A second-order positivity preserving scheme for semilinear parabolic problems

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is shown that exponential operator splitting methods and in particular the method of Strang will preserve positivity in certain situations. A numerical illustration of the convergence behaviour is included.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)1428-1435
TidskriftApplied Numerical Mathematics
Volym62
Utgåva nummer10
StatusPublished - 2012
PublikationskategoriForskning
Peer review utfördJa

Nedladdningar

Ingen tillgänglig data