A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics

Forskningsoutput: TidskriftsbidragÖversiktsartikel

Abstract

The applications of femtosecond lasers to the diagnostics of combustion and flow field have recently attracted increasing interest. Many novel spectroscopic methods have been developed in obtaining non-intrusive measurements of temperature, velocity, and species concentrations with unprecedented possibilities. In this paper, several applications of femtosecond-laser-based incoherent techniques in the field of combustion diagnostics were reviewed, including two-photon femtosecond laser-induced fluorescence (fs-TPLIF), femtosecond laser-induced breakdown spectroscopy (fs-LIBS), filament-induced nonlinear spectroscopy (FINS), femtosecond laser-induced plasma spectroscopy (FLIPS), femtosecond laser electronic excitation tagging velocimetry (FLEET), femtosecond laser-induced cyano chemiluminescence (FLICC), and filamentary anemometry using femtosecond laser-extended electric discharge (FALED). Furthermore, prospects of the femtosecond-laser-based combustion diagnostic techniques in the future were analyzed and discussed to provide a reference for the relevant researchers.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Tianjin University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Energiteknik

Nyckelord

Originalspråkengelska
Artikelnummer1906
TidskriftApplied Sciences (Switzerland)
Volym9
Utgåva nummer9
StatusPublished - 2019 maj 1
PublikationskategoriForskning
Peer review utfördJa