C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration. / Hafizi, Sassan; Ibraimi, Filiz; Dahlbäck, Björn.

I: FASEB Journal, Vol. 19, Nr. 8, 2005, s. 971.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration

AU - Hafizi, Sassan

AU - Ibraimi, Filiz

AU - Dahlbäck, Björn

PY - 2005

Y1 - 2005

N2 - We have previously identified C1 domain-containing phosphatase and TENsin homologue (C1-TEN) as being an intracellular binding partner for Axl receptor tyrosine kinase (RTK). C1-TEN is a tensin-related protein that houses an N-terminal region with predicted structural similarity to PTEN. Here, we report our observations on the effects of ectopic expression of C1-TEN in HEK293 cells, which resulted in profound molecular and phenotypic changes. Stable expression of C1-TEN altered cellular morphology, with less cell spreading and weaker filamentous actin staining. Cells overexpressing C1-TEN were inhibited greatly in their proliferation and migration rates as compared with mock-transfected cells. Furthermore, serum starvation-induced apoptosis caused a twofold increase in caspase 3 activity in C1-TEN-overexpressing cells vs. mock cells. In addition, C1-TEN-overexpressing cells showed a markedly reduced phosphorylation of Akt/PKB kinase and its substrate GSK3, as well as reduced Akt enzymatic activity. No such effects on JNK were observed. Also, serum-stimulated activation of Akt was delayed in C1-TEN-overexpressing cells, while no difference in profile of ERK activation was observed. Furthermore, cells expressing a C1-TEN mutant where the putative phosphatase active site cysteine at position 231 was substituted for a serine displayed full restoration of both cell proliferation and Akt activation. In conclusion, C1-TEN appears to be a novel intracellular phosphatase that negatively regulates the Akt/PKB signaling cascade, and is similar to its relative PTEN in this respect. However, the particular domain organization of C1-TEN may enable it to regulate RTK and other signaling complexes that are linked to Akt/PKB signaling in a unique manner.

AB - We have previously identified C1 domain-containing phosphatase and TENsin homologue (C1-TEN) as being an intracellular binding partner for Axl receptor tyrosine kinase (RTK). C1-TEN is a tensin-related protein that houses an N-terminal region with predicted structural similarity to PTEN. Here, we report our observations on the effects of ectopic expression of C1-TEN in HEK293 cells, which resulted in profound molecular and phenotypic changes. Stable expression of C1-TEN altered cellular morphology, with less cell spreading and weaker filamentous actin staining. Cells overexpressing C1-TEN were inhibited greatly in their proliferation and migration rates as compared with mock-transfected cells. Furthermore, serum starvation-induced apoptosis caused a twofold increase in caspase 3 activity in C1-TEN-overexpressing cells vs. mock cells. In addition, C1-TEN-overexpressing cells showed a markedly reduced phosphorylation of Akt/PKB kinase and its substrate GSK3, as well as reduced Akt enzymatic activity. No such effects on JNK were observed. Also, serum-stimulated activation of Akt was delayed in C1-TEN-overexpressing cells, while no difference in profile of ERK activation was observed. Furthermore, cells expressing a C1-TEN mutant where the putative phosphatase active site cysteine at position 231 was substituted for a serine displayed full restoration of both cell proliferation and Akt activation. In conclusion, C1-TEN appears to be a novel intracellular phosphatase that negatively regulates the Akt/PKB signaling cascade, and is similar to its relative PTEN in this respect. However, the particular domain organization of C1-TEN may enable it to regulate RTK and other signaling complexes that are linked to Akt/PKB signaling in a unique manner.

KW - receptor tyrosine kinase

KW - Ax1

KW - phosphatase

KW - tensin

U2 - 10.1096/fj.04-2532fje

DO - 10.1096/fj.04-2532fje

M3 - Article

VL - 19

SP - 971

JO - FASEB Journal

JF - FASEB Journal

SN - 1530-6860

IS - 8

ER -