An extended Kalman-Yakubovich-Popov lemma for positive systems

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

An extended Kalman-Yakubovich-Popov Lemma for positive systems is proved, which generalizes earlier versions in several respects: Non-strict inequalities are treated. Matrix assumptions are less restrictive. Moreover, a new equivalence is introduced in terms of linear programming rather than semi-definite programming. As a complement, we also prove that a symmetric Metzler matrix with rn non-zero entries above the diagonal is negative semi-definite if and only if it can be written as a sum of in negative semi-definite matrices, each of which has only four non-zero entries.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Reglerteknik
Originalspråkengelska
Sidor (från-till)242-245
Antal sidor4
TidskriftIFAC-PapersOnLine
Volym28
Utgåva nummer11
StatusPublished - 2015 jul 1
PublikationskategoriForskning
Peer review utfördJa