Complex spectral properties of non-Hermitian operators: An application to open-flow mixing systems
Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Abstract
We study the spectral properties of the advection-diffusion operator associated with a non-chaotic 3d Stokes flow defined in the annular region between counter-rotating cylinders of finite length. The focus is on the dependence of the eigenvalue-eigenfunction spectrum on the Peclet number Pe. Several convection-enhanced mixing regimes are identified, each characterized by a power law scaling, -μd∼Pe-γ (γd, vs.Pe. Among these regimes, a Pe-independent scaling -μd=const (i.e., γ=0), qualitatively similar to the asymptotic regime of globally chaotic flows, is observed. This regime arises as the consequence of different eigenvalues branches interchanging dominance at increasing Pe. A combination of perturbation analysis and functional-theoretical arguments is used to explain the occurrence and the range of existence of each regime.
Detaljer
Författare | |
---|---|
Externa organisationer |
|
Forskningsområden | Ämnesklassifikation (UKÄ) – OBLIGATORISK
|
Originalspråk | engelska |
---|---|
Artikelnummer | 34001 |
Tidskrift | Europhysics Letters |
Volym | 83 |
Utgåva nummer | 3 |
Status | Published - 2008 aug 1 |
Publikationskategori | Forskning |
Peer review utförd | Ja |
Externt publicerad | Ja |