A new coalgebraic Lindström theorem

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

In a recent article, Alexander Kurz and Yde Venema establish a Lindström theorem for coalgebraic modal logic that is shown to imply a modal Lindström theorem by Maarten de Rijke. A later modal Lindström theorem has been established by Johan van Benthem, and this result still lacks a coalgebraic formulation. The main obstacle has so far been the lack of a suitable notion of ‘submodels’ in coalgebraic semantics, and the problem is left open by Kurz and Venema. In this article, we propose a solution to this problem and derive a general coalgebraic Lindström theorem along the lines of van Benthem's result. We provide several applications of the result.

Detaljer

Författare
  • Sebastian Enqvist
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Filosofi

Nyckelord

Originalspråkengelska
Sidor (från-till)1541-1566
TidskriftJournal of Logic and Computation
Volym26
Utgåva nummer5
Tidigt onlinedatum2014 jul 7
StatusPublished - 2016
PublikationskategoriForskning
Peer review utfördJa