (0.43 to 1.50) 0.483</td>
<td>0.80 (0.43 to 1.50) 0.483</td>
<td></td>
</tr>
<tr>
<td>ACEi</td>
<td>0.47 (0.21 to 1.04) 0.063</td>
<td>0.47 (0.21 to 1.04) 0.063</td>
<td></td>
</tr>
<tr>
<td>ARB</td>
<td>0.98 (0.50 to 1.91) 0.946</td>
<td>0.98 (0.50 to 1.91) 0.946</td>
<td></td>
</tr>
<tr>
<td>Prior HF</td>
<td>1.02 (0.72 to 1.43) 0.926</td>
<td>1.02 (0.72 to 1.43) 0.926</td>
<td></td>
</tr>
<tr>
<td>BNP</td>
<td>0.78 (0.57 to 1.06) 0.115</td>
<td>0.78 (0.57 to 1.06) 0.115</td>
<td></td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.68 (0.69 to 4.05) 0.251</td>
<td>1.68 (0.69 to 4.05) 0.251</td>
<td></td>
</tr>
<tr>
<td>PenKid</td>
<td>1.74 (1.20 to 2.53) 0.004</td>
<td>1.74 (1.20 to 2.53) 0.004</td>
<td></td>
</tr>
</tbody>
</table>

Values are OR with 95% CI. Multivariable results are reported for the pooled cohort adjusted for variables known from literature.

ACE-i, ACE inhibitors; ARB, angiotensin receptor blocker; BNP, B-type natriuretic peptide; HARVEST, HeArt and bRain failure inVESTigation trial; HF, heart failure; SBP, systolic blood pressure; penKid, proenkephalin A 119–159.
Table 4 Logistic regression model for in-hospital mortality for bio-ADM and penKid

<table>
<thead>
<tr>
<th></th>
<th>Univariable</th>
<th>Bivariable: BioADM</th>
<th>Bivariable: PenKid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95% CI</td>
<td>P value</td>
<td>OR 95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>1.04 0.99 to 1.09</td>
<td>0.067</td>
<td>1.54 1.03 to 2.31</td>
</tr>
<tr>
<td>Sex</td>
<td>0.53 0.24 to 1.16</td>
<td>0.112</td>
<td>1.58 1.05 to 3.77</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.85 0.37 to 1.92</td>
<td>0.689</td>
<td>1.52 1.01 to 2.28</td>
</tr>
<tr>
<td>SBP</td>
<td>0.99 0.98 to 1.01</td>
<td>0.254</td>
<td>1.48 0.98 to 2.25</td>
</tr>
<tr>
<td>ACE-i</td>
<td>0.60 0.26 to 1.36</td>
<td>0.217</td>
<td>1.49 0.99 to 2.23</td>
</tr>
<tr>
<td>ARB</td>
<td>0.92 0.46 to 1.81</td>
<td>0.798</td>
<td>1.51 1.01 to 2.27</td>
</tr>
<tr>
<td>Betablockers</td>
<td>0.20 0.09 to 0.46</td>
<td><0.001</td>
<td>1.61 1.08 to 2.40</td>
</tr>
<tr>
<td>Prior HF</td>
<td>0.54 0.25 to 1.19</td>
<td>0.127</td>
<td>1.63 1.09 to 2.46</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1.77 1.27 to 2.46</td>
<td>0.001</td>
<td>1.38 0.90 to 2.11</td>
</tr>
<tr>
<td>BNP</td>
<td>1.28 0.85 to 1.92</td>
<td>0.235</td>
<td>1.42 0.93 to 2.15</td>
</tr>
<tr>
<td>Smoking</td>
<td>0.43 0.10 to 1.84</td>
<td>0.255</td>
<td>1.47 0.97 to 2.21</td>
</tr>
<tr>
<td>Prevalent AF</td>
<td>0.47 0.20 to 1.09</td>
<td>0.078</td>
<td>1.50 1.01 to 2.25</td>
</tr>
<tr>
<td>Bio-ADM</td>
<td>1.50 1.00 to 2.26</td>
<td>0.051</td>
<td>1.29 1.56 to 3.15</td>
</tr>
<tr>
<td>PenKid</td>
<td>2.24 1.57 to 3.20</td>
<td><0.001</td>
<td>1.34 0.88 to 2.03</td>
</tr>
</tbody>
</table>

Values are OR with 95% CI. All results are reported for the pooled cohort (n=470, 24 events). Univariable results are presented as each variable’s associations with in-hospital mortality. Bivariable results are reported for penKid and bio-ADM, adjusted for each variable separately.

ACE-I, ACE inhibitors; AF, atrial fibrillation; ARB, angiotensin receptor blocker; BNP, B-type natriuretic peptide; Bio-ADM, bioactive adrenomedullin; HF, heart failure; SBP, systolic blood pressure; penKid, proenkephalin A 119–159.

for diabetes, SBP, atrial fibrillation, smoking, NT-proBNP and prior heart failure (HR 1.33, 95% CI 1.04 to 1.77, p=0.027).

Rehospitalisation

Bioactive adrenomedullin

ROC analyses of bio-ADM and rehospitalisation resulted in AUC of 0.585 (95% CI 0.517 to 0.654), p=0.017. Analyses of bio-ADM and risk of rehospitalisation (n=284; 188 events; mean follow-up time 174 days) were carried out in a crude model (HR 1.19, 95% CI 1.05 to 1.36, p=0.008), age-adjusted and sex-adjusted model (HR 1.19, 95% CI 1.05 to 1.36, p=0.008) and further adjusted for diabetes, SBP, atrial fibrillation, smoking, log-transformed and z-normalised BNP and prior heart failure (HR 1.15, 95% CI 1.06 to 1.47, p=0.007) and revealed that each one SD increment of bio-ADM was associated with increased risk of rehospitalisation.

Proenkephalin

Analyses of penKid and risk of rehospitalisation revealed that there were no significant associations (data not shown).

Length of hospital stay

Bioactive adrenomedullin

In linear regression analyses in the pooled cohort, each one SD increment of bio-ADM was associated with longer hospital stay on admission in crude analysis (β 0.700; p=0.004), in age-adjusted and sex-adjusted analysis (β 0.709; p=0.003), and remained so after further adjustment for diabetes, SBP, prevalent atrial fibrillation, smoking and prior heart failure (β 0.702; p=0.005).

Proenkephalin

In linear regression analyses, no significant associations were seen for penKid and length of hospital stay (data not shown).

DISCUSSION

In this observational study of two AHF cohorts, we could show that bio-ADM was a suitable biomarker for early detection and quantification of congestion severity (mainly driven by peripheral oedema), risk of rehospitalisation and longer hospital stay, while penKid was a suitable biomarker in detection of WRF occurrence and both in-hospital and 1-year mortality. This is, to our knowledge, the first time that data regarding penKid and bio-ADM are presented when used simultaneously in patients with AHF in two independent cohorts. These data imply that
in an everyday clinical setting, bio-ADM and penKid could be useful to guide diuretic therapy. Since increased bio-ADM is associated with clinical congestion, this might be used to identify individuals with the need of intensified diuretic therapy. As treatment of AHF and decongestion might be harmful to the kidneys, the combination of the two biomarkers appears advantageous, where penKid can aid in guiding the treatment so not to jeopardise renal function (figure 3).

Bioactive adrenomedullin
Bio-ADM is known as a vasodilation factor,18 and the prognostic value of bio-ADM has been shown in several different critical conditions.8 19 20 Moreover, its predictive role was recently extended to the AHF setting. Self et al showed that in patients with AHF, higher bio-ADM levels were associated with the composite primary outcome consisting of death, rehospitalisation, emergency dialysis, cardiac arrest with resuscitation, respiratory failure, prolonged hospitalisation and acute coronary syndrome within 30 days.10 Furthermore, they suggested that bio-ADM provides predictive information independent of more established biomarkers in AHF such as natriuretic peptides and troponins. This view is supported by our findings where bio-ADM predicted 1-year mortality and in-hospital mortality. The confirmation of congestion by laboratory results is, at present, challenging, and the evaluation of bio-ADM might provide a new opportunity to guide clinical decisions. In this context, our findings showing high levels of bio-ADM to be associated with increased length of hospital stay and increased risk of rehospitalisation are of great interest, suggesting bio-ADM as a possible new tool to pinpoint which patients could benefit from a more active treatment in order to reduce length of stay and risk of readmission. This reasoning is further supported by a recent study by Kremer et al that showed a significant decrease in bio-ADM for admitted patients with AHF with little or no residual congestion after 1 week, compared with patients with significant residual congestion. Further, bio-ADM was the strongest predictor of prevalent congestion among 13 covariates.9 Recently, a promising drug candidate (adrecizumab) targeting bio-ADM has been developed.21 22

Proenkephalin
PenKid is considered an inflammation-independent marker of kidney function that allows the early diagnosis of acute kidney injury by predicting the future change in serum creatinine.25 Its highly dynamic nature enables close monitoring of renal function. In our study, penKid correlated with serum creatinine levels. In addition, penKid was associated with WRF and both in-hospital and 1-year mortality. These results are in line with Ng et al’s study in the AHF setting,15 as well as in the stable heart failure setting.24

The pathophysiological mechanism suggested for penKid, both in WRF and its prognostic value in mortality, might be related to cardiodepressive effects of enkephalins11 which would cause reduced kidney perfusion and advancing heart failure. This theory is supported by the results from the Acute Decompensated Heart Failure National Registry where administration of opiates resulted in worse prognosis in heart failure.25

Even if bio-ADM and penKid most likely reflect different pathophysiological mechanisms (ie, bio-ADM and congestion, penKid and WRF), the combination of the two could yield complementary information regarding the cardiorenal syndrome in patients with AHF. Further prospective studies are indeed warranted.

Study limitations
An important strength of the current study is the use of two well-characterised prospective AHF cohorts. There are, however, several limitations with this study. The two cohorts, while fairly comparable in age and have a medical history, differ significantly in use of medications as well as mortality rate with a lower event rate in the HARVEST cohort. This is most likely due to the fact that patients in the HARVEST cohort were recruited from the wards, while the patients in the GREAT Network Rome cohort were recruited directly from the emergency department. Consequently, treatment for AHF (ie, diuretics) was already initiated in most patients in the HARVEST cohort. The low-event rate is also most likely an effect of this as the most severe cases of AHF with the worst prognosis would be treated in the intensive care unit or the cardiac intensive care unit and not in one of the participating recruiting wards in the HARVEST cohort. The aetiology of heart failure was not registered. Data on signs of congestion, which was the basis for our congestion score, were not collected per protocol prospectively, but gathered retrospectively from the admittance record and thus subjected to the admitting doctor’s precision and record-keeping. This could explain the lack of significance for the congestive signs other than peripheral oedema, as they presumably are more subjective and more prone to include conditions other than congestion. Data on congestion at discharge was not available, and we acknowledge that assessment of residual congestion at discharge would have added value to the study, especially paired with serial measurements of bio-ADM and penKid. Finally, the study was undertaken in individuals of mainly European descent, and the conclusions may not be generalisable to all ancestries.

CONCLUSION
In two separate AHF cohorts, bio-ADM and penKid perform as suitable biomarkers for early detection of congestion severity and WRF occurrence, respectively, and are both associated with adverse clinical outcomes. The simultaneous evaluation of the two biomarkers in patients with AHF could provide important information in therapeutic decision-making in order to reduce patient’s mortality, in-hospital length of stay and rehospitalisation.
rate. Further prospective studies are needed to confirm this hypothesis.

Author affiliations
1 Department of Cardiology, Skånes universitetssjukhus Malmö, Malmö, Sweden
2 Department of Clinical Science, Lund University Faculty of Medicine, Malmö, Sweden
3 Departments of Medical-Surgery Sciences and Translational Medicine, School of Medicine and Psychology, Sapienza University, Sant’Andrea Hospital, Rome, Italy
4 GREAT Network; Emergency Medicine, Department of Medical-Surgery Sciences and Translational Medicine, University Sapienza Rome, Sant’Andrea Hospital, Rome, Italy
5 Department of Internal Medicine, Skånes universitetssjukhus Malmö, Malmö, Sweden
6 Sphingotec GmbH, Henningdorf, Berlin, Germany

Contributors All authors substantially contributed to the conception or design of the work or the acquisition, analysis or interpretation of data for the work; drafting the work or revising it critically for important intellectual content, final approval of the version to be published and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding MM was supported by grants from the Medical Faculty of Lund University Skane University Hospital, the Crafoord Foundation, the Enhuld Lundstroms Research Foundation, the Region Skane, the Hulda and Conrad Mossfält Foundation, the Southwest Skanes Diabetes Foundation, the Kokskra foundation, the Research Funds of Region Skane and the Swedish Heart and Lung foundation, the Wallenberg Center for Molecular Medicine, Lund University, and the Knut and Alice Wallenberg foundation. Role of the Sponsors: The funding organizations had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; or the preparation or approval of the manuscript.

Competing interests OH, AB and JS are employed by Sphingotec GmbH, the company that provides the pentaBlot and bio-AIDM assays used in this study. EB is an employee of Astra Zeneca.

Patient consent for publication Not required.

Ethics approval The study was approved by the Ethical Review Board at Lund University, Sweden (HARVEST-Malmö) and by the Ethical Committee of Sapienza University (GREAT Network Rome).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES