A Peirce decomposition for generalized Jordan triple systems of second order

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Every tripotent e of a generalized Jordan triple system of second order uniquely defines a decomposition of the space of the triple into a direct sum of eight components. This decomposition is a generalization of the Peirce decomposition for the Jordan triple system. The relations between components are studied in the case when e is a left unit.

Detaljer

Författare
  • Isaiah Kantor
  • Noriaki Kamiya
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)5875-5913
TidskriftCommunications in Algebra
Volym31
Utgåva nummer12
StatusPublished - 2003
PublikationskategoriForskning
Peer review utfördJa