Adaptive time-integration for goal-oriented and coupled problems

Forskningsoutput: AvhandlingDoktorsavhandling (sammanläggning)


We consider efficient methods for the partitioned time-integration of multiphysics problems, which commonly exhibit a multiscale behavior, requiring independent time-grids. Examples are fluid structure interaction in e.g., the simulation of blood-flow or cooling of rocket engines, or ocean-atmosphere-vegetation interaction. The ideal method for solving these problems allows independent and adaptive time-grids, higher order time-discretizations, is fast and robust, and allows the coupling of existing subsolvers, executed in parallel.

We consider Waveform relaxation (WR) methods, which can have all of these properties. WR methods iterate on continuous-in-time interface functions, obtained via suitable interpolation. The difficulty is to find suitable convergence acceleration, which is required for the iteration converge quickly.

We develop a fast and highly robust, second order in time, adaptive WR method for unsteady thermal fluid structure interaction (FSI), modelled by heterogeneous coupled linear heat equations. We use a Dirichlet-Neumann coupling at the interface and an analytical optimal relaxation parameter derived for the fully-discrete scheme. While this method is sequential, it is notably faster and more robust than similar parallel methods.

We further develop a novel, parallel WR method, using asynchronous communication techniques during time-integration to accelerate convergence. Instead of exchanging interpolated time-dependent functions at the end of each time-window or iteration, we exchange time-point data immediately after each timestep. The analytical description and convergence results of this method generalize existing WR theory.

Since WR methods allow coupling of problems in a relative black-box manner, we developed adapters to PDE-subsolvers implemented using DUNE and FEniCS. We demonstrate this coupling in a thermal FSI test case.

Lastly, we consider adaptive time-integration for goal-oriented problems, where one is interested in a quantity of interest (QoI), which is a functional of the solution. The state-of-the-art method is the dual-weighted residual (DWR) method, which is extremely costly in both computation and implementation. We develop a goal oriented adaptive method based on local error estimates, which is considerably cheaper in computation. We prove convergence of the error in the QoI for tolerance to zero under a controllability assumption. By analyzing global error propagation with respect to the QoI, we can identify possible issues and make performance predictions. Numerical results verify these results and show our method to be more efficient than the DWR method.


Enheter & grupper

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Beräkningsmatematik
  • Matematisk analys


Tilldelande institution
Handledare/Biträdande handledare
Tilldelningsdatum2021 sep 2
Tryckta ISBN978-91-7895-930-3
Elektroniska ISBN978-91-7895-929-7
StatusPublished - 2021 jun 3


Ingen tillgänglig data

Relaterad forskningsoutput

Peter Meisrimel & Philipp Birken, 2020 jun, I: Algorithms. 13.5, 113

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Peter Meisrimel & Philipp Birken, 2017 dec, PAMM: Proceedings in applied mathematics and mechanics. 1 uppl. Weimar: Wiley-VCH Verlag, Vol. 17. s. 849-850 2 s. (Proceedings in applied mathematics and mechanics).

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceeding

Visa alla (2)

Related projects

Philipp Birken, Claus Führer, Azahar Monge, Michael Mischurow, Peter Meisrimel & Paul Miller

eSSENCE: The e-Science Collaboration


Projekt: ForskningTvärvetenskaplig forskning, Internt samarbete (LU)

Visa alla (1)