Clusters of eigenvalues for the magnetic Laplacian with Robin condition

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We study the Schrödinger operator with a constant magnetic field in the exterior of a compact domain in Euclidean space. Functions in the domain of the operator are subject to a boundary condition of the third type (a magnetic Robin condition). In addition to the Landau levels, we obtain that the spectrum of this operator consists of clusters of eigenvalues around the Landau levels and that they do accumulate to the Landau levels from below. We give a precise asymptotic formula for the rate of accumulation of eigenvalues in these clusters, which is independent of the boundary condition.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Chalmers University of Technology
  • Lebanese University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematisk analys
  • Annan fysik
Originalspråkengelska
Artikelnummer063510
TidskriftJournal of Mathematical Physics
Volym57
Utgåva nummer6
StatusPublished - 2016 jun 1
PublikationskategoriForskning
Peer review utfördJa