Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. / Shamloo, M.; Rytter, A.; Wieloch, T.

I: Neuroscience, Vol. 93, Nr. 1, 01.06.1999, s. 81-88.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning

AU - Shamloo, M.

AU - Rytter, A.

AU - Wieloch, T.

PY - 1999/6/1

Y1 - 1999/6/1

N2 - A short period of sublethal preconditioning ischemia (3 min) followed by two days of reperfusion provides almost complete protection against ischemic cell death induced by a second (9 min) lethal ischemic episode. Here, we have investigated the extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase, two kinases known to activate gene transcription and to be of importance for cell survival, after sublethal preconditioning ischemia in the rat hippocampal CA1 region. The activation levels of these two kinases were also studied after a second ischemic episode both in preconditioned and nonconditioned brains. An increased phosphorylation of the extracellular signal-regulated protein kinase kinase was found in neuronal cell bodies, particularly in the nucleus, 30 min, 4 h and two days of reperfusion after preconditioning ischemia. Two days after preconditioning ischemia both extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase were markedly phosphorylated. During the early reperfusion period (30 min) after the second ischemic insult the phosphorylation levels of these two kinases were increased in both nonconditioned and preconditioned brains. In the late reperfusion time (one day), the phosphorylation levels of the extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase were decreased in preconditioned brains, but remained elevated in nonconditioned brains. We conclude that phosphorylation of the extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase after sublethal ischemia correlates with the neuroprotection induced by preconditioning, possibly by transcriptional activation of neuroprotective genes. Also, preconditioning enhances normalization of the disturbed cell signaling through the extracellular signal-regulated protein kinase cascade induced by lethal ischemia.

AB - A short period of sublethal preconditioning ischemia (3 min) followed by two days of reperfusion provides almost complete protection against ischemic cell death induced by a second (9 min) lethal ischemic episode. Here, we have investigated the extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase, two kinases known to activate gene transcription and to be of importance for cell survival, after sublethal preconditioning ischemia in the rat hippocampal CA1 region. The activation levels of these two kinases were also studied after a second ischemic episode both in preconditioned and nonconditioned brains. An increased phosphorylation of the extracellular signal-regulated protein kinase kinase was found in neuronal cell bodies, particularly in the nucleus, 30 min, 4 h and two days of reperfusion after preconditioning ischemia. Two days after preconditioning ischemia both extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase were markedly phosphorylated. During the early reperfusion period (30 min) after the second ischemic insult the phosphorylation levels of these two kinases were increased in both nonconditioned and preconditioned brains. In the late reperfusion time (one day), the phosphorylation levels of the extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase were decreased in preconditioned brains, but remained elevated in nonconditioned brains. We conclude that phosphorylation of the extracellular signal-regulated protein kinase kinase and extracellular signal-regulated protein kinase after sublethal ischemia correlates with the neuroprotection induced by preconditioning, possibly by transcriptional activation of neuroprotective genes. Also, preconditioning enhances normalization of the disturbed cell signaling through the extracellular signal-regulated protein kinase cascade induced by lethal ischemia.

KW - Brain ischemia

KW - Cell death

KW - Cell signaling

KW - MAP kinase

KW - Preconditioning

KW - Tolerance

U2 - 10.1016/S0306-4522(99)00137-2

DO - 10.1016/S0306-4522(99)00137-2

M3 - Article

C2 - 10430472

AN - SCOPUS:0033028971

VL - 93

SP - 81

EP - 88

JO - Neuroscience

JF - Neuroscience

SN - 1873-7544

IS - 1

ER -