A Full Space-Time Convergence Order Analysis of Operator Splittings for Linear Dissipative Evolution Equations

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

The Douglas-Rachford and Peaceman-Rachford splitting methods are common choices for temporal discretizations of evolution equations. In this paper we combine these methods with spatial discretizations fulfilling some easily verifiable criteria. In the setting of linear dissipative evolution equations we prove optimal convergence orders, simultaneously in time and space. We apply our abstract results to dimension splitting of a 2D diffusion problem, where a finite element method is used for spatial discretization. To conclude, the convergence results are illustrated with numerical experiments.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Beräkningsmatematik

Nyckelord

Originalspråkengelska
Sidor (från-till)1302-1316
Antal sidor15
TidskriftCommunications in Computational Physics
Volym19
Utgivningsnummer5
StatusPublished - 2016 maj
PublikationskategoriForskning
Peer review utfördJa

Relaterade aktiviteter

Hansen, E. (Första/primär/huvudhandledare)
20112016

Aktivitet: Examination och handledarskapHandledning av forskarstuderande

Visa alla (1)