A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia?

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls

T2 - Neuropathology and Applied Neurobiology

AU - Ek Olofsson, H.

AU - Englund, E.

PY - 2019

Y1 - 2019

N2 - Aims: We observed a microvascular structure in the cerebral cortex that has not, to our knowledge, been previously described. We have termed the structure a ‘raspberry’, referring to its appearance under a bright-field microscope. We hypothesized that raspberries form through angiogenesis due to some form of brain ischaemia or hypoperfusion. The aims of this study were to quantify raspberry frequency within the cerebral cortex according to diagnosis (vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls) and brain regions (frontal, temporal, parietal and occipital cortices, regardless of diagnosis). Materials and methods: In each of 10 age-matched subjects per group, a 20-mm section of the cerebral cortex was examined in haematoxylin-and-eosin-stained sections of the frontal, temporal and parietal, and/or occipital lobes. Tests were performed to validate the haematoxylin-and-eosin-based identification of relative differences between the groups, and to investigate inter-rater variability. Results: Raspberry frequency was highest in subjects with vascular dementia, followed by those with frontotemporal lobar degeneration, Alzheimer's disease and last, nondemented controls. The frequency of raspberries in subjects with vascular dementia differed from that of all other groups at a statistically significant level. In the cerebral lobes, there was a statistically significant difference between the frontal and occipital cortices. Conclusions: We believe the results support the hypothesis that raspberries are a sign of angiogenesis in the adult brain. It is pertinent to discuss possible proangiogenic stimuli, including brain ischaemia (such as mild hypoperfusion due to a combination of small vessel disease and transient hypotension), neuroinflammation and protein pathology.

AB - Aims: We observed a microvascular structure in the cerebral cortex that has not, to our knowledge, been previously described. We have termed the structure a ‘raspberry’, referring to its appearance under a bright-field microscope. We hypothesized that raspberries form through angiogenesis due to some form of brain ischaemia or hypoperfusion. The aims of this study were to quantify raspberry frequency within the cerebral cortex according to diagnosis (vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls) and brain regions (frontal, temporal, parietal and occipital cortices, regardless of diagnosis). Materials and methods: In each of 10 age-matched subjects per group, a 20-mm section of the cerebral cortex was examined in haematoxylin-and-eosin-stained sections of the frontal, temporal and parietal, and/or occipital lobes. Tests were performed to validate the haematoxylin-and-eosin-based identification of relative differences between the groups, and to investigate inter-rater variability. Results: Raspberry frequency was highest in subjects with vascular dementia, followed by those with frontotemporal lobar degeneration, Alzheimer's disease and last, nondemented controls. The frequency of raspberries in subjects with vascular dementia differed from that of all other groups at a statistically significant level. In the cerebral lobes, there was a statistically significant difference between the frontal and occipital cortices. Conclusions: We believe the results support the hypothesis that raspberries are a sign of angiogenesis in the adult brain. It is pertinent to discuss possible proangiogenic stimuli, including brain ischaemia (such as mild hypoperfusion due to a combination of small vessel disease and transient hypotension), neuroinflammation and protein pathology.

KW - Alzheimer's disease

KW - brain ischaemia

KW - frontotemporal lobar degeneration

KW - neovascularization, pathologic

KW - neovascularization, physiologic

KW - vascular dementia

U2 - 10.1111/nan.12552

DO - 10.1111/nan.12552

M3 - Article

JO - Neuropathology and Applied Neurobiology

JF - Neuropathology and Applied Neurobiology

SN - 1365-2990

ER -