A Monte Carlo ray-tracing simulation of coherent X-ray diffractive imaging
Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Abstract
Coherent diffractive imaging (CDI) experiments are adequately simulated assuming the thin sample approximation and using a Fresnel or Fraunhofer wavefront propagator to obtain the diffraction pattern. Although this method is used in wave-based or hybrid X-ray simulators, here the applicability and effectiveness of an alternative approach that is based solely on ray tracing of Huygens wavelets are investigated. It is shown that diffraction fringes of a grating-like source are accurately predicted and that diffraction patterns of a ptychography dataset from an experiment with realistic parameters can be sampled well enough to be retrieved by a standard phase-retrieval algorithm. Potentials and limits of this approach are highlighted. It is suggested that it could be applied to study imperfect or non-standard CDI configurations lacking a satisfactory theoretical formulation. The considerable computational effort required by this method is justified by the great flexibility provided for easy simulation of a large-parameter space.
Detaljer
Författare | |
---|---|
Enheter & grupper | |
Externa organisationer |
|
Forskningsområden | Ämnesklassifikation (UKÄ) – OBLIGATORISK
Nyckelord |
Originalspråk | engelska |
---|---|
Sidor (från-till) | 134-145 |
Antal sidor | 12 |
Tidskrift | Journal of Synchrotron Radiation |
Volym | 27 |
Status | Published - 2020 |
Publikationskategori | Forskning |
Peer review utförd | Ja |