Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Background
3-Hydroxypropionic acid (3HP) and acrylic acid (AA) are industrially important platform- and secondary chemical, respectively. Their production from renewable resources by environment-friendly processes is desirable. In the present study, both chemicals were almost quantitatively produced from biodiesel-derived glycerol by an integrated process involving microbial and chemical catalysis.

Results
Glycerol was initially converted in a fed-batch mode of operation to equimolar quantities of 3HP and 1,3-propanediol (1,3PDO) under anaerobic conditions using resting cells of Lactobacillus reuteri as a biocatalyst. The feeding rate of glycerol was controlled at 62.5 mg/gCDW.h which is half the maximum metabolic flux of glycerol to 3HP and 1,3PDO through the L. reuteri propanediol-utilization (pdu) pathway to prevent accumulation of the inhibitory intermediate, 3-hydroxypronionaldehyde (3HPA). Subsequently, the cell-free supernatant containing the mixture of 3HP and 1,3PDO was subjected to selective oxidation under aerobic conditions using resting cells of Gluconobacter oxydans where 1,3PDO was quantitatively converted to 3HP in a batch system. The optimum conditions for the bioconversion were 10 g/L substrate and 5.2 g/L cell dry weight. Higher substrate concentrations led to enzyme inhibition and incomplete conversion. The resulting solution of 3HP was dehydrated to AA over titanium dioxide (TiO2) at 230 °C with a yield of >95 %.

Conclusions
The present study represents the first report on an integrated process for production of acrylic acid at high purity and -yield from glycerol through 3HP as intermediate without any purification step. The proposed process could have potential for industrial production of 3HP and AA after further optimization.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Beni-Suef University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Industriell bioteknik

Nyckelord

Originalspråkengelska
Artikelnummer200
TidskriftMicrobial Cell Factories
Volym14
StatusPublished - 2015
PublikationskategoriForskning
Peer review utfördJa