Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


A continuous supermacroporous monolithic chromatographic matrix has been characterized using a capillary model, experimental breakthrough curves, and pressure drop experiments. The model describes the convective flow and its dispersive mixing effects, mass transfer resistance, pore size distribution, and the adsorption behavior of the monolithic matrix. It is possible to determine an effective pore size distribution by fitting the capillary model to experimental breakthrough curves and pressure drop experiments. The model is able to describe the flow rate dependence of the experimental breakthrough curves. Mass transport resistance was due to: (i) dispersive mixing effects in the convective flow in the pores; and (ii) slow diffusion in the stagnant film covering the surface within each pore, under adsorption conditions. The monolithic matrix can be described by a very narrow pore size distribution, illustrating one of the advantages of the gel. A broader pore size distribution results in increased band broadening. This can be studied easily using the model developed in this investigation. (C) 2004 Wiley Periodicals, Inc.


Enheter & grupper

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Kemiteknik
  • Industriell bioteknik
Sidor (från-till)224-236
TidskriftBiotechnology and Bioengineering
Utgåva nummer2
StatusPublished - 2004
Peer review utfördJa