Biological treatment of whitewater in a laboratory process in order to determine kinetic parameters for model development

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Biological treatment of whitewater in a laboratory process in order to determine kinetic parameters for model development. / Alexandersson, Tomas; Jeppsson, Ulf; Rosén, Christian.

I: Water Science and Technology, Vol. 50, Nr. 3, 2004, s. 195-206.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Biological treatment of whitewater in a laboratory process in order to determine kinetic parameters for model development

AU - Alexandersson, Tomas

AU - Jeppsson, Ulf

AU - Rosén, Christian

PY - 2004

Y1 - 2004

N2 - Implementation of an in-mill biological treatment plant is one solution to the problems associated with closure of whitewater systems. It is, however, important to operate the treatment with low concentration of nutrients in the effluent. The effect on the COD reduction from decreased additions of NH4-N and PO4-P were investigated in three parallel aerobic suspended carrier reactors during treatment at 46 to 48degreesC of whitewater from a recycled paper mill producing liner and fluting. In the reference reactor, a COD reduction of 89% was achieved and 45.6 mg NH4-N/(g COD reduced) and 11.6 mg PO4-P/(g COD reduced) was consumed at an organic load around 20 kg COD/(m(3.)d). Reduced additions of NH4-N decreased the COD reduction. Addition of 56% of the consumption of NH4-N in the reference reactor resulted in a COD reduction of 80%. The response from decreased addition of PO4-P was different compared to NH4-N but it could not be determined if this is due to unsuitable experimental design or a different reaction mechanism. Reducing the addition of PO4-P to 26% of the consumption of PO4-P in the reference reactor, decreased the COD reduction to 83%. The main conclusion from the experiment is: biological treatment has the potential of treating whitewater from recycled paper mills with low effluent nutrient concentrations.

AB - Implementation of an in-mill biological treatment plant is one solution to the problems associated with closure of whitewater systems. It is, however, important to operate the treatment with low concentration of nutrients in the effluent. The effect on the COD reduction from decreased additions of NH4-N and PO4-P were investigated in three parallel aerobic suspended carrier reactors during treatment at 46 to 48degreesC of whitewater from a recycled paper mill producing liner and fluting. In the reference reactor, a COD reduction of 89% was achieved and 45.6 mg NH4-N/(g COD reduced) and 11.6 mg PO4-P/(g COD reduced) was consumed at an organic load around 20 kg COD/(m(3.)d). Reduced additions of NH4-N decreased the COD reduction. Addition of 56% of the consumption of NH4-N in the reference reactor resulted in a COD reduction of 80%. The response from decreased addition of PO4-P was different compared to NH4-N but it could not be determined if this is due to unsuitable experimental design or a different reaction mechanism. Reducing the addition of PO4-P to 26% of the consumption of PO4-P in the reference reactor, decreased the COD reduction to 83%. The main conclusion from the experiment is: biological treatment has the potential of treating whitewater from recycled paper mills with low effluent nutrient concentrations.

KW - pulp and paper

KW - nutrients

KW - model

KW - aerobic degradation

KW - closure

KW - whitewater

M3 - Article

VL - 50

SP - 195

EP - 206

JO - Water Science and Technology

JF - Water Science and Technology

SN - 0273-1223

IS - 3

ER -