Adsorption of cadmium by a high-capacity adsorbent composed of silicate-titanate nanotubes embedded in hydrogel chitosan beads

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Adsorption of cadmium by a high-capacity adsorbent composed of silicate-titanate nanotubes embedded in hydrogel chitosan beads

AU - Quiroga Flores, Roxana

AU - Asma Noshad

AU - Wallenberg, Reine

AU - Önnby, Linda

PY - 2019/3/20

Y1 - 2019/3/20

N2 - In this study, we developed a nanoparticle-based mesoporous composite that consisted of silicate-titanate nanotubes (STNTs) supported in hydrogel chitosan beads (STNTs-Ch beads) and was studied for Cd2+ adsorption. By using Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy coupled to an energy-dispersive X-ray spectrometer, we coulddetermine that the hollow STNTs were highly dispersed in the walls of the hollow beads. The dispersion was attributed to the effect of pH when the composite was prepared and we observed a non-interaction between STNTs and chitosan. The adsorption studies of Cd2+ showed that the kinetic rate (k2) increased 3-fold and that the diffusion rate (Kd) increased 2-fold afterthe embedment. Moreover, the maximum capacity of adsorption of STNTs-Ch beads was 2.3 times higher than that of STNTs alone. The treatment of a synthetic Cd2+ solution and a real leachate in continuous mode showed two phases in which it was observed higher removed fractions of transition metal ions (Cd2+, Co2+, Ni2+, Zn2+ and Cu2+) and the post-transition metal ion Pb2+, in comparison to the removed fractions of alkali and alkali-earth metal ions (Ca2+, K+, Mg2+). The composite was successfully reused four times when adsorbing Cd2+, saving three times the needed amounts of TiO2, SiO2 and chitosan for the production of the material. This composite was produced in a simple way and shows the potential for wastewater treatment.

AB - In this study, we developed a nanoparticle-based mesoporous composite that consisted of silicate-titanate nanotubes (STNTs) supported in hydrogel chitosan beads (STNTs-Ch beads) and was studied for Cd2+ adsorption. By using Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy coupled to an energy-dispersive X-ray spectrometer, we coulddetermine that the hollow STNTs were highly dispersed in the walls of the hollow beads. The dispersion was attributed to the effect of pH when the composite was prepared and we observed a non-interaction between STNTs and chitosan. The adsorption studies of Cd2+ showed that the kinetic rate (k2) increased 3-fold and that the diffusion rate (Kd) increased 2-fold afterthe embedment. Moreover, the maximum capacity of adsorption of STNTs-Ch beads was 2.3 times higher than that of STNTs alone. The treatment of a synthetic Cd2+ solution and a real leachate in continuous mode showed two phases in which it was observed higher removed fractions of transition metal ions (Cd2+, Co2+, Ni2+, Zn2+ and Cu2+) and the post-transition metal ion Pb2+, in comparison to the removed fractions of alkali and alkali-earth metal ions (Ca2+, K+, Mg2+). The composite was successfully reused four times when adsorbing Cd2+, saving three times the needed amounts of TiO2, SiO2 and chitosan for the production of the material. This composite was produced in a simple way and shows the potential for wastewater treatment.

KW - silicate-titanate nanotubes

KW - chitosan beads

KW - cadmium

KW - adsorption

KW - reuse

U2 - 10.1080/09593330.2019.1596167

DO - 10.1080/09593330.2019.1596167

M3 - Article

JO - Environmental Technology (United Kingdom)

JF - Environmental Technology (United Kingdom)

SN - 1479-487X

ER -