A focused very high energy electron beam for fractionated stereotactic radiotherapy

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

An electron beam of very high energy (50–250 MeV) can potentially produce a more favourable radiotherapy dose distribution compared to a state-of-the-art photon based radiotherapy technique. To produce an electron beam of sufficiently high energy to allow for a long penetration depth (several cm), very large accelerating structures are needed when using conventional radio-frequency technology, which may not be possible due to economical or spatial constraints. In this paper, we show transport and focusing of laser wakefield accelerated electron beams with a maximum energy of 160 MeV using electromagnetic quadrupole magnets in a point-to-point imaging configuration, yielding a spatial uncertainty of less than 0.1 mm, a total charge variation below 1 % and a focal spot of 2.3×2.6mm2. The electron beam was focused to control the depth dose distribution and to improve the dose conformality inside a phantom of cast acrylic slabs and radiochromic film. The phantom was irradiated from 36 different angles to obtain a dose distribution mimicking a stereotactic radiotherapy treatment, with a peak fractional dose of 2.72 Gy and a total maximum dose of 65 Gy. This was achieved with realistic constraints, including 23 cm of propagation through air before any dose deposition in the phantom.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • German Electron Synchrotron (DESY)
  • Skåne University Hospital
  • University of Oxford
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Radiologi och bildbehandling
Originalspråkengelska
Artikelnummer5844
TidskriftScientific Reports
Volym11
Utgåva nummer1
StatusPublished - 2021
PublikationskategoriForskning
Peer review utfördJa