Boundary behavior in Hilbert spaces of vector-valued analytic functions

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

In this paper we study the boundary behavior of functions in Hilbert spaces of vector-valued analytic functions on the unit disc D. More specifically, we give operator-theoretic conditions on M-z, where M-z, denotes the operator of multiplication by the identity function on ID, that imply that all functions in the space have non-tangential limits a.e., at least on some subset of the boundary. The main part of the article concerns the extension of a theorem by Aleman, Richter and Sundberg in [A. Aleman, S. Richter, C. Sundberg, Analytic contractions and non-tangential limits, Trans. Amer. Math. Soc. 359 (2007)] to the case of vector-valued functions. (C) 2007 Elsevier Inc. All rights reserved.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)169-201
TidskriftJournal of Functional Analysis
Volym247
Utgivningsnummer1
StatusPublished - 2007
PublikationskategoriForskning
Peer review utfördJa