Aerotaxy - A Gas-Phase Nanowire Growth Technique

Forskningsoutput: AvhandlingLicentiatavhandling


In this thesis an efficient nanowire fabrication technique, called Aerotaxy,
is investigated. Traditional nanowire fabrication techniques include
the use of a substrate as a point of nanowire nucleation which
limits the amount of nanowires that can be produced per unit time.
In contrary, Aerotaxy offers a continuous growth process, in the gasphase,
which could substantially increase the rate at which nanowires
are fabricated and thus lower their fabrication cost.
Investigations of nanowire properties such as size, shape and crystal
structure, with electron microscopy, show that growth can be controlled
and tuned to a high degree. Optical properties investigated
with photoluminescence reveal that as-grown nanowires have good optical
properties and excellent spectral uniformity. Aerotaxy can thus
be used to produce high-quality nanowires, that could be integrated
into future opto-electronic devices, at a lower cost than other growth
techniques offer.


  • Magnus Heurlin
Enheter & grupper

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Den kondenserade materiens fysik
  • Nanoteknik
Tilldelande institution
Handledare/Biträdande handledare
StatusPublished - 2014


Ingen tillgänglig data

Relaterad forskningsoutput

Heurlin, M., Martin Magnusson, Lindgren, D., Martin Ek, Reine Wallenberg, Knut Deppert & Lars Samuelson, 2012, I : Nature. 492, 7427, s. 90-94

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Visa alla (1)

Related projects

Knut Deppert, Martin Magnusson, Lars Samuelson, Wondwosen Metaferia, Sudhakar Sivakumar & Bengt Meuller

Swedish Research Council


Projekt: Forskning

Visa alla (1)