Autoignition of Dimethyl Ether and Air in an Optical Flow-Reactor

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Autoignition of dimethyl ether in air was studied in a turbulent flow-reactor with optical access, at conditions relevant to micro gas turbine combustors. The ignition process was visualized using OH*-chemiluminescence imaging, showing the formation of multiple autoignition kernels along the central axis of the reactor. Ignition delays in the range of tau = 112-310 ms were measured at temperatures of T = 739-902 K, pressures of P = 0.2-0.4 MPa, equivalence ratios of phi = 0.225-0.675, and initial flow velocities of U-i = 8-46 m/s. The effect of adding nitrogen to the reactants as a diluent was investigated for mole fractions of additional nitrogen ranging from 0 < X-N2 < 0.1. The experimental ignition delays were compared with homogeneous gas-phase chemical kinetic modeling. Comparison between the modeling and experiments showed significant discrepancies, but agreement was improved when heat transfer in the reactor was taken into account in the modeling.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Atom- och molekylfysik och optik
  • Energiteknik
Originalspråkengelska
Sidor (från-till)4130-4138
TidskriftEnergy & Fuels
Volym28
Utgåva nummer6
StatusPublished - 2014
PublikationskategoriForskning
Peer review utfördJa