A Convergence Analysis of the Peaceman-Rachford Scheme for Semilinear Evolution Equations

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

The Peaceman--Rachford scheme is a commonly used splitting method for discretizing semilinear evolution equations, where the vector fields are given by the sum of one linear and one nonlinear dissipative operator. Typical examples of such equations are reaction-diffusion systems and the damped wave equation. In this paper we conduct a convergence analysis for the Peaceman--Rachford scheme in the setting of dissipative evolution equations on Hilbert spaces. We do not assume Lipschitz continuity of the nonlinearity, as previously done in the literature. First or second order convergence is derived, depending on the regularity of the solution, and a shortened proof for $o(1)$-convergence is given when only a mild solution exits. The analysis is also extended to the Lie scheme in a Banach space framework. The convergence results are illustrated by numerical experiments for Caginalp's solidification model and the Gray--Scott pattern formation problem.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)1900-1910
TidskriftSIAM Journal on Numerical Analysis
Volym51
Utgåva nummer4
StatusPublished - 2013
PublikationskategoriForskning
Peer review utfördJa

Nedladdningar

Ingen tillgänglig data

Relaterade aktiviteter

Hansen, E. (Första/primär/huvudhandledare)
20112016

Aktivitet: Examination och handledarskapHandledning av forskarstuderande

Visa alla (1)